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Epitome

In this thesis, a formal ontological theory of causality is developed thatrisemiually based
on the intuitions of regularity and counterfactual dependency (coveniagipulability in the
process as well). Both relations are introduced as extensions of theaGEpanal Ontology
(GFO), and they are defined on coincidence pairs of presentials dndeéna probabilistic as-
pect. While regularity covers statistical dependency on universals’nicssa counterfactual
dependency is about supportive/undermining causally contrastivierdus coincidence pairs,
taking their relative distance to actuality as a reference cluster into accBased on GFO'’s
relations between presentials and processes, the basic causal releximmded to cover differ-
ent kinds of causal relations between processes. The quartet afcitnbderbeing a nice example
for this extension’s modeling capability. With respect to epistemics, the theabtégo explain
our general ability to empirically discover causal relationships and in whays\t is limited.
A reconstruction of methods used in performing experiments in generain atidical trials in
particular, shows the epistemic adequacy of the theory developed.
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1 Introduction

1.1 Limiting the scope

It is not a new insight that terms like “causes” or “causal relation” areigondus. In fact, there
are so many meanings and connotations (depending on context anddkerspmtentions) that
the discussion of causality even brought about the request to get“gduges” in general:

“[TThe word 'cause’ is so inextricably bound up with misléagl associations as to make its
complete extrusion from the philosophical vocabulary iddse [...].”

(RussELL, 1910, p. 180)

Nevertheless, causal knowledge plays a vital role in various fieldse swilpace RISSELL)
follow this general strategy: we limit the scope by making explicit what fieldd (¢hus, what
interpretations) are outside the focus of this thesis. Additionally, we will try tetilie our idea
of causality as well as we can. So even if you disagree that what we sas@uaality “really
is” causality, we hope that you can still benefit from our considerationstpreting them as
“causality in the sense of this thesis”, whatever technical term you mayuge f

Causality as “Physically Making Happen”

Let us plunge directly intonedias resvith some statements that refer to causal relations:

(S1) Athunderstorm will occur because the air pressure is dropppidlya

(S2) Mary caught a cold because she visited her friend Sue, whalplsedfered from that
disease.

(S 3) The window pane broke into pieces because Mary'’s ball hit it.

Up to here, there is no problem. Each of the sentences (S 1) to (S 3 refeicause and its
effect. But then there are statements that look pretty much the same:

(S4) Joeis abachelor because he is an unmarried young man.

(S5) 5isprime asitis anatural number which has exactly two distinct natumaber divisors:
1 and itself.
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In our view, however, these sentences do not refer to causal ciiome So we shall take
some time to explain why, in order to make you familiar with how we will understaniduse
terms like “cause”, “causal relation”, and so forth, in the course of tlasigh

The shortest description of what we think that “causes” — as in “A caBSe- means, is:
“makes happéror “ physically brings abotit In sentence (S 1) e.g. , itis the drop in air pressure
that physically brings about the thunderstorm. But with sentence (S 4)sthirggdifferent. It
would be strange to claim that being an unmarried young man “physicallysabgut”’ being
a bachelor. The same holds for (S 5): being divisible by only 1 and itsel dot “physically
bring about” being a prime number. The connection that the latter sentafeesaris more of
a conceptual or logical inference/consequence than a causal relatispart of the meaning
of “bachelor” to be “unmarried”. And being divisible by only 1 and itself ig thefinition of
“being prime”. But why are we tricked by the surface structure? Ism@taranything that all
these sentences have in common?

Indeed, there is. They all refer &xplanations They give reasons in order to answer the
guestion about why something is the case. But — and this is what needs tiedsed — they
differ by the kind of reason they give. The first three do ghaeisal explanationswhile the
latter giveconceptuabr logical explanations.

Causality as Physical Causality

The expression of “physically bringing about” already shows that wereslirict our analysis to
physical causalityi.e. to causal relations between physical objects and whatever is ¢ednec
them (like qualities or processes they take part in). The ontology of e.qnitiek however, and
of the mind’s relations to the physical world (like psycho-physical interastior the so-called
“Mind-Body” problem) is a huge field of its own that we cannot try to coverdj so you will

not find a proposal for modeling statements such as “My anger made nietbatsglass” or
similar ones.

For the same reason, we do not cover relations from the social realfst@um?”, as it is
e.g. called by HRRE ET AL (2007, chapt. 4). We do not deal with judgments like e.g. “The
industrial revolution led to the early socialist movement.”

Nevertheless, we are convinced that if any causal notion is to be usaessgdhother fields, it
will share the main conceptual featuregejularity andcounterfactual dependentyat we will
develop in the course of our investigations. But everything more con@reterms of building
an ontological theory), like the question of the ontological nature of theataelata, and the
connections to time, may well look very different there than it does with physausality.

1 HERRE ET AL (2007) follow RoLi (2001), here, who, in turn, rests his framework oRRFMANN
(1964).



1.2 Computer Science and Philosophy Overlapping

No Causal Pluralism in Physical Causality

One strategy in order to tackle the numerous accounts of causality is theaapprfcausal
pluralism which defends the idea that there are several different notionsuskéalNe do not
follow this approach, here: as far as the realm of physics is conceneslelieve that there is
only one kind of relation that may be called causal.

“A" Cause, not “the” Cause

As the last clarification on what kind of causality we are discussing, let kg eiaar that we do
not identify “a cause” with being “the cause”:

The careless tossing of a lit cigarette, the recent drougbtpresence of oxygen in the
atmosphere; these all count among the causes of the forest[fir.] Which cause we
single out will depend upon context and the interests of pleakers [.. .].

(HiTcHcock, 2003, p. 5)

So when something is identified as a cause by our theory, this does not ragémetie are no
other causes as well.

1.2 Computer Science and Philosophy Overlapping

When looking at the table of contents, you will find that sections with philosapbontent play
a relevant role in this thesis. The following section will explain why, and it wellst from the
perspective of both, philosophiers and computer scientists.

1.2.1 Why is Causality an Al Problem?
(An Introduction for Philosophers)

In the early days of computer usage, the term “electronic data processisgoined. And even
if it seems outdated by now, it proves handy for illustrating why certain coenseientists care
about the nature of causality.

1.2.1.1 Machines Follow Rules

“Electronic processing” means that an electranigchines used to process the data, which has
an important implication: being a physical entity, a machine first of all followsaive of nature.
Additionally we as the machine’s creators can add extiesof how the machine should behave,
e.g. what it should do under certain conditions. Indeed, we must sag thathine cannot do

2 For overview and defense of causal pluralism cfréHcock (2003); GODFREY-SMITH (2006)
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anything else but to follow (more or less complex) rules. In computers, mdkesé rules are
typically given by software. And even if one might be tempted to think that lajmade.g. a
randomization device the rule based character could be transcendedpal imply is that we
may probably not be able to foretell its behaviour. Yet we do know thag dngets the data
from the randomization device, it processes that data according to tisegiuém.

1.2.1.2 Computers Manipulate Symbols

Regarding computers, what is the “data” that is being processed, aatddebs “processing”
mean with respect to this data? In modern PCs, of course, it is the bits, plhysiored on

disks and memory chips, that the machine works on, which means that thespoodakes
them, performs some (mathematical) operations on them, and returns bits aswhigbuthen

are stored again or e.g. presented on a display. Computers, thus, belahgt two of the
godfathers of artificial intelligence, Allen 8WeLL and Herbert A. 810N, called a “physical
symbol system”(lWELL and SMON, 1976) which comprises the following elements:

[...] a set of entities, called symbols, which are physiedtgrns that can occur as compo-
nents of another type of entity called an expression (or ®}rsioucture). Thus, a symbol
structure is composed of a number of instances (or tokensymbols related in some
physical way (such as one token being next to another). Bedides these structures, the
system also contains a collection of processes that opemag&pressions to produce other
expressions: processes of creation, modification, regtaduand destruction.

(NEWELL and SMON, 1976, p. 116)

In short what the computer works on (the “data” in “data processing’physical symbols, i.e.
patterns built of physical bits.

1.2.1.3 Knowledge Representation

The consequence of computers following rules, and being symbol systetingt whenever we
want to make use of computers, we must find a way to “translate” the probterfom “encode”
by) symbols and rules on how to handle these symbols. An example might eépphbre.

Let us say we want a computer to sort a list of professions alphabetichlfig( 1.1). In order
to do so, we may encode the strings (as sequences of charactersjjitaces of bits. Then we
have the computer sort the bit sequences following certain rules, e.gacogthe sequences
bit by bit firstly grouping “0...” and “1...” sequences, then grouping witthiase groups to get
“00..”,“01...”,“10...”, “11...” sequences, and so on. And once vagdgot the binary sequences
sorted, we translate them back into characters and strings.

This procedure exemplifies the steps necessary for all computer prebleimg:

e Translate the problem into symbols the computer can work with.
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String Binary Code | Sorted Binary | Sorted String
Chauf f eur | 01000011]...]|| 01000010][...]| Bar ber
MIler 01001101[...]|| 01000011]...]| Chauf feur
Teacher 01010100[...]|| 01001101[...]| M Il er

Vet 01010110[...]|| 01010100]...]| Teacher
Bar ber 01000010][...]|| 01010110]...]| Vet

Table 1.1: Sorting a list of professions alphabetically

¢ Define rules on how to manipulate the symbols.
e Interpret the symbols that are created during the manipulation.

This string sorting task is trivial for a computer, of course, as the birggmessentation we used
here already encodes the alphabetic order of characters, i.e. itasgigiier binary “numbers”
to characters that occur earlier in the alphabet. However, is it easy ianpgher sense: the
information that is needed to perform the task (the alphabetic order) iglglprasent in the
characters themselves. You don't have to knehat a barber is in order to sort the list. If
someone gave you words written in an alphabet you do not know, betygay the rules for
sorting them as well, you could work out a perfectly sorted list without tstdading any of the
words. And this, in fact, is what the computer does.

But for very many other tasks, it is exactly the knowledge you have orbarfers that must
be used: say, we want the professions not to be sorted alphabeticatyodoped by whether
they require an academic degree (cf. fig. 1.2). There is no way to sod/pritblem by using
strings of characters (likBar ber ) alone. In order to enable a computer to solve this problem,
we must find a way to encode oknowledgeabout professions in a computer-readable way.
Further, we must encode the rules of how to process this knowledge emvidhe inferences
necessary for this specific task.

Professiong Grouped Professions
Chauffeur | Chauffeur

Miller Miller

Teacher Barber

Vet Teacher

Barber Vet

Table 1.2: Professions grouped by whether they require attendingeusity

And this is the reason why computer scientists are faced with the philosophhadaém of
the nature of causality: they need to model causal relations and cawsdkkige in a way that
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can be processed in computers. This requires a discussion of wisalitas. It is the question
of conceptual adequaayf models that computers may work with.

Formal ontology (which we shall hear more about in sect. 3.2), is one waypdeling (en-
coding) knowledge in a formal language computers can process. Anthé isay that we will
deal with in this thesis.

1.2.2 Why is Philosophy Relevant for the Problem of Causakt?
(An Introduction for Computer Scientists)

Now that we know that knowledge modeling is necessary to make certaiteprslaccessible
for computers, the computer scientist’s question probably is: what hasppiiy got to do with
it?

To answer that question, we must note that there are two kinds of knowtsngerning
causality: first, there is knowledge about what entities are causally ctath® each other, a
guestion that clearly belongs to the subject area of a domain expert ta#imea philosopher.
The other, however, iswhat isa causal relation? What does it mean when we state that “
causesB"? What conceptual inferences can be drawn from a statement coufairiertain
concept? How does a causal relation differ from other kinds of rel&idnother words, it is
concept analysishat is asked for. And concept analysis exactly is what many contenyporar
philosophers (often referred to aarfalytic philosophers”) would regard as their main scientific
interest: What makes a judgment containing a certain concept true? kBitamsducible to
other, more fundamental relations or concepts? How is causality conrteadditer concepts,
e.g. the concept of responsibility or guilt?

And indeed, there is more complexity to the concept of causality than may lieusbWere
is an example of how a commerdalarge-scale knowledge base combined with a reasoning
engine does approach causality in a way that may easily come to mind whenttryimgdel
causality.

Many causal statements have the for thereforeB”. Here are some examples:

(S 6) Thetemperature dropped beloWC) therefore the puddle is frozen.

(S7) There is water in the fuel, therefore the engine misfires.

3 For the latter cf. e.g. EHMANN (2003), which is an excellent example for how the question of
conceptual adequacy of modeling causality is relevant in even mors fiekldes philosophy and
computer science. In this case, it is the realm of law.

For a discussion of the concept of causality as it is relevant to the fieleedfoine, cf. GRossand
LOFFLER(1998).

It should be mentioned that the “Cyc” project described here haseaofreosts sibling called
“OpenCyc”:htt p: / / ww. opencyc. or g/

5 For this example and the following critique on Cyc, cho@ELAND (1997).



1.3 Structure in Content

Being somewhat familiar with logics, this may sound like the material implicatioh ef B.
And indeed, this way of representing causality has been used in a (multi-miditar)dsystem
called “Cyc’ (cf. GUHA and LENAT, 1990; GUHA, 1990).

But then, this approach runs into serious problems concerning coatemtaquacy, as a
material implication is true if the antecedent is false (a feature called “ex faisdlipet” or the
“principle of explosion”). In the Cyc model, the following sentences wowddrioe, as well:

(S 8) 4is prime, therefore the puddle is frozen.

(S9) 4isprime, therefore the engine misfires.

But clearly, neither a puddle’s freezing nor an engine’s misfiring is aljusonnected to a
number being prime or not. Thus, the Cyc concept of causality contairave fjaw with regard
to conceptual adequagy.

1.2.3 The Common Ground

The last two sections should have made it clear that conceptual adeiguieypoint where
computer science and philosophy meet when the question of causality eycede- it is simply
about how to model a concept correctly (for computational reasoméghvinvolves (philosphi-
cally) analyzing what that concept means.

Computer science has the advantage that the normative aspect of tcanalysis (i.e. ex-
amining what causality “really” is) can be put aside more easily by focusintye descriptive
facet. Computer scientists can concentrate on checking whether ceitain)(gausal knowl-
edge (statements, conclusions, facts) can be modeled (mostly) withousgliggwhether the
applied causal concepts are used correctly.

But even then, the formalisms, axioms, or even full logics developed, toebd checked
with respect to their conceptual presuppositions and commitments. The giiloabpart being
inseparably entangled with computer science’s task.

1.3 Structure in Content

The structure of this thesis is straightforward: While the present sectienagaintroduction on
both, the philosophical and the computer science view taken on causadiptecl2 introduces
the central theories of the philosophical (conceptual) analysis. We willigisthese approaches
in more detail before moving on to our own conceptual theory of the caelsdion.

& We will present other difficulties of the Cyc approach later, when disegsseveral computer
science theories/models of causality (cf. sect. 3.2.2).
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Equipped with the necessary terms and concepts to evaluate models of cgusatitgon-
ceptual adequacy), chapter 3 is the place to present and criticize satine whys in which
computer science has dealt with causality so far.

We will then introduce our theory of causality, which is done in two stepspteln@ describes
the top level ontology called General Formal Ontology (GFO), as intratlircélELLER and
HERRE (2003, 2004b), which will be used as the basis for ontologically modeling all non-
causality-related parts.

Chapter 5, finally presents the new approach, starting with the questiore antblogical
nature of the causal relata. In a next step, a formalisation of both régwdad counterfactual
dependency is presented to cover what will be called the basic calaidneThis basic theory
is then extended to cover causal relations between processes.

The concluding chapter 6 then is dedicated to the epistemic implications of ouy trebits
application to natural science performing experiments with clinical trials ascaase.

" The most recent version beingeRRE ET AL. (2007)



2 Philosophical Theories of Causality

The history of philosophy has seen a wide range of different theonesosality (cf. 8HAF-
FER, 2003). Most of them can be aligned into three main branches basedaldéetuitions
that our common sense concept of causality is committed to:

e Regularity
e Counterfactual dependency
e Manipulability

This chapter will provide an overview of these intuitions, showing that itacecases we have
certain commitments/ideas about whahianghat something is a cause of a certain effect. Ad-
ditionally, regularity and counterfactual dependency are analyzedder ¢o create a coherent
GFO based theory of causality. This will include explaining why abovemegdiomanipulabil-

ity is not part of this list.

2.1 Regqularity

Imagine the following situation‘Gecurity Alarm”): You are leaving a shopping centre and just
when you pass the door, an alarm is set off. A member of the securitgs@pproaches you
and discretely asks you to pass the security gate again when the ringiagppped. Since you
know that you haven't bought (or stolen) anything, you follow his esdend this time, there is
no alarm. The guard apologises and you leave the store without anyrfimtbavenience.

Why did the security officer let you go? The answer is simple, of coufsgu had stolen
something, the alarm should have started again. When it did not start, er affincluded that
you were not causing the alarm. His decision was based on a simple intuiticausality: If
something causes something else, this connection should be reprodutitiierelreally is a
causal relation, a reconstruction of the assumed cause (you, passidgat) should yield the
same effect (alarm is set off). If it does not, we do not have a caffeet—relation. We call this
the intuition ofregularity.

Within the development of philosophical theories on causality, regularityspdayery im-
portant role. The first “modern” approach on this topic, written bywv» HUME, is based on
exactly this intuition:



2 Philosophical Theories of Causality

[...] we may define a cause to ba object, followed by another, and where all the objects
similar to the first are followed by objects similar to the sed. 8

(HuME, 1748, p. his emphasis)

This approach is very useful as it explains several peculiarities cfatiyy (many of which
are already covered in WME’ s 1748 “Enquiry”): first, we cannoperceivecausality. Even in
very obvious case of two billiard balls colliding, all we can actually see is theemewt of balls,
their changing direction and speed. We can hear the clicking sound wigmatlich. And we
may probably feel the vibration they produce when moving on the cloth. Bu¢ils no human
sense that covers causality. It is only by comparing our observatiomsilarsother cases that
we are able t@oncludea causal relation.

Secondly, regularity makes the scientific concegatdificationmake sense: Imagine a group
of scientists claiming to have made a certain discovery, say, that oxygdnga®a loud sound
of 440Hz if it is cooled down to exactly -24€. They call it the “cryophon” effect and publish
their results in a scientific journal. Rival researchers will now try to rdpoe this effect, and
if they cool oxygen down to -24€ without detecting the sound, the cryophon theory (which
is a theory about a certain causal relation) must be rejected. Rejectiabsification is based
on the same inferences as in the initial example of the security guard’s dettdat you go. If
there really is a causal connection, it must be reproducible.

The cryophon example shows another interesting feature of the reguanttion: It pre-
supposes that causality is about “kinds” or “families” or “groups’sohilar situations. If the
causal claim was restricted to the single occurrence in the first resgargp’s laboratory, no
reconstruction could falsify the cryophon theory. Thus, a causal é¢aahout something more
general than just a unique occurrence.

Following these examples, it is temptingittentify or equate causality with regularity. But
here the problems begin, as several counterexamples have beerpdédwblat try to show that
there are cases in which there is regularity without causality, or in whicle tisecausality

8 Please note that the term “object” may be misleading, here. Being the eistihat he was, HME
makes this claim focussing oexperiencesiot objects. Three sentences later he gives another
definition: “[...] an object followed by anotheandwhose appearance always conveys the thought
of that other’ [his emphasis]. His idea of causality is based on a relation betthermghtsthat are
aroused by experience (and through anticipation).

10
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without regularity?

We begin with a well known example which we shall refer tdasometer—Stormimagine

a causal connection between a rapid drop of air pressure and tve afra storm with the air
pressure drop having a second effect: The barometer reading falld.néw — so the coun-
terexample goes — let us apply the regularity condition to the barometer readirthe storm’s
arrival, isn't there regularity between the barometer reading and thm3®tdndeed there is.
Everytime the reading falls (i.e. the air pressure falls), a storm arrivipsatifig regularity with
causality would force us to call this relation causal. But we know this is wrdhg barometer
does not cause the storm. Thus, we have regularity between baronettoen without them
being connected as cause and effect.

This counterexample belongs to a whole family of examples built upon what maglited
“subsequent effects of a common cause”. In Barometer—Storm, theeasyse causes both the
reading’s falling and the storm’s arrival. Other members of this family of rments may e.qg.
be construed on subsequent symptoms of a single desease: A commofiteoldtarts with
sneezing, and is later accompanied by a mild fever. Again, regularity hetsleebn sneezing
and the fever, but it would be wrong to conclude that the sneezing s#luséever. In the light
of these counterexamples we must accept that regularity is not sufficierausality, i.e. it does
not logically imply causality.

This is not the only restriction: Some counterexamples claim to show that therericausal-
ity without regularity, which might directly render the inferences made by tized)in our Secu-
rity Alarm example (and by cryophon’s second research groupiason attempts) invalid.
If causality does not always entail regularity, the alarm not being $éivben you are stepping
through the gate again) does not exclude you from being its cause ary mor

Let us take a look at one of these examples, which again refers to a conahdorrallowing
basic medical knowledge (cf. NHSHOICES, 2009), it is viruses that cause a cold, and these
viruses are spread by a certain mechanism (airborn droplets, cougiriagzing, hand contact)
which might make you catch a cold by e.g. visiting a contagious patient. But hewadis the
crucial point - you do not always catch a cold when visiting a contagietiemt, even when
viruses are spread. In short, catching a cold invoblemce A cold canbe caused by visiting a
patient, but visiting not always causes a cold. In this case, causalityndbénply regularity.

® Even if the following sections are dedicated to the difference betweeterégand causality, this
doesnot mean that regularity is somehow unimportant or that knowledge on miglksecond-
rate. Knowing about regularities has a value of its own as it e.g. allowsty@uedict parts of
the future so you can take precaution or otherwise adapt your actions &xplected events. If an
animal shows a certain behaviour prior to heavy rain, you can makefuisat knowledge without
believing that the animal “makes” (i.e. causes) the rain.

11
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2.1.1 Probabilistic Causality

Later, we will explain how regularity theory can easily be adjusted to coases of chancy
causation as well. But let us dwell on the subject of probabilistic causatioa moment,
as it is tempting for many people to assume that every causal connection imidete “in
the end”, and that probabilistic aspects are just results of limited knowldulge the relevant
mechanisms. Nevertheless, we believe that genuine probabilistic causatisgeisible and
consistent concept that a theory of causality should be able to deal vdtvilippresent three
lines of argument to justify this assumption based on the consistency of tbeptasf magic,
on real word epistemical restrictions and finally on indeterminacy in modersigsh

It is very common to conceptually connect causality with non-probabilistisiphllaws like
the Newtonian laws of motion. This may well be the reason why we tend to thinlotitat
we understand the world in an ideal way, we will recognise that everyibifgjlowing strict
determinate mechanismi®.0n the other hand, there is the conceptrafgic e.g. in literature
and other fields of fiction. Magic (if not understood as in “legerdemain®noagic trick”)
means bringing about something in a way that opposed to common scientificdad/slespite
the fact that magic appears to be restricted to the realm of fiction, this exahgules shat we
can conceptually distinguish between causation as such and causatibgdigaplaws. And
once we distinguish between causality and physics, there seems to be motilematic about
probabilistic causation:

So finally, Merlin felt impelled to cast this most dangeropels which might save his
fellows’ lives. Although he well knew that indeed there waseason why it was never
written down in any of the known and of the many more forgotserguages of this world
but only passed on from master to apprentice as its outcomld oot be foreseen and in
only one out of a thousand casts did not lead to plain disaster

(author’s invention)

In less elegiac words, the sentence “Morgana cast a spell that withneeclod 30% would
transform her victim into a mouse at midnight.” is not “falsified” by there baiages of cast
spells that did not succeed in any transformation. It is indeterminateif Bloére was a trans-
formation at midnight, there is no reason not to regard Morgana’s as thgetlause of this

10 In the words of 19th century mathematician and astronoraaNJPIERRE DE LAPLACE: “An
intelligence knowing all the forces acting in nature at a given instant, asasdthe momentary
positions of all things in the universe, would be able to comprehend in ioggeformula the
motions of the largest bodies as well as the lightest atoms in the world, prbtht its intellect
were sufficiently powerful to subject all data to analysis; to it nothing wbeldncertain, the future
as well as the past would be present to its eyesE [[DPLACE, 1814, as translated in¢£FER
2005).

12
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transformation. As we have seen, the concept of (pure) causality ppased to identifying
causality with mechanisms of physics — does no longer rule out probabilisiaeo

The second argument comes from scientific reséardie know that smoking causes lung
cancer, but obviously not all smokers develop a cancer. Furtheknew of no definite set of
circumstances where smoking is invariably followed by lung cancer. “Ratlinat we observe is
that smokers develop lung cancer at much higher rates than non-sptbkeis the prima facie
evidence that leads us to think that smoking causes lung cancartiigock, 2002). Thus,
the concept of probabilistic causation is pragmatically unavoidable e.g. inatlzoatexts.

The third indication for the legitimacy of causal relations with a probabilistic @spethat
modern physics theories, following the so called “standard (or Copemhagterpretation” of
guantum mechanics, make use of probability as a basic conceptqeL.ESEL, 1970). This
led to heavy discussions within physiésind was plainly rejected e.g. by AlbertNSTEINS,
which led to rival approaches like thedBIMIAN interpretation of quantum mechanics (which
is a specimen of so-called “hidden variables” theories), which tries toeevai®terminism (cf.
PINCH, 1979). Today, the “standard interpretation” is widely accepted, arw sie certainly
cannot judge on any of these approaches, we should not rule daglplistic causal relations
priori. Instead, we accept that the world might be indeterministic in the followingeséps. |
there are actual events that might have failed to occur without violationyhetual laws.”
(RAMACHANDRAN, 2004).

2.1.2 Probabilistic Regularity

We were led to chancy causation because we started with identifying riégalad causality,

which implies two claims: whenever there is causality, there is regularity, aetevier there
is regularity, there is causality. The first one was refuted by exampldsanfcy causation, the
second by examples like Barometer—Storm.

In this section, we will show how a refined version of regularity could dal the counterex-
amples of the first kind, so as to keep regularity as a necessary conditangality: whenever
there is causality, there is indeed (a certain, probabilistic, kind of) ragular

Our solution for the problematic second claim is rather different.We accapinBeter—Storm
as a counterexample to the identification of causality and regularity. In owy e@isality does

1 Argument taken from iHrcHcock (2002).

12 Cf. CoMBOURIEU (1992) for a very emotional interview withARL R. PoPPERoN the debates in
guantum physics, which include®PPER S statement that he “gave up Physics because of Bohr”
who was one of the central figures of the Copenhagen interpretaticayde “ [Bohr] annihilated
me [Popper] with a torrent of words!”

13 As expressed in his famous quote “I, at any rate, am convinced thigbét§ does not throw dice.”
(cf. CLARK, 1972).
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2 Philosophical Theories of Causality

not only depend on regularity, but also on an additional condition that widldiledcounterfac-
tual dependencicf. sect. 2.2).

What, then, should a condition look like that, the one hand, supports our intaitid reason-
ing regarding the regularity aspect of causality and, on the other hhosdor probabilistic
relations as well? As we see it, the solution lies in understanding common sensrigie
regularity as an extreme case of probabilistic causality in which a certaie afadlowed by a
certain effecwith a probability of one-hundred percenthis certainly fits the Security Alarm
example and the preconditions of falsification if — like in the cryophon examfie €laim at
stake does not include any chances. But in order to cover connelikierstching a cold when
visiting a patient, or developing lung cancer after smoking, we need tamefate the regularity
condition in the following way:Regularity betweeml and B means that the occurrence df
heightens the chance &f happening:*'®

This is trivially true in cases wherd is alwaysfollowed by B. But it holds for more rela-
tions, as e.g. for the relation between visiting a contagious patient and @agchoid. Without
visiting the patient, you have a certain general chance to catch a cold. Hgut wvisiting, this
chance is definitely heightened. This relation fulfils the new regularity comcitnal is, thus, no
longer (erroneously) excluded from being a genuine cause—edfation®

Let us now come back to the kind of counterexamples that did not rely arcglwmusation
(causality without strict regularity) but on cases of regularity withousedity, as in Barometer—
Storm.

2.2 Counterfactual Dependency

There are several possibilities for why a certaitY is regularly followed by a certaif? even
if A andB are not related as cause and effect. In Barometer—Stdramd B are consecutive

14 As e.g. MACKIE puts it: “We could say that A tends to produce P not only where A conjoined
with some set of other factors is always followed by P, but also where fkean indeterministic,
statistical, law to the effect that most, or some, instances of A, or sonmétdgfercentage of such
instances, are followed by P, or perhaps where an A has a certaitiobdgtance of being followed
by a P.” (MACKIE, 1980, p. 76).

5 In the following we will use the term “regularity” in this probabilistic way. Thddbinterpretation

will be circumscribed as “strict regularity”, “100%-regularity” or the like
16
Some philosphers try to show that even this revised regularity theory dailyere are — so they

claim — causal relations where the cause does not heighten the probahigyeffect, but in fact
lowers it. We will briefly discuss those arguments after introducing oumédization of regularity
(cf. sect. 5.1.2.5).

The question on the nature of the causal relata, i.e. “What kind of entitesoanected by causal-
ity?” will be addressed in sect. 5.1.1.

17
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effects of the same cause, and the same holds (as we have seerngiorstercessive symptoms
of a single disease. Additionallyl and B might not be effects of literally one and the same
cause, but only share some cause within the line of causes and effeéagdahtually lead tod
andB. Think for example of two clocks that were synchronised in the factonywese built in.
So they show the same time with strict regularity but obviously without beingttiireausally
related. It is not the first clock that makes the second show a certain tirisethee mechanics
that makes it show the time. But the mechanics was synchronized by the saranisat
i.e. the synchronicity is somehow based on a common cause. We may extenxathgesto
clocks from different factories or to clocks that use very differentiagisms to “calculate” the
actual time, the alleged common cause becoming increasingly fuzzy while thes eloe still
synchronised, i.e. while regularity holds. Moreover, we can easily tHiekents that happen in
the same intervals without haviramy causal connection, e.g. (“Cyclist's Watch”) the position
of the valve of a quite slowly moving bicycle’s tyre and the position of the sweeml of the
cyclist's watch. If the cyclist is not in any way made to cycle at this specifi Speed, the
regularity between the positions of hand and valve can be comphatelgiental

A well founded theory of causality has to be able to discriminate between reguéarities
and regularities that are results of a cause—effect rel&fitmour approach, regularity is one of
two conditions for causality, i.e. we add the condition of counterfactuatmidgncy to rule out
cases of regularity without causality. The following sections will extemgigleal with it.

Let us again start with Barometer—Storm. We know that there is no catmset—eflation
between the barometer reading and the storm, despite them being connegdlbrity. But
what makes the difference? Most notably the following: the storm coultlane been prevented
by fixating the barometer’s needle.

And this line of thinking is very common to rule out alleged causes. Say, ybcerthat the
glasses in your kitchen start to clink every time your neighbour listens to lalhéemusic.
You talk to your neighbour and he agrees to stop the noise. But while it thst®tomes very
quiet in your kitchen, the glasses still clink. This convinces you that theinlinkould have
taken place even if the music had not been playing. You therefore infevti@ever the reason
for the vibration was, it surely wasn't the musitThe general “rule” behind these inferences is
the following: if the “effect” would have taken place even if the (allege@u®e” had not taken
place then there is no cause—effect relationship.

18 Orin terms of sequences: “[...] what is our concept of causapassed to non-causal sequences
[...T(cf. M ACKIE, 1980, p. 29).

19 It might be, e.g. , that your neighbour uses to turn on the music in ¢odgnown out his washing
machine’s noise. If this is the case (note once again how naturally théectaatual analysis fits
our intuitions on causes and effects), stopping the washing machinkl sttiop the clinking.

15



2 Philosophical Theories of Causality

Interestingly, HUME had the very same insight, too, as his famous claim, with which we
started our reflections on regularity, in fact gives two definitions:

[...] where all the objects similar to the first are followed by @tgesimilar to the second.
Or, in other wordswvhere, if the first object had not been, the second never hatkdx

(HuUME, 1748, p. his emphasis)

He obviously did not regard this second definition as being different firee first, however,
and it was not until the 20 century that DviD LEwIS proposed a theory of causality that
is explicitly founded on this very idea: “if the first object had not been,steond never had
existed”. The impact of his theory was enormous, and “helped to turn the ({@eLLINS
ET AL., 2004b, p. 1) against regularity theories, which were known to hasie dnawbacks
but nevertheless “dominate[d] the philosophy of causatiorewils, 1973, p. 556) until then.
Today, counterfactual analysis has become one of the most importargqytiical theories on
the topic of causality.

How, then, does this analysis work? And how does it solve our problemspiihious regu-
larities? To give a quick, but not irresponsibly short overview, weehtavntroduce two central
concepts:possible worldsand the relation oEomparative similaritypbetween them. Roughly
speaking, possible worlds are ways our world could have been if thiagsdken a different
turn. This includes worlds that look pretty much like ours with very slight diffees like a
world where you started reading this sentence a second later than yailyadid. The differ-
ences may also be more extensive, like Latin still beinditiggua francain Europe, or e.g. the
Neanderthals never having become extinct. There are worlds in whichwileofgphysics are
different to a minor or major extent, e.g. one in which natural constantg dlfggtly from their
actual values possibly rendering carbon based (human) life impossibldAa/kKING, 2006).
You can compare possible worlds to the worlds created in films, in books pitany other kind
of fiction, their common feature being a difference from our actual wofldat, of course, is
where the term “counterfactual” comes from: being different to “the fttto the way things
actually are.

The examples of possible worlds given above already show what catiygasimilarity be-
tween possible worlds is supposed to mean: the possible world which difbensour actual
world only by you not reading this text right now (but a second later)iigagdy more similar to
the actual world than one in which there is no living being in the first pfddeswis also uses

20
The judgement obviously is unproblematic in this extreme case, but tterevell arise difficulties

in closer cases. We will add some remarks concerning the problenmyfarative similarity in the
formal discussion of counterfactual analysis (cf. sect. 5.1.316)rbthe end accept that a certain
vagueness cannot be overcome.
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the expression “being closer to” for “being more similar #”The “one-second-later-world”
can then be called closer to actuality than a world in which the natural laws themsee
different from ours.

2.2.1 Possible Worlds Analysis of Counterfactuals

Now that we have introduced the concepts of possible worlds and cotmpasemilarity, the
guestion is: how do they come into play when counterfactual intuition is coad& How do
they help with non-causal regularities? Let us have a closer look ahi#eo—Storm: we rule
out the barometer reading to be a cause because the storm would hpead@dpanyway, even
if we prevented the barometer needle from moving. Jidgementontains the central aspect.
With respect to the storm, what we do know &yperienceare simply the things that actually
happen: the pressure drops, the barometer reading falls, the storas aim this very situation,
we have no empirical knowledge of “what would have happened if thenhater reading did
not drop”, as this refers to a counterfactual situation, and as a prineygleeannot measure
counterfactual data in the actual wofRIBut — and this is the crucial point — we carfer, what
would probably have happened. To do so, we imagine possible variatiadhe situation in
guestion. This is, where possible worlds (and their relative distanceg aball see in a minute)
come into play. We compare the actual setting with variations in which the baroreating
does not drop. Following our counterfactual intuition on causality, weilshexpect the storm
to arrive nonetheless, as there is no causal connection between barantestorm. But a look
at the following examples shows that this is not the case in every possihids wor

1. The barometer is broken, everything else is just as in the actual worlateasure drops:

e Barometer reading does not drop

e Thereis a storm
Undermines the causal claim (as alleged cause is not present, btigffec
2. The pressure drops, but the physical laws concerning both tbmbger's mechanics and
the weather are different to our world:

e Barometer reading does not drop

2L Formally, as lEwis makes explicit, comparative similarity is a weak ordering of worlds whese tie
are permitted, but any two worlds are comparable, and (additionally)dualavorld should be
closest to actuality (cf. Ewis, 1973, p. 560).

22 Of course, if things had gone differently, weuld have measured something differeBut then

the measurement takes place in the counterfactual situation, not intaaf world. Measurement

is restricted to the very world where the measurement system actually axétie measurement

actually takes place.
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2 Philosophical Theories of Causality

e There isnostorm

Supports the causal claim.

3. The pressure falls, but the earth is destroyed before the readirdyaa

e Barometer reading does not drop

e There isnostorm

Supports the causal claim.

Now we have a counterfactual situation where the storm arrives, amévestwo counterfac-
tual situations where there is no storm. The barometer reading does pandroy of them. It
is only the first variation that could help to show that there is merely regulagtiyden barom-
eter and storm, but not causality. The storm arrives despite the barosteyerg still. The
other examples imply the opposite, which leads to the following problem: coaoteals can
rule out alleged causal connections which are in fact mere regularitiethéey rely on possible
worlds, and possible worlds seem to be too “liberal”. They contain worhlistwno longer do
what we need counterfactuals for — ruling out spurious regularitiesesDoat mean that the
counterfactual approach fails?

Fortunately, it has a second component: comparative similarity, the relate@de/difference
between possible worlds, and in particular their distance to actuality. Ledausiee this aspect
in the examples above: The first world differs only with respect to therberer. If you were, for
example, transported to this world, you would probably never expereniéerence?® This is
no longer true in the second possible world. If the physical laws that laotinfeter and weather
rely upon (behaviour of liquids like mercury or water, deformation of flexbdoxes, granulation
in alcoholic solution of camphor) were different, this difference wouldaship in many other
devices and situations in everyday life or industrial or scientific use. ufwere transferred to
this world, you could not avoid noticing the difference. The same hold&hfothird example,
where our planet is destroyed — provided that you are able to exper&émything before you
vanish.

It may well be a matter of argument whether world number two or world numlvee tis
more distant to actuality, but in any case the first example is closer to actualityitbathers.
And — as we have seen — this very possible world is one whicbam@ise to single out spurious
regularities. So this is the way to solve our problem: we do make use of poasitités, but we
take their difference from actuality into account. If there is a causal rel&giweenA and B,

2 Of course, there might be a longer trail of consequences of this siifideedce: there may be
someone who is ordered to repair the barometer, or there might bef@araraccident because the
pilot relies on the barometer, all of which does not happen in the actutd wBut we believe that
this is still a minor alteration compared to the massive changes in the othapkesa
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the counterfactual B had not been ifA had not been” must hold and it does if there is a world
in which A and B both fail and which is closer to actuality than any other world in whictails
but B takes place. In BviD LEwIS words (in which a “true antecedent” corresponds to our
“ A fails to take place”, and “true consequent” corresponddiddils to take place”):

[...] it takes less of a departure from actuality to make thesequent true along with the
antecedent than it does to make the antecedent true with@gbhsequent.

(LEwis, 1973, p. 568

In Barometer—Storm, we saw that this condition is not fulfilled. Worlds two aneetin
which both events (barometer reading’s falling and storm) fail to take pkreemore distant
from actuality than a world in which the storm arrives notwithstanding therbarer’s reading.
The counterfactual condition rules out the alleged effect (cf. table 2.1)

World (ordered by closeness)supportive / undermining Counterfactual holds
World 1. Barometer broken undermining No

World 2: Physical laws differ supportive

World 3: Earth is destroyed supportive

Table 2.1: Counterfactual analysis of “Barometer—Storm”

When it comes to the connection between air pressure and storm, the fésaltounterfac-
tual analysis should be different. To become more familiar with how it worlesyll analyse
this case, too, before continuing with the ontological analysis of this additammalition of
causality.

The claim at stake is: the fall of air pressure caused the storm. Thesponding counter-
factual is: if the air pressure had not fallen, the storm would not haweedr Hence, we need
to find possible worlds in which the air pressure does not fall. In some of,thee storm ar-
rives, in others, it doesn’t. The counterfactual condition now dem#ratsvorlds in which the
storm happens despite the air pressure’s stability must be more distantabtathan a world
in which stability goes together with no storm.

1. The high pressure area is more stable and lasts longer than in the amtigal w

e The air pressure does not fall

e There isnostorm

Supports the causal claim.

2. The physical laws governing the weather are different. Storms hagiegh air pressure:

e The air pressure does not fall
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e There is a storm

Undermines the causal claim.

3. Magic is real and a wizard casts a storm spell:

e The air pressure does not fall

e There is a storm

Undermines the causal claim.

It is not difficult to see that the first possible world is less different toadiuthan the others.
Both real magic and different laws of nature, would affect much more fjirsirthe weather.
Using LEWIS' notions, the world in which the antecedent (air pressure does not failjdslong
with the consequent (there is no storm) is closer to actuality than worlds in Wiedntecedent
is true without the consequent. This means that the counterfactual coridifidfilled and air
pressure is “confirmed” as being a genuine cause of the storm (cf. 2@

World (ordered by closeness) supportive / undermining Counterfactual holds
World 1: High pressure stays longer supportive Yes

World 2: Different physical laws undermining

World 3: Wizard casts storm spell undermining

Table 2.2: Counterfactual analysis of “Air pressure—Storm”

Using comparative similarity we are now able to select those possible worldh e coun-
terfactual condition B had not happened i had not taken place” relies upon: we now have a
second criterion for causal relations which allows us to refute allegesksabat “slip through”
the condition of regularity.

As yet, our theory of causality does not contain possible worlds and higoreof compar-
ative similarity, so we will have to add them. But before we do so, these nadtiaves to be
analyzed ontologically: what kind of entities are possible worlds? And: edave epistemic
access to them in order to evaluate them being supportive/undermining?

%5 Strictly speaking, these examples do not show &varysuch world in which the consequent is
false is more distant to actuality than one in which antecedent and comséxmtie are true, even if
it is true for the given examples.
Please note that the examples rely on our loose introduction to possibleswbrldect. 2.2.3, we
will present our theory of the nature of the possible worlds in questioighwit much more restric-
tive than declaring everything imaginable a “possible world".
Within this approach, then, the aforementioned problem becomes a egpistgral one, and we
will admint that we simply never can acceskalternative situations. So our inferences on counter-
factual dependency are never fail-save.
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2.2.2 Theories of Possible Worlds

Advocating the counterfactual analysis of causalityy[® LEwIS proposed a theory of possible
worlds (cf. LEwis, 1986) which — put dangerously succinctly — says that possible waddast
as real as our world but spatio-temporally distant, and not accessibie®froworld (cf. fig. 2.1).

If you were an inhabitant of a certain world that world is the actual world to you, just like our
world « is actual to us. Viewed fromy, the worlda is simply one of the myriad of possibilities,
but in no way something special. This theory, which treats all possible waslégjual, is often
referred to apossibilism(or modal realisn).

Figure 2.1: Possible worlds in possibilism: All worlds are equal andytla@e not connected. Each of
them is actual to their inhabitants.

In contrast to possibilism, &/IN PLANTINGA has developed a theory in which there is just
one — our — actual world. In a nutshell, our actual world is a (certain)fsgtates of affairs that
do obtain (take place). Other possible worlds are made of the same kinditdfse(states of
affairs), but may consist of obtaining as well as non-obtaining stateffaifsa or only of states
of affairs that do not obtain (cf. fig. 2.2). In short, possible worlds relagre some states of
affairs with actuality (and with each other, for that matter), but many docfoP(ANTINGA,
1974). To illustrate this point, let us consider two states of affairs “Steplasvkings’ writing
of A Brief History of Tim& and “the four dragons’ attack on Westminster Abbey”. While both
states of affairs exist, they differ in that the first obtains while the secoed dot. Just like all
other possible worlds, the actual world is made up of states of affairthéudifference is that it
consists of all the states of affairs that do obtain. This theory, whichtkayshere is only one
actual world (a world that is something special), is commonly calledalism?®

Finally there is a third theory proposed by NicholassRHER (cf. RESCHERand RARKS,
1973; RESCHER 1979, 1999) which is based on yet another idea: possible worldsoeysin
people’s minds (cf. fig. 2.3). They are ideas or thoughts about howdhd would be different’

In this view, possible worlds are neither of the same kind as the actual vwmsipilism) nor

% For a detailed analysis of BNTINGA’ stheory in contrast to BVID LEWIS, cf. MICHALEK (2002)
(in German).

27 n slightly more detail: possible worlds consist of possible objects whichvariants of actual
individuals’ essential properties (cfEHRCHER 1979).
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2 Philosophical Theories of Causality

Figure 2.2: Possible worlds in actualism: The worlds are “made up” of th@&me entities (states of
affairs) which differ in whether they obtain (starred chetars) or not. The actual world consists of
exactly those states of affairs that do obtaisn).

made up of the same entities as the actual word (possibilism/actualism). Theinexigery
different way that is bound to subjects with the capacity of thought. Thisoagh might (for
our purposes) be calleslibjectivism

Figure 2.3: Possible worlds in subjectivism: The worlds are variatiofisictuality created by a mind.

We will not discuss these theories at length, but we must mention what majolepratic
consequences we would face if we simply adopted any of these theofftes.all, it is due to
these issues that we decided to create our own theory, which is not @ tigarssible worlds in
general (generality being the route of the troubles) but a theory of jeinia of possible worlds
that is relevant for the counterfactual condition of our theory of déys# will be presented in
the following section.

Let us take a look at the shortcomings. In possibilism, the sentence “| cauéddied” is true
because a person who is my counterpart in another world dies in thableossrld. This raises
two problems: firstly, what makes this very person be my counterpart? ém wibrds, how can
trans-world-identity be understood? And secondly, isn’t there a fmeddal difference between
my possible death and some other perserifus

Actualism does not have these problems. There is no counterpart of naoteed. “I could
have died” is about me (although in a different set of states of affairs e actual world),
not about some counterpart. That is why it is relevant to me. But if weteaddR ANTINGA’ S
theory, we would have to face heavy discussion in fields like the naturtatessof affairs, and
on PLANTINGA’ s notion of “essence” (as his theory makes use of “essential propgrtisgain
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2.2 Counterfactual Dependency

we cannot present those problems for reasons of brevity, but westatrsthat several outcomes
of the actualist’s theory are highly controversial (cfldWiALEK, 2002).

So what about the subjectivist approach? Firstly, it entails all the glemeralems of sub-
jectivism: possibilities are mind-dependent, so they rise and fall together vathtttinkers.
Calling something “possible” now depends on choosing a certain mind toteefafso, no two
minds can think of one and the same possibility, as they produce two thougidsse&ondly,
the ontological framework of GFO (General Formal Ontology, cf. chraptewhich our theory
of causality shall become part of, does not incorporate explicitly subjsicioncepts, so we
should not introduce them unless absolutely necessary. And indeedlieechthey are not, as
shall be shown in the following.

2.2.3 Causal Counterfactuals

As noted above, we believe that the aforementioned problems arise bdbage theories on
possible worlds are very general, trying to cope with possibility as such.walheed is a
theory of the very kind of possible worlds that is (only) relevant, and ah fi@cessary, for our
counterfactual theory of causality. To build a theory that meets our needsould recall the
role it plays in counterfactual analysis: counterfactual dependewids fiff worlds in which the
effect takes place without its cause are more different from actualitytbdds in which neither
cause nor effect occur. Worlds in which both do not happen musttkentger” than worlds in
which the effect exists alone.

Earlier (cf. sect. 2.2.1) we said that we cannot measure what happpassible worlds, but
we caninfer what would have happened if things had been different. This requieestility to
compare possible worlds. In possibilism, we would have to have (mentahsosal) access to
those worlds which arex hypothesigot spatio-temporally connected to our world. This is not
an attractive solution for sure. In actualism, we only need access to thef sttges of affairs
the possible worlds are made of. This is not so grave a consequeidci¢ saits the idea that
we compare situations which are variations of the actual incidents. Sinagtpliam, possible
worlds are made of a set of states of affairs, we can (mentally) replawe ebthese while
keeping others, which yields more or less similar situations in terms of compasatiarity.
In subjectivism, possible worlds are already products of our mind, scow& deed any special
means to access them. Thus, actualism and subjectivism allow the compdrisorids in
thought, i.e. using our (mental) capacity of reason. But — and this is whengaw with both
theories — possible worlds are still not open for empirical methods. Themedgt whether the
relevant counterfactuals hold is left to mind-equipped subjects with atoesther states of
affairs or the part of mental activities that construes possible worlds.

In our view this can be avoided, and in order to explain our theomglternative situations
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(or: alternative3 28, we once again take a step back, this time to the point where we said that we
are able to infer counterfactuals to hold. Instead of simply stating that thisle€lcomparison

of alternative situations let us take a closer look at what exactly we cortipaeestual situation

to. In our view, this comparison is no different to what happens all the timenwie are trying

to find our way through the world: we take oexperienceito consideration. We compare the
present situation to situations that have already happened. This meang tlatnot compare

“our world”, understood as containing the history of literally everythingehe, was and will

be to another “world” with its own alternative history of everything that exisexists and will

exist there. What we compafeis an actual situation with past situations, all taken from the

(@

time

history ofour world (cf. fig. 2.4).

Figure 2.4: Possible worlds in our account: Snapshots from the histégctuality, i.e. from the history
of our world.

Leaving the epistemic implications aside (we will deal with them later, cf. secthi®)ap-
proach solves the problem of how we access alternative situations:kis oz very same way
we get in contact with the actual world. No special mental abilities are redjuire

Let us summarise our account of counterfactual dependency. Besiglelarity, causality is
up to counterfactual dependency, which means that if there is a cales@dm betweerd and
B, and A and B both happen in the actual situatiainere must be situations (in the actual
world) similar to the actual one, and for these the following must hold: situationghich
only the cause4) is missing (which are callediindermining in the following) must be more
distant to actuality than at least one situation in which bothand B are absent (these we call
“ supportivé). 20

2 |n the following we will use these terms instead of “possible worlds” to mésarthat our approach
is no full-fledged account of possibilities in general but just about the &frpossibilities used in
counterfactuals as applied in our theory of causality.

2% The mental ability to compare past situations should not be mixed up with bjecsivist claim

that the alternative situations exist in our minds, only.

30 In our aproach, we will modelA and B happen/fail” by the existence or non-existence of a certain

(cause or effect) universal’s instance, cf. sect. 5.1.3.
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2.2 Counterfactual Dependency

2.2.3.1 Exkursus; Do the Alternative Situations Suffice?

It is worth noting that compared to how we introduced alternative situationg ifirgt place, our
theory on counterfactuals is highly restrictive in at least two ways. Hiedt,an alternative is no
longer a complete space-time worm of a full universe but restricted to texypfat parts of our
world’s spatio-temporal extension. Furthermore, an alternative is a situattbe actual world,
which excludes (as far as we know) magic, strongly altered physical dagdsthe existence
of entities that never show (or showed, or will show) up in our world. Hthis fundamental
restriction that made us choose the term “alternative situation” instead séitge world”.

There might be problem with our restrictive notion of alternatives. Someegxiamples
we used to illustrate the intuition of relative similarity between possible worldséct. 2.2.1)
made use of worlds that are now excluded (e.g. physical laws are distttered, wizards
cast storm spells). But since relative similarity is necessary for coacted! analyses, we shall
provide some examples bbw differentalternative situations can be, even if they are restricted
in our sense, i.e. to situations in our world.

In fact, our first example (Barometer—Storm) does not need too manytadjois. The first
alternative is one in which the barometer was broken, which has unddybgggphened many
times in our actual world. The third is one in which earth is being destroyeein Ewe might
feel uneasy about it, we cannot rule this event out for the future ofnauld like we most
probably can with the second possibility of radically different physicaklaBut for those who
want to exclude both, the destruction of the Earth and altered physicaManaay add another
alternative situation, in which (as in the first one) the air pressure fallslantharometer is
broken, but which also features a highly sophisticated (and — at the timdtofgv yet to be
developed) kind of cloud seeding that prevents rain, thunder and ligigpithat there is nothing
we would call a storm in the first place. If we compare this alternative to tsieoie (barometer
broken, everything else unchanged), there is no doubt that an a@digidvenced cloud seeding
renders this alternative more distant from actuality. In other words, thteafternative situation
(no barometer drop, but storm arrives) is still closer to actuality than aliges in which both
barometer drop and storm are absent. The barometer is thus rightly elimisaaethase of the
storm (cf. table 2.3).

World (ordered by closeness)supportive / undermining Counterfactual holds

World 1: Barometer broken undermining No

World 2: Cloud seeding supportive

Table 2.3: Counterfactual analysis of modified “Barometer—Storm”

The two “more distant” alternative situations in the second example (air peeasd storm),
however, are both excluded from our theory of alternatives. Praslynmeither different phys-
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ical laws nor “real” magic have ever been or will ever be part of ourldvofTo show that
counterfactual analysis is still valid, we will present another alternathietnis allowed in our
approach: an alternative in which the air pressure does not fall, botra & created artificially
(say, with the help of steam-and-tension-producing — again, at the timeatofgumot yet devel-
oped — devices). Clearly, this world be more distant to actuality than the dlters@uation in
which there simply is no fall in air pressure and no storm. Again, comparec toaihstant air
pressure going together with no storm, this alternative situation is more dist@rtu@lity. The
conditions of counterfactual dependency are fulfilled, so air pressworrectlynot ruled out
as a cause of the storm (cf. table 2.4).

World (ordered by closeness) supportive / undermining Counterfactual holds
World 1: High pressure stays longer supportive Yes
World 2: Artificial storm undermining

Table 2.4: Counterfactual analysis of modified “Air pressure—Storm”

We hope that these examples show that even our highly restrictive darfqayssible worlds
leaves enough room for significant differences in relative similaritygusired for counterfactual
analysis.

2.2.4 Preemption

Now that we have added counterfactual dependency to our theogamvmt continue until we
have dealt with a major issue that has been raised agaipse@mption’

It actually caused Ewis to partially revise his initial theory (cf. Ewis, 2000b). We will
now give a quick overview of this problem and will dedicate the next settiaur solution®?

The most basic case of preemption (in a slight variation af iH(2001)) works as follows:
imagine two bored students in a maths class who try to pass the time with a rathied spec
competition. They crumble up sheets of paper, and once the professetdwerite formulas on
the blackboard, the two students aim their paper balls at an open windolwbBits succeed in
passing the window frame, but unfortunately they destroy a spider'divetlvas woven within
the frame. For the sake of this argument, we assume that the first studghtedched the
cobweb earlier, so it wasis ball that destroyed the web.

From a counterfactual perspective, this conclusion is problematic betlaeweb would have
been destroyed (by the second ball) even if the first ball would not heee thrown. Thus, the
counterfactual between the first ball and the web does not hold. We sedave causality

81 Cf. SCHAFFER(2000); NOORDHOF(1999)

32 For a critique of the adjusted theory, e.g. that it “generates a greatemoh spurious instances of
causation”, cf. MENZIES (2001).
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2.2 Counterfactual Dependency

without counterfactual dependency. However, we believe that dutaezonstruction of the
situation enables us to keep counterfactual dependency as a ngoessiition for causality.

First of all, note that the counterfactual dependency only fails “in the tang32 If the first
paper ball had not been thrown, the web still would have been destinyibe end But we
should certainly be more interested in what happégts after the first ball hits the web. Since
the second ball reaches the window later than the first, the web would veblean destroyed
at that point (or, for that matter, at any other point until the second tealtisal). Hence, if
our causal theory is suitably fine-grained with respect to time, the coantedldoeshold. We
will deal with the nature of causal relata in sect. 5.1.1, and as we will ayug@gmporally)
most fine-grained entities — callgdesentials- as primary causal relata, we can safely keep the
condition of counterfactual dependency.

Our current solution to the problem of preemption is based on the time differtestween
the first and the second ball of pagérWhat happens if the two balls reached the cobweb at
the same time? First of all, this is no longer preemption since no potential causedff ¢
by another. But we may still call ibverdeterminatioras either of the balls would have been
sufficient to destroy the web. Secondly, it is no longer entirely clear wWieatright” result of
a causal analysis should be. If only one ball touches the web, it defimté¢he cause of its
destruction, but in this case we have two balls. We may agree that at leastthalls together
(taken as one entity) can be regarded as the cause, but when it conaeh tmdividual ball,
would we say that both constitute separable causes? Or just one of themeh@r of them on
its own? We seem to lack causal intuitions regarding the separate balls.oveetietermination
cannot be used against counterfactual analysis, here. It doesmr@nedevant topic, though, and
we will address it in a later section (cf. sect. 5.3).

2.2.5 Background Chances as a Challenge to Counterfactual pendency

When discussing regularity (cf. sect. 2.1), we argued for probabilisboicy causation and
explained how to include chances in the regularity condition. In this sectienwi do the
same for counterfactual analysis.

At first glance we would probably not consider the concept of char®blem for counter-
factual analysis. Let us assume that an efféaoes counterfactually depend on caudsei.e.
E would not have happenedd had not happened. FollowingARIACHANDRAN (2004), one
might say that this is perfectly consistent with the assumption@h@es not always lead t.

% This argument was first introduced bylRIE A PAUL to overcome another possible solution: that
the spider web would have been destroyed differently if the seconnavbaltl have hit him. It
turned out that the so called “fragility” of events was itself a very fragilecapt (cf. RuL, 1998).

34 For further discussion on the importance of the time difference, cf. MPEC(1992).
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Even in a situation that involves chandewould not have happened witho(it

However, problems arise wheiiv*has éackground chancef occurring” (RAMACHANDRAN,
2004, p. 388 his emphasis), which means that even if the cause is absgsm, happen more
or less spontaneously. It is the “would not have happened” bit oftesiactual analysis which
seems to raise doubts and as mentioned above, we will solve this problerdoluiitrg chances
in counterfactual analysis, as well.

2.2.6 Probabilistic Counterfactual Dependency

Just as we adopted the regularity condition from “Every time C happenappgens” to “the
chance of E happening is higher given that C happened”, we nee@mngehhe counterfactual
expression “E would not have happened if C had not happened” tftiebility of E would
have been lower if C had not happened”. That said, this idea has teebedsput in the right
way. It must not be read as a regularity statement about “not-C” , like‘thg probability of
the effect is lowered, if not-C is given”, which would hardly add anythitiger to causality than
what regularity already implie®. In particular, alternative situations — that build the core of any
counterfactual — would not plagnyrole in this understanding.

In order to arrive at a more reasonable interpretation of probabilistintedactuals, let us
examine where the 100% connection comes into play in the counterfactugf thedave de-
veloped up to here: it is in clustering the alternative situations into suppe@ntigeindermining
ones. And as long as we take only single alternatives into account, theseniaynto include
chances: @ontrastivesituation (where the alleged cause is missing) either does contain the ef-
fect, or not. Additionally, the point about the alternatives (once they sered into supportive
and undermining ones) was their distance to actuality. Our task, then, isdta feplacement
for single alternative situations that allows for both, expressing chamma comparison with
respect to actuality.

Our proposal is the following: where we hitherto spoke of single alterestiwe now intro-
duceclustersof alternative situations. I.e. sets of alternative situations which are similacto e
other3® Within these clusters, we can evaluate the probability of an effect, whicmodanger
is binary (“does happen” or “does not happen”), but has some ‘mtveeer0?% and100%.

The first important cluster is that which stems from the initial situation. It will glas/role
of a reference cluster. Within this cluster, we can evaluatertitial probability of the effect.
More precisely, we do not take all the similar situations of that cluster intoet¢as the cluster

% |n fact the following holds:
P(A|B) > P(A) — P(A|B) < P(A)
i.e. if the cause heightens the effect (regularity), then it's absencedotv€Cf. appendix A)

3 “Similarity” will be modeled by universals’ instances. For details, pledsthe formal descriptions
in sect. 5.1.
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may include situations that are indeed similar to the initial situation, but yet doomddio the
cause, i.e. the similarity may not rely on the alleged cause being preserajplpabhose which
do contain the alleged cause.

An example may illustrate this idea: say we are investigating whether using ancawvitch
lights up a given bulb. What could be a similarity cluster around this situation@afyg, there
are unlimited possibilities, but let us take this one: “situations in which some switted'. In
order to evaluate the initial probability, we restrict this cluster to those situationghich the
very switch is used that we are interested in (as this is the alleged ¢Augédhin these, the
probabiliy of that very bulb to light up is (depending on the switch’s reliabiktyg). 99.999%.

The same kind of clustering like with the initial situation is done to the alternativetisinsa
instead of sorting them into supportive and undermirsitgations we cluster them by simi-
larity and callthe clusterssupportive or undermining depending on whether the absence of the
cause does lower the probability of the effect (compared to the initial prdlga or not; the
probabilities being evaluatesithin their respective clusters.

Concerning distance to reality, it is now the clusters we compare and plisti@lcouterfac-
tual dependency holds iff there is a supportive cluster that is closer faitia (or: reference)
cluster than any undermining one. Figure 2.5 gives an overview.

2.2.6.1 Example: Catching the Flu

Let us apply this analysis to an example, and (in case the claims are cosiatvgrst for the

sake of this argument) let us assume that people indeed can catch therilwisiting a patient
that is already suffering from the flu, that there are other factors wihigt produce flu (like

swimming in cold water), and that there is also a chance to develop the flu withtmrnal

triggers. The initial situation is one where someone visits a patient and cdtehéis. The

alternative situations contain visits as well as non-visits and flu-catchirgjgerags as well as
non-catchings/developings.

Next we cluster these situations by similarity, which gives the following clusters
1. A healthy person visits a patient who suffers from the flu.
2. A healthy person visits a patient who does not suffer from the flu.

3. Aperson with a compromised immune system takes part in an autumnal triatildoes
not visit a patient.

87 Both, what cluster to evaluate, and what to take as the alleged cause rolagdsen differently to
how it was done in this example. The conclusion whether counterfactpaindlency holds or not
is relative to this choice. Cf. sect. 5.1
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Figure 2.5: Clusters of alternative situations: the reference clustewith the effect’s probabiliy of
P,, two contrastive clusters of alternatives with the prolliibs effect’s probabilities ofP; and P.
Additionally, the distance of the alternatives to the refare cluster is depicted by the length of arraivs
andds. If Cs is supportive and if it is closer t€',. than any undermining one, counterfactual dependency
holds.

Evaluating the onsets of the flu in each cluster gives the probabilties,, P; for catch-
ing/developing the flu in cluster 1 (initial probability), cluster 2 or cluster 8pestively. And
we know thatP, will be lower thanP;, which makes the second cluster a supportive one (cause
is missing, probability of effect becomes smallefy, on the other hand, may well be — and for
the sake of this argument, we assume that it is — greater than the initial probability makes
it an undermining cluster (cause is missing, but probability of effect is bigdrer).

Obviously, cluster 2 is closer to the initial situation’s cluster than the undermatisger 3
that has nothing to do with any visits. So in the end, the probabilistic counteafawlds (cf.
table 2.5).

World (ordered by closeness) supportive / undermining Counterfactual holds

Cluster 1: Visit non-flu patient supportive Yes

Cluster 2: Autumnal triathlon undermining

Table 2.5: Probabilistic counterfactual analysis of “Catching theflu

30



2.3 Manipulability

2.3 Manipulability

A very important aspect of causality is that we use causal knowledgeattgehthe world: in
ancient times, ways to keep people dry by living in caves or building primitits Wwere highly
important, as were methods for starting a fire. Later on, mankind foundautdhprevent strong
wind to damage our homes, and how to use a metallic rod to resist lightning stikéding
machines was another very important step for human development, andtaghéu on causal
knowledge used to manipulate the world. And looking at our time, sciencesldhrait seem
to have immediate benefits in terms of applicability often have a hard time explainnthesn
should be valuable at all.

This “pragmatic” value of causal knowledge gave rise to another brafrcdusal theories that
takemanipulabilityas the core characteristic of any causal relation. The meaning of “manipula
bility”, however is multifarious: early theories (cfON WRIGHT, 1971; GLLINGWOOD, 1940)
took manipulation as changes, brought about by human action.olnI@Gwoobs words:
“[...] the cause of an event in nature is the handle, so to speak, bywwhiman beings can ma-
nipulate it.” (CoLLINGWOOD, 1940, 296). This view, however, gave rise to criticism centring
around their appareminthropocentricityand the reductive status of the theories was questioned,
accusing manipulation theory ofrcularity (both aspects will be discussed in the following).
Later theories (cf. BIRTES ET AL, 1993; HAUSMAN, 1998; WoODWARD, 1997, 2000) tried to
find characteristics of certain (not necessarily human) interactionsubéifygas manipulations
in the sense of a manipulation theory. To distinguish between the two appsaeh will use
the terminterventionfor those that do not depend on human interaction, as is rather common in
this field. However — as we see it — the intervention theories, while avoidithgapocentricity,
still fail in being reductive analyses of causality.

2.3.1 Anthropocentricity

If causality is closely tied tactualhuman interaction (i.e. human interaction that does take place
right now, or took place in the past), the existence of causal relationslips on there being
humans that perform actions. This would imply several highly counteringudigims, two of
which are: (1) there were no causal relations until human beings evelwddch was the case
for the major part of the universe’s history, and (2) there cannohpeausal relations in places
where no human being has yet been — which excludes not only nearlyhible wniverse, but
(just think of the deep sea) also a major part of the planet we inhabit.

But even if causality is based not only on actual, but also optssibilityof human action,
those causal relations are ruled out, where humans cannot take amyadetilb- which excludes
causal relationships in environments where humans cannot exist (thprek@dsses within the
sun or within it's immediate proximity, or processes that took place in the unctabferenvi-
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ronment close to the Big Bang). And even if humans may be able to exist, in raaeg,¢hey do
not have any influence either because they are too big (as e.g. in theokoddo particles) or
because they are too small (think e.g. of earth tectonics or of the movenwaiesfial bodies).

2.3.2 Circularity

If formulated as reductive theories, manipulation theories face anotbblepn: “humarinter-
action’ might well be a causal concept itself. But if it is the approach to “tranSthte concept
of causality to something that already is a causal concept is no reductdin at

What about the interventionist theories? How do they describe interveritinat connected
to human interaction? Here is an exanifie

Such an interventioh must meet the following requirements (M1)-(M4):

(M1) I must be the only cause df; i.e., as with Pearl, the intervention must completely
disrupt the causal relationship betwe&rand its previous causes so that the valu&as
set entirely byl

(M2) I must not directly caus¥® via a route that does not go throughas in the placebo
example

(M3) I should not itself be caused by any cause that afféctga a route that does not go
through X, and

(M4) I leaves the values taken by any causeg @xcept those that are on the directed path
from I to X to Y (should this exist) unchanged.

(WOODWARD, 2001, p.)

As we see, there are quite a lot of requirements,ahdf them presuppose causal relations,
some of which must not hold between certain elements, and some of which pldshha
certain way. So the concept ofterventionindeed is built upon the concept of causality. Just
like with the manipulation approaches, interventional theories (at leaséssmied here) are not
of a reductive kind3°

%8 For illustration cf. the graphs in sect. 3.1.1. The conditions (M1) to (M&) #ill be given in the
following, describe how an intervention like in fig. 3.2 must be designed.

3 We won't go into more detail, here, but should note that the problem ofileirity understood

as non-reductivity is an issue, manipulist theorists are completely a#cé ®VoobwaRrD and

HiTCHCOCK, 2003, p. 14). Their answers to this challenge range from declarimghinteraction

to something that differs from ordinary causality —

“The connection between an action and its result is intrinsic, logical andaustal (extrinsic).[. . .]

It is a bad mistake to think of the act(ion) itself as a cause of its resulvON(WRIGHT, 1971,

p. 67-68).)

— to explaining how “[...] a theory can be non-reductive without beingatror uninformative.”

(WooDWARD and HTCHCOCK, 2003, p. 15)
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2.3.3 Twofold Manipulability

Acknowledging the aforementioned critics of manipulation theory, we do adagptamanipula-
tion as an additional condition on causal relations. But this does not meawehaeglect the
relevance of the manipulation aspect that causal knowledge has. Adlsbaw in the follow-
ing, the manipulationist’s intuition is indeed composed of two components: an gitaland
an epistemic one. The first consists of manipulability being a necessaritionridr causality,
while the latter focuses ofinding causal relations (or their direction) by means of manipula-
tion.*% We will come to the epistemological part later (cf. chapter 6) where we stfaigiardly
accept manipulations as valuable means to identify causal relations.

The ontological content of manipulability on the other hand is, as we will argtie follow-
ing, already covered by the two building blocks of our theory, i.e. byleegy and counterfac-
tual dependency.

2.3.4 Manipulation: What is left?

Putting the epistemological question of how to identify causal relations asiddpuohability
means that (some) changes in the cause yield changes in the effect. vblpiieone conse-
guence of manipulability is that we can affect the effect according to éemtions, there should
be “predictable” changes in the effect (given specific changes iratlged. Taken this way, ma-
nipulability relies on aegular connection that holds between cause and effect. But this relation
obviously is, what regularity and counterfactual depend&nalyeady do provide, so there’s no
need to add manipulability as a separate criterion.

However, manipulability may shed light on an aspect of regularity hithertonaate explicit
as we have not yet focussed on the question of the ontological nattine causal relata. As
this is a cental topic of a later section (cf. sect. 5.1.1), we shall not dischese, but some
remarks might be admissible. The kind of entity that is probably most easilydetathanges or
manipulations ar@roperties(or whatever your ontology provides as an appropriate surrogate):
changing the tension of a bow’s string, or manipulating the initial direction o&thav allows
the archer to make the arrow hit a certain position on the target, for exampbedér to cover
such cases of manipulability, we must take care that our theory — where radnilipyi is not
explicitly included — must (nevertheless) be able to connect properties ap@nopriate way.
Yet, it is not only the “difference in properties” that may be used in manipuliafibut also what

40 30 in an “ontological” reading it is
causality = manipulability (manipulability is a necessary condition for causality), while in the
epistemiological reading, the direction of the inference changes:
manipulability=- causality(if manipulability is found, we may infer causality).

41 In this section, we will simply speak of regularity. All remarks concerriing causal relata of

regularity do also apply to counterfactual dependency.

33
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could be called “difference in existence”. We can prevent some effiattenly by altering the
cause, but also by complettiminationof the cause.

One way to combine both kinds of manipulations is to take existence as just epaiperty,
a proposal, whose discussion has an honorable history of it§o@ut even if we do not follow
this route, what we do stay committed to (in order to cover the manipulationist infuiiidimat
out theory does not only have to provide means to connect properties iigtit way, but also
for properly connecting thexistence and nonexistenakentities*3

42 A historical reference is Immanuela§T (cf. KANT, 1787, p. 401). For an overview of the issue
cf. NAKHNIKIAN and S\LMON (1957); LEJEWSKI(1954).

4 We will see that the GFO theory of causality takes exactly the opposite routeumifying prop-

erties and existence. Rather than taking existence as a property; th&arood properties is

understood as a condition of existence: changing a property’s valaasrikat the old property

value (as entity) is no longer existent, while the new value (as entity) comesistence. Cf. sect.

5.1.4 for more details.
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Looking at computer science, there are very different ways in whiclsaiy is dealt witH:*
Starting with the field of statistics, we will present and discuss the causal mdelettoped
by Judea BARL that rest on directed acyclic graphs (DAGs). Then we will concentrate o
ontological approaches (DOLCE, Cyc, and the work of Jobws), as our theory will be based
upon an ontology too (called GFO: General Formal Ontology). Indeexhritbe seen as an
extension to that ontology.

3.1 Statistics

3.1.1 Directed Acyclic Graphs (J.Pearl)

The probably best known approach to formal causal representatemdalled “causal model-
ing”) is the one connected to JudeaARL and his causal interpretation oRBESIAN nets™

Those nets (cf. fig. 3.1) consists of two components: a directed acyalih DAG) consist-
ing of verticesV” and edge#, plus the local mechanisﬁ?sk”(xpa(v);xv) — associated to each
vertexv — that generate/compute the output values ofathgiven the values of the parents of
x, (Where “generating” may include stochastic mechanisisy: (V, E, (k¥)yev)

In figure 3.1 there is a very simple DAG with four nodes and four directesl 8o each node
there is a local mechanism assigned. For this net’s joint distribution, the folidwolds:

p(z1, T2, 23, 74) = k' (21) k% (215 22) k3 (215 23) K (22, 23 74)

with the general joint distribution of any DAG configuration being

b= p(B) = H kv(xpa(v);xv)

veV

44 We will roughly follow the distinction between “Numerical” and “Symbolic” appches as intro-
duced in LEHMANN (2003).
4 This introduction follows RARL (1993, 1994, 2000)

% The idea of using “mechanisms” to get a grasp on causality goes backtng1977), cf. EEARL
(1994)
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Figure 3.1: Simple DAG with four nodes (“Diamond”)

Up to here, the DAGs can be interpreted as “carriers of independssuengtions” (BRARL,
1994, 4). However, the picture (literally) changes, if we do not stick tathservationalvari-
ablesz, but allow forinterventionalones. Figure 3.2 shows the diamond with an intervention
on x5 that solely sets the value of, breaking all other parental connectionsgf(i.e. the edge

Figure 3.2: The diamond DAG with an intervention an

between; andx,).

As the mechanisms stay the same (the nodes are “modular” i.e. “it is conleciwathange
one such relationship without changing the other€ARL, 2000, p. 22)), the joint distribution
under the intervention, can be calculated as

p(w1, 2, 23,24 || c2) = k' (21)0ey (02) k> (215 23) K (22, 235 24)

with 6., (z2) replacingk?(x1; 22) from the original diamond’s formula. Under the interven-
tion, we find thatxs, for example, is no longer dependent en There is no link of “causal
influence” (cf. EEARL, 1994, 3) between them.

The difference in content is this: while Bayesian networks contain informathmut ob-
servable distributions of the vertices’ values, the causal DAGs tell uat altservables would
change, if an intervention were to take place. BFrRLS words:
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A joint distribution tells us how probable events are and lprababilities would change
with subsequent observations, but a causal model alsaiseisw these probabilities would
change as a result of external interventions — such as timaseietered by policy analysis,
treatment management, or planning everyday activity.

(PEARL, 2000, p. 22)

3.1.1.1 Analysis

First of all, we must state thatBARL is not explicitly interested invhat causality is, but aims
his analysis at two epistemological questions: “(1) What empirical evidencequired for
legitimate inference of cause—effect relations? (2) Given that we are gviliraccept causal
information about a phenomenon, what inferences can we draw from iaformation, and
how?” (PEARL, 2000, p. xiii).

But clearly, what lies conceptually (i.e. putting aside the remarkable analfys&isal DAGs
as mathematical objects) behind modeling causality by causal DAGs is the manipatat@mint
of causality: a relation is causally relevant, if the alleged effect is depiotiethe alleged cause
under an “atomic” (RARL, 2000, p. 70) intervention (on the cause). Furthermore, he calls
“influence, manipulation and control” the “more basic notions associatedisatian” (FEARL,
1994, 5).

3.2 Ontology

Although we shall not go any further into detail about what an ontolotfy ise will collect
some constituents, that at least the following approaches have in common:

e Categories are used to structure the (knowledge) content in question
e Hierarchies are used to structure the order of categories

e A formal language (based on mathematical set theory and first ordes)dgiased for
machine readable representation and

e Natural language sentences are provided to help the reader undettstaconcepts in
question.

47 In computer science ontological literatur&GBER' s definition plays the role of a classical dictum:

“An ontology is an explicit specification of a conceptualization.” RBER, 1993, p. 1), but in
almost any field of research where ontologies are considered asgkayiimportant role, people
have developed their own understanding of the term. For an impresairgiew cf. QUARINO
(1998).
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These constituents nicely depict the double nature of formal ontology asitguwoth, philo-
sophical (categories, concepts and their order) and computer séssnes (machine readable
formal representations).

3.2.1 DOLCE

Developed as a moddfeof the “WonderwWeb?® Foundational Ontologies Library” the aim of
the “Descriptive Ontology for Linguistic and Cognitive Engineering”, DCH, is to “capture
the ontological categories underlying natural language and human cosenge”, which the
authors call a “cleacognitive biag, as they are not interested in the “intrinsic nature of the
world”, but in the “cognitive artifacts ultimately depending on human percaptaltural im-
prints and social conventions”. (MsOLO ET AL., 2003, p. 13 their emphasis).

This “cognitive bias”, however, does not mean that DOLCE’s choicéadic categories
(cf. fig. 3.3) is profoundly different to other, rather realistically oriehteoop-level ontologies.
Roughly spoken, the difference is not about how to conceptualise thid vt about what
“world” is to be conceptualised. In case of DOLCE, it is the world of ougrdtion and lan-
guage — independently of how it may correspond to an external reality.

The DOLCE theory of causality was presented BHMANN ET AL. (2004) which will be
the main reference for this section’s content.

3.2.1.1 The DOLCE Theory

We will start our quick, informal overview of the relevant concepts of E@L CE theory of
causality with those entities that are not causality related (EHMANN ET AL., 2004, sect.
4.1):

e Physical endurantocated in space and time, wholly present at any time it is present (no

temporal parts). Examples are: a car, Barack Obama, the K2, an ani@ahd o

e Perdurant/EvenfTemporally extended entity. The authors give reaching the summit of

K2, a conference and eating as exampfes.

e Physical/Temporal qualityrhis entails “aspects’ of entities that can be perceived and
measured like shapes, colors, lengths, speeds and energies” as teefiporal locations

4 Alongside OCHRE and BFO (cf. MsOLO ET AL., 2003; SHNEIDER, 2003b,a; ®ENON, 2003).

4 Cf. http://wonderweb. semant i cweb. or g/ i ndex. shtm (as of 2007/06/29); accord-
ing to this site, the WonderWeb project officially finished in Juli 2004. Thalfieport is HOR-
ROCKS(2005).

%0 Just like the authors, we will use “perdurant” and “event” synonyryous
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Figure 3.3: Taxonomy ofDOLCE basic categories (taken froMASOLO ET AL., 2003, p. 14)

(of perdurants) and spacial locations (of physical endurants).

e Physical/Temporal region/quakollowing GOODMAN (1951); GARDENFORS(2000) and
the philosophical concept of “tropes” (cfABON, 2002), DOLCE distinguishes between
qualities and qualia (singular: quale). In short, a quale is an individualitys position
in “quality space”. Having the same (single) quale e.g. justifies speakingmfdses
having the same color, i.e. their (distinct, individual) qualities have the sante.qua

e Participation of an endurant to a perduraBndurants can participate in perdurants during
the full event, or just at certain times.

e Temporal inclusion/coincidend&mporal coincidence of perdurants (roughly) means that
both entities exist for the same time interval.

In addition to this part of the DOLCE ontology, the authors firstly introducenioa-causal)
concepts of “unique participatiop” and “common quality change” to define the central category
of “basic quality change” (cf. EHMANN ET AL., 2004, sect. 4.3):

e Unique participationAt every time there is no other endurant thamarticipating to a

certain event.

1 Note that the subsequent expressions “unique participation” and “conguality change” are
not used in IEHMANN ET AL. (2004), where the authors define the corresponding predicates
(UPCc¢(z,e) and BQC™ (e, z, PQ;)) without providing a descriptive term. We introduce them

for convenience reasons.
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e Common quality chang€here is an endurant uniquely participating to an eveat and
a certain physical property af has different qualia at different times.

e Basic quality changéPerdurant capturing the change of an endurant along just one as-
pect/quality type”. This means that it fulfils the following conditions:

1. There is unique participation between the (changing) endurant antldhge (as an
event).

2. The endurant has a common quality change with respect to a certaioghyghslity.

3. There is no part of the event, that temporally coincides with the eventglhari-
zontal layer) and has a common quality change in whatever physical ¢ifality.

In a further step, the authors introduce dependency relations betwsanduality changes.
With respect to the “temporal relations between quality changes and of thigtydelation be-
tween their participants” they introduce the following “three different kiofdgenericexistential
dependencg . .] that individuate sets of quality changes"H{HMANN ET AL ., 2004, sect. 4.4,
their emphasis; cf. that section for the following as well):

e Synchronic dependenés. if the shape changes, the spatial locations changes simultane-
ously. This does not hold vice versa.

e Backward dependenckhis relation covers the idea that some changes in one entity ne-
cessitate different changes of other entities that are temporally pridior lExample, a
change in shape takes place, some change in the spatial location musikeaveléae.

e Forward dependenceéhis is the “opposite” of backward dependency expressing that a
certain change is to be followed by another certain change.

For covering different simultaneous quality changes, the notiomsutifple forward/backward
and mixed back/forward dependencée introduced.

With these expressions at hand, the first causal expression is inbdu@ tern of more
restricted synchronous/forward/backward dependencies:

e Structural dependenckhis relation holds, if there is a synchronous dependency between
the basic quality changes of the same object. These represent vergldaws based on
its “structure (ontological characteristics)”"EHMANN ET AL ., 2004, sect. 4.4).

e Causality dependencEhese dependencies hold between types of quality changes non-
synchronically occurring on distinct objects.

52 We think that the corresponding definitions D3-D5 GfHMANN ET AL. (2004) should express
“in any physical quality different to the one that the basic quality changeadsiti instead of “in
whatever physical quality”. A difference, however, that is not ofvatee, here.
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e Circumstantial dependencehese are connections between quality changes that take the
qualia into consideration:

— Intrinsic dependenceith respect tdhowthe qualia change (e.g. if one increases, the
other decreases).

— Relational dependenceomparing the temporal or physical qualia of the partici-
pants’ qualities, e.g. spatial location at a given time.

Note thatcausalityis meant to refer to the relation between types of quality changes, while
the authors useausatiorfor concrete, individual causal relations. And here is what they inde
stand as causation: Given a set of events thatriscturally closed(i.e. satisfies the structural
constraints of the system), tbausation relatiorholds, if at least one of the following conditions
hold (cf. LEHMANN ET AL., 2004, sect. 4.5):

1. A forward or backward dependency holds between the two relaga& ljuality change
types (or between a the set of events, synchronously dependerd weidta)

2. There are events that are synchronously dependent on the redataradition 1 holds for
them

3. Thereis an (intermediate) additional event that is on the one handatedmveth the first
relatum (under the conditions given above) and on the other hand cedrte the second
relatum, forming a kind of “transitive mediator”.

3.2.1.2 Analysis

From an ontological perspective, the DOLCE theory has two importamacteaistics:
1. The relata are “basic quality changes” (or kinds of “basic quality gba).
2. Causality is handled as a kind of constraint.

The first aspect refers to the ontological nature of the causal rel&iahwe did not yet
discuss. However, we will address this question here, without anticipaimgnuch of later
discussion (cf. sect. 5.1.1).

The second aspect locates the DOLCE theory within the regularity thetrasthe con-
straints are expressed by dependencies that are defined in termstehtaficonditional$?

3 The authors are aware of that: “We proposed to look at these constaiftisms of dependencies
among event types that cover physical laws”. (EHMANN ET AL ., 2004, sect. 6).

% As for example the definition of “synchronic dependence” (skd.notation slightly changed):
sQD(a, B) =ar I(e(x)) AV (a(z) — Fy(B(y) A CNr(z,y) Ape(z) = pe(y)))
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Thus, it is not only regularity, but what we introduced as “strict” or “4®Qegularity (cf. sect.
2.1.2).
This leads us to the following problematic aspects of the DOLCE theory’s hasiomptions:

e Some causegreventchanges (i.e. they prevent change processes/events from happenin
or account for stability, like e.g. a break prevents a vehicle from movintik@a sprin-
kler system prevents a fire or like the “strong force” in physics keepskguand gluons
together to form protons and neutrons. These causes are notd¢av&¥©LCE

e Looking closely at changes, one may question whether it really is the ebhagcauses
anything, and not the “final state” at the end of the change. If two cmiend to the
same “final state”, wouldn't they have the same causal consequelfiges?agree to this,
it seems like it is not the change that is causally relevant, but the “final gtadefever it
is evoked).

¢ The first problematic consequence of relying on regulatity that (subsequent) effects
of a common cause erroneously are identified as cause—effect pairs.

e Secondly, strict regularity does not cover probabilistic causal relagtiohgh are very
common in e.g. medicine.

However, although we do not agree to these basic assumptions, wendettge that the
DOLCE theory’s details (like the concept and the kinds of basic propdraynges, and the
connection to the non-causal parts of DOLCE) are impressingly compsidee and in fact the
most extensive formal ontological analysis up to how.

3.2.2 Cyc

Founded in 1984 with an initial budget of US$ 50 million (clo€eLAND, 1997), the large-scale
knowledge base of Cyc — according to their developers — currentlyiosriteearly two hundred
thousand terms and several dozen hand-entered assertions abbiimeach term.”(§Ccorp
INC., 2008). And as we already mentioned in the introduction (cf. sect. 1ib@)nakers of
Cyc decided to model causality by material implication.

3.2.2.1 Analysis

We already saw that material implication (taken as means to model causality) hetsatinge
consequence that literally everything causally follows from a wrongtisse“s is prime” thus
becomes the cause of “there is a thunderstorm”. But this is not the onlcehung.

% As discussed in sect. 2.1.
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Material implication does not contain information about time. So this approacisaflor
the implication’s consequence to be be prior in time than the antecedens. This ftacausal
relations that go backwards in time. A view many people would disagree with.

And finally Cyc falls into the trap of taking regularity as equivalent to causalityery case
of non-causally connected regularities we've mentioned so far (BaroAsttem, subsequent
symptoms of an underlying disease, etc.) would be understood as a efieserelation.

It should be noted that when searching the OperR€goncept browser online, you will
find that the developers obviously have taken the early critics like those medti@PELAND
(1997) into account as they added some notes on the “causes” relaticorthacts propositions
in order to make the difference to the “implies” relation explicit. This contains timpoteal or-
der (effect proposition must not precede cause proposition), aawéie following: “a Causes
Prop Prop sentence presumes an underlying mechanism of causattyc’ HOUNDATION,
2008). We assume that this “mechanism of causation” is meant to prevecaubkal relation
from falling into the shortcomings mentioned above, however, OpenCyg mioietell us, how
this is done. Actually, no information on these “mechanisms” is given.

3.2.3 Sowa'’s Theory
3.2.3.1 Continuous Processes

The most basic concept in the ontological theory of Jobwis (as laid out in (®wA, 2000c5’,
which is the main reference for this section) is that of a mathematical functiesealsin physics,
on which S>wa then relies when defining “continuous proces&&s”

“A continuous proces® is a pair(F, M) consisting of a collectiorF” of differentiable
functions defined on a four-dimensional manifald

e Every pointp of M has an openeighborhoodJ that is homeomorphic to some sub-
set of four-dimensional Euclidean spaé, The homeomorphism atdetermines a
coordinate system;, z2, 3, 4 Over the neighborhoot.

e A paththroughM is the image of a continuous map m from a real intefwab] into
M. The pointm(a) is called thebeginning andm(b) is called theendingof the path.

e The coordinate:, of a pointp, which may also be representedtgs), is calledtime

% OpenCyc is a restricted open source version of Cychct.p: / / www. opencyc. or g.
57 According to (9wA, 2000a), this text is based on contents ab(®, 2000b) plus some additional

material.

%8 Formally, the function is the most basic concept, but how to tell which “ctitlet of functions

counts as a process? Every collection? If not, then whatever accaurtsefprocess-identity is
even more basic.
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(Sowa, 2000c, sect. 2.1, his emphasis)

Conceptually, continuous processes are a certain kind of procedsy(c3.4), whose “in-
cremental changes take place continuouslyd\&, 2000c, sect. 1), and are thus opposed to
“discrete processes”, where changes “occur in discrete steps ealatswhich are interleaved
with periods of inactivity calledtates’ Depending on whether the beginning or ending are of
concern, continuous process may be divided into “Initiations” (withodtreg), “continuations”
(wihtout beginning and ending) and “cessations” (without beginning).

Process
ContinuousProcess DiscreteProcess
Event State
-~ e |
Initiation Continuation Cessation
e~ e ]

Figure 3.4: SowA’ s process hierarchy (taken fro®owa, 2000c, sect. 1)

With processes and functionsp®a introduces the first causal notion — that of “causally
equivalent” functions:

Let P = (F, M) be a continuous process [...].

e Two functionsf andg in F' are said to beausally equivalentvith respect to a point
pin M if for any pointgq in the past with respect g f(g¢) = g(q).

(Sowa, 2000c, sect. 2.6, his emphasis)

In a next step, the author introduaganstraintson continuous processes:

“A constrainton a continuous proceg3 = (F, M) is a predicate

C :2F x M — {true, false}. If S is any subset of functions i andU is any open
neighborhood of\f for which C(S, p) is true for allp in U, thenC'is said toconstrainthe
functions inS on the neighborhoot/.”

(Sowa, 2000c, sect. 2.4, his emphasis)
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The concept of a constraint, thus, is to restrict the values of a functmosesses. This
includes very detailed constraints (as e.g. in theoretical physics) assvekee rule of thumb
in everyday life (wa, 2000c, sect. 2.4).

Certain constraints are then called “causal constraints”, which is thecamsal notion in
SOWA’ s theory:

Let P = (F, M) be a continuous process, afica constraint orP.[. .. ]

e The constrainC is said to be aausal constrainif for any pointp, the truth ofC
at p is unchanged when any functighin F' is replaced by another function that is
causally equivalent tg with respect t.

(Sowa, 2000c, sect. 2.6, his emphasis)

The notion of a causal constraint then is a means to discriminate betweendiesngd”,
“random” and “deterministic” processes depending on whether thereasigaktconstraint on
some or all functions of the process (on some neighborhood), or whétre is no such con-
straint, or whether the process is not only law governed, but even ronstrained such that the
future values of the process’s functions are uniquely determined bgwaiithe past.

The theory about continuous processes, however, is just oneff@mvwns causal theory. It
tries to cover discrete (i.e. step-by-step) connections as well.

3.2.3.2 Discrete Processes

SowaA introduces discrete processes as a directed, acyclic, bipartite gmnagibtomy of two kinds
of nodes (“states” and “events”) and ordered pairs of nodes, tles™aDepending on what
nodes are connected by arcs, the following terms are introduced: W4rearearc connects two
nodes one of which is a state and the other an event, it is said that the fiesshias a “causal
influence” on the second. If the first node of a causal influence aacsimte (connected to
an event), the arc is called “input arc” and the state “input state”. If tegrinde of a causal
influence arc is an event, the arc is called “output arc” and the sectatd)(sode “output state”.
The causal influence is defined as transitive (cfw@&, 2000c, sect. 3.1).

With the intermediate step of introducing “event [and state] typesiW&, 2000c, sect. 3.2),
the “preconditions” (which are certain input state types of an event peé)‘postconditions”
(which are certain output state types of an event type) are called theatsigh of an event
(Sowa, 2000c, sect. 3.3).

The immediate causal interpretation of this model comes from understandipgethand
postconditions as causes and results of the event.

A second way, causality is covered by this theory is that there are axiomeah@aect the
universes of discrete and continuous processes @kaAS2000c, sect. 3.3):
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Refinement A discrete process can be refined by replacing some state or evenbyadeew
discrete process.

Embedding Maps states and events of a discrete process into points in the continnoasges
manifold.

Approximation Whenever there is a discrete process, mapped into a continuous oree, ther
exists another discrete process, which is a) a refinement of the firsttgiprocess, b) also
embedded into the continuous process, and c) a better approximation tatimeioas one
(compared by terms atrror in prediction

3.2.3.3 Analysis

SOWwA’ s theory is obviously rooted in two scientific domains: The definition of contisymo-
cesses as functions on three-dimensional manifolds is very similar to hoordtloal) physics
describes the (causal) world, and his treamtent of discrete procdsadg stems from insights
of distributed systems modeling (e.g. like with Petri nets) in computer sci€nce.

Both, typically, do not wear their causal content on their sleeves. Isiphyit is all about
functions and the distribution of their values, while Petri nets are usualtribes as modeling
systems with concurrency and resource sharing EfRPNETSWORLD, 2007; DESEL ET AL.,
2004). Researchers in both fields, however, tend to use causal i@lilen“A makesB do
/ become / act likeC”) in informal settings, which is not surprising, as — as laid out in the
introduction (cf. sect. 1.2) — they are modeling parts of the world that betiotige realm of
what we call connected by causalityo®A’ s aim, therefore, is what may either be called giving
the scientific models a causal interpretation, or it may be termed rooting themmfcausality
in the universe of natural sciences’ findings. This, undeniably, is apritapt part of any causal
theory that does not want to find itself opposed to natural scienceshwahécindeed our best
way to discover causal relations.

This being said, what is the conceptual content ofnds causal theory? In the case of
concrete processes, causes and effects are certain types afgppmsticonditions of event types
(the pre-and postconditions being states). The states and events acerhected by arcs of
causal influence.

Just like in DOLCE, ®wA seems to rely heavily on regularity: ittigpesof pre- and postcon-
ditions of eventypes which means that similar events (given similar preconditions) by causal
influence are tied to similar outcomes. And again like DOLCE, causality is tightlyect i@
changes (which are not as elaborated as in DOLCE, but stilha@ressential criterion to dis-
criminate between states and events).

9 Another case is the use of numerical methods to approximate e.gediifgrequations.
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In the case of continuous processes, we have “causal equivaklemtécausal constraint”.
The first refers to two processes sharing a history of past valuesp@ed to a point), the
second to a certain kind of condition that restricts the values of a predesgtions. Again,
it is the idea of regularity that can be found in these concepts. “Causaladence” is strict
regularity between values in the past, while “causal constraints” ardarégs that pertain on
a process’s function in general.

Is it strict (100%) regularity, that ®~vA is committed to? In the field of discrete processes,
thetypesseems to refer to strict regularity, but what about the “causal contsttaircontinuous
processes? This is not easy to answer,@w/ASdoes not say much about what these constraints
may look like. All that he says is that they might be of different coarsevassng between the
“fundamental laws of electrodynamics or derived laws that relate agdramctions, such as
temperature, pressure, and heat” and “ ‘People can’t run much rfdhnidgue a mile in 4 minutes’
or ‘People can't spontaneously metamorphose into ducks or tomatoesvA,S2000c, sect.
2.8, emphasis removed). Mentioning the laws of thermodynamics may indicatdltistical
expressions might be part of the constraint, which might protect this ttiemryfalling into the
first major pitfall of regularity based theories.

But how about the second one, i.e. regularity does not necessitadiggufn our view, the
notion of a law, i.e. a causal constraint is too liberal, so it fails in non-ddugaegular cases.
Every regularity may be regarded as a constraint, and those which fatitlin conditions (e.g.
they are limited to “a region called thight coné (Sowa, 2000c, sect. 2.4, his emphasis)) may
be called causal constraints. Constraints that refer to the two effectsomhmon cause would
fall under this concept, just as real causal relations.
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4 General Formal Ontology: GFO

4.1 GFO and the Project of GOL (General Ontological Language)

Development on the top-level ontology of GFO (General Formal Ontolstyjed in 1999 at
the University of Leipzig, as the central part of a project called “Galn@ntological Language”
(GOL, cf. HELLER and HERRE (2003, 2004b)). Over the years, however, several directions of
research have been followed that split the initial project into various fislash that GFO is
now regarded as one (though important) component of a larger ontdlaggd framework for
knowledge representation (cfN9O-MED RESEARCHGROUP, 2008).

4.2 GFO Basics

Our first task is quickly to introduce those parts of GFO that are eithertljiregnnected to
our theory of causality, or necessary to get a grasp of the underl@frg)-spirit”. For the sake
of brevity and readability, this overview will not present a finicky degaip of the relevant
concepts within the GFO-concept hierarchy, coveehghe reasons and problems, but we shall
use a more narrative style, which — according to our experiences -iés tafollow, and is not
that much in danger of distracting our concentration from the main topic, vidiciwsality?®
Starting with some background information, we should firstly be aware th@ @Gkes a
rather “realistic” point of view, when it comes to the entities captured. Thisnmpor differ-
ence to e.g. DOLCE, which is — as the authors point out — cognitively biggetasoLO
ET AL., 2003, p. 13). So we will speak of modeling the world (or a domain) instéatbdeling
an agent’s view on the world. In the words of William JLANCEY: “The primary concern
of knowledge engineering is modeling systems in the world, not replicatinggemple think
[...]7 (CLANCEY, 1993)% Secondly, calling it a “Top-Level Ontology” means that it is con-
cerned with those concepts that are domain-independent i.e. they aledrieealmost every
specific domain.

€0 For a detailed overview on GFO cf.BdLER and HERRE (2004a) and I#RRE ET AL (2007).

61 A discussion of various realistic/cognitive/constructivist approachestizeir relationship to truth
(understood as correspondence) can be founduimrENO (1995).
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4 General Formal OntologycFO

Summarising, GFO aims at covering those entities in the world, that are sabgthatrthey
are of use in almost any concrete domain. And this is a good point to stastioey.

4.2.1 Time and Space

A nice example of highly domain independent concepts are those whichssxmmporal and
spacial relations: A public library needs to know, where a certain boakamsyagiven moment,
while biologists and medics for example are interested in certain processkajpan in certain
places at certain times.

The GFO theory of time is glass continuunicf. HAYES, 1996), and indeed, a glass stick
might be a good analogue to the temporal entities in GFO. Such a stick is spatialtged and
always has two endings: anda’. And because it is all solid glass, there is no structure to be
seen within. But once you break it, two new endingandb’ are created out of the same point
of the old stick. So now you have two smaller sticks one with the endiragslb and the other
with o’ and?’.

The GFO theory of time starts with temporally extended entities caleonoidsthat have
exactly two (extremallime-boundariesAnd just like the stick can be broken at (nearly) any po-
sition, a chronoid can be split up everywhere. In other words: a didldras an infinite number
of inner time-boundaries that would become extremal boundaries of thidmgsiew chronoids.
Note that just as it does not make sense to call a stick the sum of all the sradipgossible
breaking would create, a chronoid is not the sum of all its (inner) time-temies. Coming back
to the splitting, we find that it creates two boundaries out of “the same pointinnatibhronoid.
So there should not be a temporal difference between such a pairradéoes. GFO introduces
the notion ofcoincidenceo indicate that such a pair is so tightly connected that there is no tem-
poral gap between them. They are, in a sense, “at the same time”, while Btdl d&erent
entities. Using the concept of coincidence, GFO allows for seamlessh t@anecting” two
chronoids with the old endings becoming a pair of coinciding time-boundadhaspelong to
the inner time-boundaries of the new, bigger, chronoid.

4.2.1.1 Summary

e There are two basic temporal entities: chronoids and time-boundaries.

Every chronoid has two extremal and infinitely many inner time-boundariegware
extremal boundaries of sub-chronoids).

Every part of a chronoid is a chronoid itself.

A chronoid is not the sum of all its time boundaries.

Pairs of time-boundaries (one right, and one left time-boundary) mayideinc
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4.2 GFOBasics

A very similar route is taken in modeling space: The basic entitiesogn@ids which have
boundaries, as well. The only difference is, that there are topoidsfefelit dimensions, while
time is seen as a one-dimensional “line”.

4.2.2 Individuals

The aforementioned entities thabnstitutetime and space are relevant in order to establish
temporal or spacial relations between entities thatiratene and space. The latter are called
individualsin GFO, and they share some characteristics of what philosophical litereails
“particular” or “concrete” (cf. RACIA, 1995; BITCHVAROV, 1995).

4.2.2.1 Processes

As the basic temporal entity is a chronoid, we begin with those individuals teaaended in
time, like a 100-meter sprint, a series of lectures or the pumping of a petsars GFO calls
those entitieprocessesand assigns a chronoid to each process, such that the chifcaiels
exactly that amount of time the process unfolds in. Another GFO exprefsidhe special
relation between a process and its temporal extension is that the progesgeided onto a
chronoid

The strong connection to chronoids leads to other features of GFOtegses. Parts of
processes are processes themselves, and processes haveibsuiuta which can coincide, if
the processesieet’? Those boundaries will be subject to the next section.

4.2.2.2 Presentials

Processes cannot only be projected onto chronoids, they carojeeted on time-boundaries
too. The result is a process boundary, and the entities found theralk@presentialsas they
arenotextended in time. Another way to put this, is, that presentials have no tengaots) or
that they fully exist at single time-boundaries.

An example would be a bottle at a certain time It simply is a bottle. But if we take a
“snapshot” of a 100m-sprint, it is no longer a 100-meter sprint.

4.2.2.3 Summary

e Processes are entities that are extended in time or unfold in time.

e Processes can be projected onto their framing chronoids.

62 with the backup of GFO's theory on chronoids, the meeting relation betpre@esses is as pow-
erful as the “meet” relation of ALEN (1989), so all the other relations of Allen and Hayes (“BE-
FORE", “STARTS", “DURING”, etc.) can easily be defined, too.
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4 General Formal OntologycFO

e Processes can be projected onto time-boundaries, yielding presentials.
e Parts of processes are processes themselves.

e Process boundaries coincide if their chronoids extremal time-boundaieside. The
processes are then called meeting.

e Presentials are — in a temporal sense — the opposite of processesaibesuexist fully
at a single time-boundary.

4.2.3 Universals

Having a look at presentials, a very basic relation between them is similaritye $eesentials
(bottles, cells, bones) can be grouped together by certain similarities. $eligee, that this,
again, is something, a top-level ontology should be prepared to deal with.

GFO uses the classic notion ohiversals here, and introduces thastantiationrelation
between an abstract universal and the condnstiance The bottles on my table are similar (as
are all bottles), because they are instances of the same bottle univessel.“8bstract” means
that unlike individuals (and unlike time and space entities themselves), it dbanake any
sense, to make temporal or spatial claims about universals. They dgistoatea certain time,
or at a certain space: they are in a very fundamental way out of time ace%p

To avoid confusion, it should be added, that two distinct universals raag the same in-
stanceséxtensiol, as in the well known example of “human” and “featherless biped”.

4.2.3.1 Summary

e Universals are abstract entities that can be instantiated.

e The (concrete) instances of a universal share similarities in some te§reaniversals
group similar entities together.

e Unlike sets, two universals are not necessarily identical if they haveathe sxtension.

4.2.4 Properties, Qualities, Values

If we have another look at the bottle on my desk, we find that it has certamacteristics, like
a particular colour or a certain weight. And having such characteristiecsédysnot specific to
a domain: neurons have specific shapes, newspapers have a cedain dnd singers’ voices
have a specific pitch. Again, this is something, a top-level ontology shoulico

& To stress this fundamental difference;gleN (1997) calls the separation of abstract and concrete
entities the “Great Line of Being”.
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4.2 GFOBasics

Relying on the abstract/concrete distinction as introduced in section 4.2. )dvhéit some
features should be abstract, making the following claim possible: “The titeb@n my table
have the same colour”. If “the same colour” was a concrete entity, it caldenin two different
places at the same time. It could not be literally “the same” if there are two distimcrete
objects. This abstract feature is calf@@dpertyin GFO.

On the other hand, we may refer to the concrete colour of one of the bdttissentity, called
quality in GFO, is something different to the colour of the other bottle, or the colosoofe
car driving by.

The abstract/concrete distinction was based on the relation to time and sjpalciés gasy to
see, that properties/qualities indeed differ in this respect. Speaking thi@olung of a smoker
having the same colour as asphalt, it does not make sense to ask whetabsttast property is
left or right, or before, or after another property. With the concretditigs, we can: The lung’s
particular grey existed only after several years of heavy smoking.

In order to give the full picture on properties et. al., we should note andikgnction. The
one between “the lung has a colour” and “the lung is red”, or betweentdhls has a particular
height” and “this table’s particular size is 0.95cm”. It is the difference betwgroperties and
property valuesor qualities andjuality valuesrespectively.

Taking all these kinds of entities together, the “féfipicture of, say, a rose being red, involves
the following entities :

1. The rose, which is a presential.

2. The abstract property colour.

3. The abstract property’s value “Redness”.

4. The concrete quality: the colour of that specific rose.

5. The concrete quality value: the particular redness of that speciéc ros
These entities are related by several relations:

1. The abstract property and the concrete quality are conneciedtapntiation the property
being a universal.

2. Quality and presential are connectediiyerence

3. Properties (and qualities) and their values are connected by argltitenT calledralue_of

4 Depending on what you are about to model, you will not need all of thetites, of course.
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4 General Formal OntologycFO

4.2.4.1 Summary

e Properties are universals of certain characteristics.
e Qualities are instances of properties.
¢ Qualities and their bearers are connected by inherence.

e Properties have abstract property values, while qualities have conoaity values.
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5 A GFO Theory of Causality

After quite a lot of necessary background information and discussioth@main topics of
causality analysis, the time has come to introduce the GFO proposal comceanisality.

It is split into three parts: first, the most fundamental relation céugg) is formally intro-
duced with discussion of its componefitsSecondly, the basic causal relation is extended in
numerous ways to cover processes as causal relata. And thirdly,afgseallel causal relations
are discussed.

5.1 The Basic Causal Relation

5.1.1 Presentials as Primary Causal Relata

If the question comes to the nature of the causal relata, the philosophheaiasy is overwhelm-
ing (cf. SCHAFFER, 2003), but if the discussion is not directly focussed on the relata, tteey a
usually assumed to be events. ABHMANN ET AL. (2004) puts it: “[...] events have a strong
causal flavor, due to their tight relationship with the notions of change and dimakethis makes
them appealing causal relata.”

And we agree that everyday language prefers events (which we Wircgesses, as intro-
duced in 4.2.2.1) as causal relata. Yet we think that serious problems nilagrise, if we
take everyday language to express an ontological theory rather thanabpragmatically justi-
fied abbreviation of an underlying ontology that is shared by the spea@nmunity. In other
words: While the surface structure seems to presuppose processdbégbimary causal relata,
fine-grained analysis might show that another kind of entity does playdletvithout chang-
ing the surface structure. And — after presenting the problems that dinge treat processes
as being primary — we will present such an analysis in the following, startitigpresentials
that are connected by the basic causal relation cauge, a relation which then can easily be
extended to cover processes (and claims about causally conneatedg@e®) as well.

8 Pparts of this section’s arguments and results were first presentettinAVEK (2005).
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5 A GFO Theory of Causality

5.1.1.1 Problematic Processes: Causal Relevance

Imagine a billiard ball running towards another ball which rests on the cldth.sEcond ball is
hit, and begins moving (while the first ball might change speed and anglerbitesment).

Analysed in terms of processes, we would identify two of them, meeting at thdalls
collision. And now, the puzzle begi®§:What part of the first process is relevant to the secbhd?
Let’s divide process; in its two halves yielding?; ; and P, 5 (cf. fig. 5.1). The question now
becomes: What part d?, is relevant to the second proce3s?

Collision
Ball 1 running at ball 2 Ball 2 running
| P, | P. |
e [ e | 3 |
| Pl 2.1 P1,22 PZ |
P. |
I/ | \I
P1.2,2 1 Pl.Z.Z 2

Figure 5.1: What part of proces#’; is relevant to processs?

Take the first half, i.eP; 1, alone: It does not contain the collision and there is a temporal gap
betweenP; ; and P,. So its status of being the one that cauBess quite questionabl®® The
second half, i.eP; 5 thatincludes the collision, is definitely more promising, because gien
(alone, or even together with a differefit ;), the result would be the same as in the unmodified
situation: P, would be the same. Indeed; » seems to beaall the causal power of the first
process (with respect to the effects on the second process).

But if we disregard the first half, and concentrate on the second alemenight raise the
same question again: Which of the two halved?f, is relevant toP,? The first half —P; 5 1
— has the same problem &5, before, it does not contain the collision, and there is a temporal
gap betweerP; 5.1 and P,. The causal power seems, again, to lie in the second half, where the
same question will lead to the same answer: it always is the last part of mewrlast part, that

% The following argument is based on a thought experimentigigN (1997) which actually expli-
cates an idea of BSSELL (1910) (cf. footnote 68, below).

57 Some readers might be tempted to deny that this question makes seitseighs always be the

wholeprocess at stake, if it causes something. We will come to this objection emthef the actual

section (p. 57).
68
As RUSSELL (1910, p. 184) puts it when discussing one of several definitionsusfadity: “earlier

parts are not contiguous to the effect and therefore (by the definititnodimced before]) cannot
influence the effect”.
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5.1 The Basic Causal Relation

is causally relevant to the effect.

This leads us to the assumption, that it is the situation or state of affairs (botlomtchnical
reading, hereat the very end of the first procedbat is causally relevant to the second process.
And looking at GFO, the very last piece is the presential at the processks

Objection: No Splitting The above argument relied on splitting the process that is the alleged
cause, and it might be objected, that this argument fails because it possgxhat it is a part of
the process that contains the causal power. The rival thesis woulth¢hérns always thevhole
process, that is causally relevant, and not one of its parts; least oflfje time-slice (i.e. a
presential).

We believe, that this does not work for important parts of sciences tl@tdéh causal re-
lationships. Think of physicists testing the predictions of a certain theorgy Will proceed
by creating the initial conditions, the theory is about, and then check forxected results.
However if the initial conditions contain, a certain low temperature for exantpéescientists
are free in choosing the way of cooling. All that matters is generating the fiyasential)
conditions. Without regard to the kind of process that comes up with thesktioms.

The same holds for the billiard balls. It is not relevadrgwthe first ball got its speed or angle
of movement. It may as well be struck by the queue, as be hit by anotheoiblayl,some fancy
automata. The effect, i.e. the movement of the second ball would be exacHgrie as long
as the situation at the very moment of touching is the same.

5.1.1.2 Problematic Processes: Temporal Connection

Taking processes as primary causal relata leads to another difficulty: sHould cause and
effect be directly connectef? Typically, the temporal extension of processes is modelled by
intervals of real numbers, but this is where the problem arises. Intenalde open or closed,
so we get the following combinations (cf. fig. 5.2):

e The firstinterval is right-closed, the second left-closed. This includesptgsibilities:

— The two intervals do not overlap. Because of the nature of the real manbés
immediately leads to the conclusion that there is a temporal gap between the two
processes. Thus the connection is not immediate.

It might well be that there are causal chains, where the (first) caubehe (last) effect are not
immediately connected, but in this case, at least some intermediate eldmeatto be directly
connected.

® The problem of a temporal gap is nicely depicted iDsRELL (1910, p. 187): “I put my penny in
the slot, but before | can draw out my ticket, there is an earthquake wipeéts the machine and
my calculations.”
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5 A GFO Theory of Causality

— The two intervals overlap. This, again, would not be immediate successiar as
wanted the connection to be. Furthermore, the time-structure between arzise
effect would be confusing. Parts of the cause would be before teetefome
would be synchronous to the effect, and some even after (severa opéne effect.

e One of the two intervals is closed while the other is open. The problem with Hubge
tions is the ontological interpretation of an open interval, i.e. a process withdefinite
endpoint. Either the cause has no definite ending, or the effect hadinibedleeginning.
In case of the billiard balls, this means that there is no definite time point, whefiesthe
ball stops, or changes its speed or angle.

If we take our considerations from the last section into account: no pbart open inter-
val is able to carry the causal relevance, as there is always some othebging closer
to the point of “connection”.

e Both intervals are open. Here, the same problems arise, only this time in bosie, @ad
effect simultaneously.

N/
AN
Overlap 5
¥
Gap K
X
No final point //
\\
No initial point \\
/)

Figure5.2: Variations of connecting time intervals

If we take the GFO model of time (as introduced in sect. 4.2.1), these probtenw eppear.
We simply have two chronoids whose time boundaries coincide, i.e. there isnpotal gap
between the boundaries, yet the boundaries stay two distinct entititese Werftave true initial
and ending points.

The final picture is as follows: processes are temporally framed by clid®nTwo chronoids
are temporally immediately connected by their extremal boundaries coincidihg.pijec-
tion of time-boundaries onto processes are presentials and it is precisglyetbentials at the
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5.1 The Basic Causal Relation
coinciding time-boundaries that are connected by causality in our th&ory.

Al. causdzx,y) — Pres(z) A Preq(y) A Jt1,te(at(x,t1) A at(y, t2) A coinc(ty, t2))

(The causal relata are presentials at coinciding time-boundayies.

Looking at axiom Al, we find that the basic causal relatiottriigally transitive (cf. C1
below) because there is no entity that can play the role of the connectiadplea in C1) in
transitivity’s antecedent. Playing that role would require being both, tbenskparticipant in
one causal relation and the first participant in another causal relatiis). hbwever would imply
that the connecting variabl®)(is both a left time-boundary presential and a right time-boundary
presential, a distinction that that GFO explicitly introduces as being exclusive

C1. causéa,b) A caus€bd, c) — caus€a, c)

(Transitivity, trivial)

We call the causal relation’s transitivity “trivial” to stress that although trenfal condition for
transitivity is fulfilled, this is the case only because there are no entities to wiaieitivity can
be applied. In short: transitivity holds, but can not be used (or: cabhenof any use) in a logical
deduction.

5.1.1.3 Processes Do Still Belong to the Full Picture

The previous arguments against the use of processes as primaryretataahould not compro-
mise the vital role processes play with regard to presentials. The latter astyaexprojections
of processes onto time boundaries, so there is no presential without @dying process. Ad-
ditionally, the process it depends on might even be necessary for tenied to be able to have
certain propertie$

All that is argued for, is that causality does not hold directly betweengsses, but only by
means of their presentials which could be calledhalirect causal connection. Section 5.2 deals
with causal relations within and between processes.

5.1.2 Regularity

Now that we have the relata, their relation is the next crucial point. Followimgansiderations
in the introduction, we will begin by covering the idea of regularity.

™ In the following formulae, axioms, definitions and corollaries (undeitas immediate conse-
quences following from axioms and definitions) are marked with “A’, 'Bihd “C”, respectively.

2 Like, e.g. an object having a certain velocity. Having a velocity is only iptessf the object (here:
the presential) takes part in a process.
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5 A GFO Theory of Causality

Recall that regularity calls for a number similar causes (and effects) to be connected in a
certain way. Similarity, however, is why universals had been introduced@ 30 we may use
them here, too: the causes (and the effects) must be grouped by bstangces of universals.

Additionally, astatistical dependenayust hold between (the existence of) instances of the
cause and (the existence of) instances of the effect universalexigtence of the former must
heighten the probability of the existence of the latter.

5.1.2.1 Coincidence Pairs
To formalise regularity, we shall begin by introduciogincidence pair®f presentials, i.e. pre-
sentials that exist at coinciding time boundaries:

D1. coincPaifz,y) = ¢rPres(z) A Pres(y) A 3t1,ta(at(x,t1) A at(y,t2) A coinc(ty, ta))

(Coincidence pair: presentials at coinciding time boundayies

The collection of all the coincidence pairs gives the uncountable ueiysasnple space),,,.
of the subsequent probability consideratiths

D2. Q. =4r{(z,y) | coincPainz, y)}

(Universe of coincidence pairs

5.1.2.2 Probabilistics

Following the standard textbook account on probability in uncountable sapgtes (cf. BUNG
and ATSALHLIA , 2003), we introduce a non-empty sgtas as-algebra over subsets 0f,, :

A2. Aec S, —AcS,

(Closed under complemeints

A3. Al,AQ,...ESTHUiAiEST

(Closed under countable unions

This includes thatS, contains the empty set and is (viEEMORGAN'S Law) also closed
under countable intersections.

Next, we introduce a functio®, assigning real numbers (probabilities) to members,of
with P, fulfilling the KoLMOGOROV conditions:

 The indexr indicates that we deal with regularity, here.
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5.1 The Basic Causal Relation

Ad. P.(A)>0 for AecS,

(No negative valugs

A5. Pp(Qep,) =1

(Total measure one

A6. P.(U, Ai) =, P-(A;) for A; €S, with A; pairwise disjoint ¢ countable
(o-additivity)

The triple (2, , Sy, P-) is a probability spacewhere we can use the common expression
of statistical dependendaeetween two evenfé C and D, i.e. “Probability ofC, given thatD”
denoted by P,.(C' | D)". Butwhat doC andD refer to, ontologically, if regularity is concerned?
5.1.2.3 Probabilistic Regularity
With the abbreviations

D3. coincPairU{z,y,U) = gcoincPaif(z,y) A x :: U
(Coincidence pair with universal’s instance in first participant
D4. coincPairUsz, y, U) = gcoincPairz,y) Ay = U

(Coincidence pair with universal’s instance in second patrticipant

and the corresponding subsets<hf,
D5. E¢ (U) =g {(x,y) | coincPairUf(z,y,U)}

(Coincidence pairs with an instance ©6f as the first participant

D6. Es (U) =4 {(x,y) | coincPairUgz,y,U)}

(Coincidence pairs with an instance 6f as the second participant

we can formally express a statistical dependency between instanceserkats:

D7. statDepL{Ul, UQ) :dfP(Es (U2>) < P(Es (U2) | Ef (Ul))

(Statistical dependence between universals, mediated by insfances

" The term “event” is used here as common in probability theory. No ontabginnotation in-
tended.
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5 A GFO Theory of Causality

Definition D7 now captures the idea that the probability to “find” an instanciefeffect
universal is higher, if there already is an instance of the cause salvérFinally, we are able
to summarise the regularity condition on causality:

D8. statDepRx,y,U.,Ue) =gz :: Uc Ay :: Ue A statDepUU,, U)

(Statistical dependency between presentials w.r.t. univet§als,)

A7. caus€zx,y) — JU., U.(statDepRz,y, U, Ue))

(Regularity Axionn

5.1.2.4 Objection: Is Immanence at Stake?

Causal theories may be divided by their answer to the following questiénstlie causal relata
immanent, or transcendent? That is, are they concrete and located itirspace abstract and
non-spatiotemporal?” (8HAFFER, 2003, sect. 1.1).

Our theory makes use of universals which clearly belong to the realm abtteact. So let us
take some time to check whether this might turn out to be a flaw. The argumenillvogigily
go into is that abstract entities cannot interact, or as an opponent to imneapetscit (when
defending abstract “facts” as causal relata): “Some people havetetijthat facts are not the
sort of item that can cause anything. A fact is a true proposition (they say not something
in the world but is rather somethirepoutthe world, which makes it categorically wrong for
the role of a puller and shover and twister and bendereNBeTT, 1988, p. 22, his emphasis)
Translated to our approach the question is: as universals are naifpghd (spatiotemporal)
world, are they categorically unsuitable for the role of pullers and skoaled twisters and
benders?

In order to answer this question, let us reconsider what role unigepsay in our theory.
To begin with, they are not the basic causal relata. The basic causiébneka defined on
coincidence pairs of presentials. And as presentials are a perfectly imtrikiné of entities,
there should be no disagreement that they indeed can interact, orENNERT' S words —
“behave like elbows in the ribs” (BNNETT, 1988, p. 22). Universals come into play to group

S “Higher”: compared to the probability of finding an instance of the eftetversal in some arbi-

trary coincidence pair of the full universe.,,..

Note that this is not the same as the probability being higher compared todbabyity of find-

ing an instance of the effect universal in an coincidence pair whereahge-universal is absent
like for example HTCHCOCK understands probability raising: “[...] A causes B if and only if
P(B|A) > P(B|A)” (HiTcHcock, 2002). Adjusted to his formulae, our approach would de-
mand thatP(B|A) > P(B). While the latter expression entailsittHcock’s, they are not
equivalent, cf. appendix A.

62



5.1 The Basic Causal Relation

similar presentials for comparison, as comparability (or: similarity) is a negessastituent
of the concept of regularity. But even if we defined a relation of statistiependency between
universals (cf. D7), this relation is defined upon the universals’ ig®n So in the end, we
find our causal relation being grounded in the realm of the concreteogpeporally located,
immanent world.

5.1.2.5 Objection: May Causes Lower the Probability of Their Effects?

In the discussion on regularity we announced that we would check oonythgainst the claim
that there are situations in which the cause may lower its effect’s probabilityno& would
such an argument go? Here is an example:

Pam throws a brick through the window. Meanwhile, Bob (a nreteble vandal), holds

his throw on seeing Pam in action, though had Pam not throvin®uaild have. [...] Pam’s

throw is obviously a cause of the window shattering. But hesw is a probability lowerer

of the shattering: since Bob is a more reliable vandal, thedaiv's chances would have
been worse with Bob in action. Thus probability raising i mecessary for causation.

(SCHAFFER, 2001, p. 79)

Let us make it clear, where this analysis differs from what we said up r®. HBcHAFFER
compares the actual situation to situations where not Pam, but Bob has thioatone. So,
say, when Pam throws the brick, it hits its target in 10% of the cases, while Bas a success
rate of 90%. As Pam’s throw prevented Bob from throwing his brick, thelauvis chances of
not breaking were lowered from 90% to 10%.

But this is not the only way to compare probabilities, here. Another reasomnay would be
comparing Pam’s throw with Bob’s not throwing to other situatiaieere Bob does not throw
There we still have the probability of the window’s being destroyed by Patoige (10%) which
is definitely higher than the window breaking on it's own. Given this comparisar initial
claim about causes raising their effects probabilities still holds.

Pam . —> 1
®
© . Window shattering
Bob @__50~"

Figure 5.3: Does the cause lower the effect’'s probability from 90% to 208baken fromSCHAFFER
(2001, p. 79).)

Let's take S HAFFER s diagram to illustrate the difference (cf. fig. 5.3). Advancing in time,
we find Pam’s throw first to prevent Bob’s throw, then shattering the windgo the actual
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5 A GFO Theory of Causality

situation may be compared to either the situation before Bob'’s throw is prelesdo the
situation after the prevention. CBIAFFER chooses the first option: if Pam had not thrown,
Bob would have. When taking the situation after Bob’s throw is preventedBak does not
throw), Pam’s throw becomes a probability raiser again and our appi®siithvalid. And when
carefully reviewing our approach, we find that there is good reasoottfollow SCHAFFER' S
analysis: our basic causal relation is defined on coincidence pameséntials They are not
extended in time. If the window’s shattering is addressed as an effece altdine, the causal
setting is about the stone right when touching the window pane. And thidycisafter Bob’s
throw was prevented, so in the end, we might state that our theory is ectedfby examples
of this kind.

5.1.3 Counterfactual Dependency

As presented in section 2.2, counterfactual dependency has the fgloaneeptual constituents:

¢ Alternative situations and the relation sifnilarity between them

e Clusters of similar situationseeded for the probabilistic aspects. The cluster around the
initial situation, e.g. gives the initial probability of the effect.

e Causally similarand causally contrastivealternative situations — causally similar ones
contain the cause, contrastive ones don't.

e Supportiveandunderminingcausally contrastive alternative situations

— Non-probabilistic: undermining situations contain the effect (although theecs
missing), supportive ones don't.

— Probabilistic: undermining clusters of situations are those, where (the saaissent
and) the probability of the effect is lower or equal to the initial probabilitysuip-
portive clusters, it is higher. (This covers the non-probabilistic vadard special
case.)

e A notion ofdistancewith respect to a reference cluster that allows for comparing clusters.

So far we loosely spoke of “situations”, but as our considerations ocethgal relata (cf. sect.
5.1.1) have shown, it is presentials that are causally relevant in the wioclghorete entities.

8 secondly, the argument relies on the causal relation being transitines(Fraow causing Bob not
to throw which causes the window not being shattered by Bob’s brick). héeever, do believe
that although there is some kind of transitivity in certain circumstances,abie bausal relation
cannot be used transitively. (In more detail: it is trivially transitive, beréhcannot be any b such
that causéa, b) A caus€b, c), cf. C1 on p.59).
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5.1 The Basic Causal Relation

So we need to adjust the concepts above. And we do so by replacingttiegitss” by two
presentials that build a coincidence pair. So what we need now becomes:

e Coincidence pairs of presentials, and a notion of similarity between prdsentia
e Clusters of similar coincidence pairs, initial probability

e Causally similar and causally contrastive clusters of coincidence paingsalbasimilar
are those, whose first participants are similar to each other and contaistaincia of the
cause universal, while contrastive coincidence pairs are similar to eaehlmt do not
contain an instance of the cause universal in the first participant.

e Supportive and undermining clusters or causally contrastive coina@deaics

— Non-probabilistic: undermining coincidence pairs’ second participastsiatances
of the effect universal (although the cause is absent in the first ipanicof this
pair), in supportive coincidence pairs, there is no instance of thetefféxersal in
the second participant (i.e. the effect is missing as the cause is missing).

— Probabilistic: in undermining clusters of coincidence pairs, the probabilithef
effect (as instance of the effect universal in the second particifshiggher or equal
to the initial probability (although the cause is absent in this pair). In supporti
pairs, it is lower (so an absent cause lowers the effect’'s chance).

— A (distance) relation that orders clusters of coincidence pairs with cegpa refer-
ence cluster.
5.1.3.1 Similarity and Contrast

Similarity and contrastbetween presentials is modelled by instances of univérsal$ie uni-
versal might be made explicit or not:
D9. similarPresz,y) =4 Pres(z) A Pres(y) A3U(Univ(U) Az = U Ay = U)

(Ordinary similarity between presentials

D10. similarPresUz,y,U) = gsPres(xz) A Pres(y) Az = U Ay = U
(Similar presentials w.r.t. a universal
D11. contrastPresUe,y,U) = g Pres(x) A Pres(y) A—=(x = U) Ay = U

(Contrastive presentials w.r.t. a univer}al

7 We will use the GFO symbol :: to express instantiation.
So “a is an instance of/” will be formalized asa :: U (cf. HERRE ET AL., 2007, p. 53).
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5 A GFO Theory of Causality

This implies the following:

C2. Pres(x) Az :: U — similarPresUz, z,U)

(Reflexive “self-similarity” of a presential

C3. similarPresUz,y,U) < similarPresUy, x,U)

(Symmetry on fixed univer3al

C4. similarPresWz,y, U) A similarPresUy, z, U) — similarPresUz, z, U)

(Transitivity on fixed universal

C5. —contrastPresz, z, U)

(Irreflexivity)

C6. contrastPresUr, y, U) <« —contrastPresy, x, U)

(Asymmetry on fixed univer3al

5.1.3.2 Clusters of Presentials and of Coincidence Pairs

The relation of similarity with respect to a certain universal is the basis fiimidg clusters of
presentials on which clusters of coincidence pairs (what we hitherto ¢alladar situations”)
do rely:

D12. SimilarPresWUy) =4 {z | x :: Us}
(Us-cluster of similar presentials centered around a certain univérsal

D13. SimilarCpUUs) = g {(x,y) | coincPair(x,y) Az :: Us}

(Similar coincidence pairs whose first participants afgclustered

D14. ContrastCpWUy) = 4{(x,y) | coincPairz,y) A —~(x :: Us)}

(Contrastive coincidence pairs whose first participants are outside
theU,-clustep)

Within the clusters of coincidence pairs there are those that have (oridyali@ not have)

an instance of a certain universal as the first participant . These rdustge labeled them
“causally similar / causally contrastive” — build the basis for counterfactependency and all
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5.1 The Basic Causal Relation

its probabilistic aspect&:

D15. CsimilarCpUUs,, U.) =gt {(z,y) | v =: Us AN 2 Ue}

(Us-cluster of causally similar coincidence pairs, i.e. with first
participant being an instance of (the cause) univerggl

D16. CcontrastCpWU,, U.) =g {(z,y) | x :: Us A=(z :: Ue)}

(Us-cluster of causally contrastive coincidence pairs, i.e. the first
participant is not an instance of (the cause) univergg)

D17. ; = 4 CsimilarCpU(7)
with i € {Us, U, | Univ (Uy) A Univ (U.) }

(For abbreviation purposes; Universe of (causally similar)
coincidence pairs restricted G, andU..)

D18. ©; = 4 CcontrastCpUs)
with i € {Us, U, | Univ (Uy) A Univ (U.) }

(For abbreviation purposes; Universe of (causally contrastive)
coincidence pairs restricted 0, and contrastive w.r.tl/,.)

5.1.3.3 Probabilistics

Following the strategy we used for covering probabilistic regularity (aft.$21.2) we define
non-empty sets; aso-algebrae over subsets of clusters of coincidence prirs

A8. AcS;,— AcS;

(Closed under complemets

A9. Al,AQ,...ESiHUjAj €S

(Closed under countable unions

8 You will note that the seSimilarCpU from definition D12 in the subsequent formulae, is the same
asEy , defined before in D5. This probably calls for an explanation: in the seotioregularity,
the focus was on whether the first or the second participant of a coimegd®air was an instance
of some universal; therefore we introducBd andE, . In the present section, however, the focus
lies on similarity and contrasB{milarCpU andContrastCpl), so we took the freedom to define
an equivalent expression in order to symbolically (i.e. with respect tedtee “names”) support the
line of logically constructing our account of counterfactual depengencsimilariy.
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5 A GFO Theory of Causality

Each of theS; contains the empty set and is closed under countable intersections.
The functionsP;, then, assign real numbers (probabilities) to membess,ofith P; fulfilling
the KoLMOGOROV conditions:

Al0. P;(A) >0 for AecS;

(No negative valugs

All. P() =1

(Total measure ore

A12. P(32; Aj) = >, Pi(4;) for  Aj; € S; with A; pairwise disjoint;j countable
(o-additivity)

The triples(2;, S;, P;) areprobability spacegdefined over causally similar clusters) we will
use for expressing thaitial probability as well assupportiveandunderminingclusters of coin-
cidence pairs.

Note that the same apparatus can be applied tdXhg.e. causally contrastive clusters of
coincidence pairs that explicitly lack an instance of the cause univeiséd)ng the probability
spaces();, S;, P;), respectively.

Let us now introduce two more abbreviations to express the probability efftbet — i.e. of
“finding” an instance of the effect universal — in the second partitiphooincidence pairs that
belong to either causally similar or causally contrastive clusters:

D19. P;(Ue.) =4 P;({(x,y) | CsimilarCpU(i) Ay :: U.})
with ¢ € {Us, U, | Univ (Us) A Univ (U,)}

(Probability of effeck in causally similar clustet/;)

D20. P(U.) =4 P({ (=, y) | CcontrastCpWi) A = (y :: Ue)})
with i € {Us, U, | Univ (Uy) A Univ (U.) }

(Probability of effeck in causally contrastive clustér;)

5.1.3.4 Supportive and Undermining Clusters

Compared to a reference cluster where the cause is present, a skiadis calledsupport-
ive’®, if it does not contain the cause, and the probability of the effect is lowaar th the

® |.e it supports the causal claim one might make if only observing thearde cluster.
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5.1 The Basic Causal Relation

reference cluster. If the probability of the effect is higher or equally liyen though the cause
is missing), it is calledindermining

D21. supportiveClusteU,, U, U., Ue) =4t Py, v.(Ue) > Pm(Ue)
(U-cluster supportive w.r.iJ,.-cluster and cause/effect universgls

D22. underminingClustely, U,, Ue, Ue) = gt Pu, v.(Ue) < Pr—-(Ue)

(U-cluster undermining w.r.t/,.-cluster and cause/effect universals

5.1.3.5 Distance Between Clusters

The next element needed distancebetween causally contrastive clusters with respect to a
reference cluster.

LEwiIs gives some rough ideas of what the distance between possible worldglgain,
like “similarities in matters of particular fact trade off against similarities of langyus, 1973,
p. 560). However, he accepts that the vagueness of what he cafipéarative overall similarity”
(Lewis, 1973, p. 559) (which take several of these “rules” and assigrex€iff weights to each
of them) cannot be overcome as it simply is part of causality (efvLs, 1973, 560).

We follow his analysis and accept this limitation of our the®hyThe distance thus is intro-
duced as a primitive relation between three clusters of coincidence pdira¢has “clustet/;
is closer to clustet/,. (the reference cluster) thds, is to U,.":

A13. closerToThaUy, U,,Us) — Univ (Uy) A Univ (U;) A Univ (Us)
(Based on universals around which the clusters are cenjered

Al4. closerToThaU, U,, Us) A closerToThanUs, U,., Us) — closerToTharUy, U,., Us)

(Transitivity w.r.t. reference universal

Al5. closerToThaUy, U,,Us) — —closerToThariUs, U,., Uy)
(Asymmetry

Al16. —closerToThanU, U,,U;)

(Irreflexivity)

5.1.3.6 Probabilistic Counterfactual Dependency

Counterfactual dependency now holds if there is a supportive clustigstbloser to a reference
cluster (representing the actual situation in which both, cause and t&ftdcplace) than every

80 |t should be noted, though, thatagmatically science indeed has developed ways to distinguish
between sensible and far fetched alternatives when performingierques.
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5 A GFO Theory of Causality

underminig one:
D23. counterfactDefU,, Ue, U,) = 43U (U # U, A supportiveClustefU, U,, U, U)
A YU, (underminingClusteU,, U,., U., U.) — closerToThanU, U,,U,)))

(Counterfactual dependency with respect to a reference uniyersal

On the level of presentials, counterfactual dependency demands ¢hptebentials are in-
stances of universals that are connected by counterfactual dapsnas defined above:

D24. counterfactDepR;, e, U, Ue, U,) = 4coincPair(c,e) Ac:: U. ANe :: Ue
A counterfactDepU., U, U,)

(Counterfactual dependency between presentials, mediated by cause,
effect and reference universal

This leads to the final formulation of the counterfactual condition on causality

Al7. causéc,e) — coincPair(c, e) A 3U,, Ue, U, (counterfactDeplc, e, U, U, U, ))

(Axiom of counterfactual dependehcy

5.1.3.7 Sufficient Conditions

Axioms A8 and Al7 presented the two necessary conditions of regulamtycannterfactual
dependency that causality relies on. In our view, the conjunction of twsditions (based on
the same cause and effect universals) are in turn sufficient foaliigus

D25. cause,p(c, e, U, U., U,) = grcoincPair(c, e) A
c::U.Ne:: U A statDepUU,, U, ) A counterfactDepU.., Ue, U,)

(Causal relation with cause and effect universals made explicit

Al18. cause(c,e, U, Ue, U,) — causéc,e)

(Explicit causal relation implies basic causal relatjon

5.1.4 Manipulability Recreated

As explained in sect. 2.3.4, we believe that the manipulability intuition (in short: etisea
causal relation, the effect must be modifiable by manipulating the causejigeddy regularity
and counterfactual dependency as introduced above — and thuaatagesed to be introduced
separately. Now that we have our theory at hand, we shall show hawets what we figured
out to be the manipulationist’s main points:
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5.2 Extending the Basic Relation: Processes

e An effect’s properties may be changed by changing the cause’srtiespe
¢ Effects may be changed by the non-existence of the cause.

The first point can be made easily: the basic causal relation holds bepresentials, and
this is exactly, what an object’s propertia®. The color of a rose, or the weight of a stone are
not extended in time: at any point in time, we can say what color the ros@hasat weight
a stone has. This means that causal relations between propertiesfaotiypeovered by our
theory.

Now it may well be that some properties require a process taking place likéetidvelocity
or a billiard ball's momentum. Moreover, if we had a look at some flying bullet oroaing
billiard ball at a single time boundary, it will not move, apparently so it might bgptéeng to say
that there are properties which are not presentials. However, we tkradwhis bullet or billiard
ball is (ontologically) different to non-moving bullets or billiard balls. Even iktHifference is
not visible at the single time boundary. We can still model it by a preséiitial.

Now, having a look at how GFO models properties and their values (df.4&&c4), we find
that the change of a property’s value is modeled by one value being rdrbgvan (ontologi-
cally) different value. So changing properties already includes oty eoming into existence,
while the other is no longer there. Additionally, if whole objects should disappbis will
immediately change the clusters of alternative situations that both, reguladtgcamterfac-
tual dependency depend on. In the end we can conclude that thenedesfboth, changing a
cause’s properties and removing a cause completely, indeed is contamadlireory.

5.2 Extending the Basic Relation: Processes

Starting with the basic relatiocausegz, y) relating presentials as defined above, we can now
go on to extend it to cover processes as causal relata as well. Thisata@akdrio the concept of
causality as introduced up to here (it still is all about regularity and cofacteal dependency
between presentials), but simply provides means to connect the basit daton to a wider
range of GFO ontological categories.

5.2.1 Processes and Presentials

Recall the two projection relations of GFO. The first, (@t C), connects a proced3 and a
chronoidC' (which is roughly the time-interval, the process takes place in; cf. fig. STAp
second, prtP,t, p), projects a chronoid’s time-boundatyn the process yielding a presential
p (cf. fig. 5.5). If C framesP and if the time-boundaries are exactly the extremal left and right

81 Additionally: manipulability does not rely oaveryproperty of the effect being manipulable by
alteration of the cause.
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time-boundary of”', we can call the corresponding presentiaissential at the left/right end of
processP (cf. fig. 5.6)8?

° | |
CI_ ]

Figure 5.4: ProcessP projected onto chronoid’ with its left and right boundary.

P| P 1 P

Figure 5.5: ProcessP projected onto a right and a left (inner) time-boundatyand ¢s, respectively,
yielding presentialg; andps.

P O p: p2 O

Figure5.6: Process P with PaLpf, P) and PaRpyg-, P).

D26. PalLp(p, P) =4 3C,t(Proc(P) A Chron(C) A prt(P,C) Alb (t,C) A prt(P,t,p))

(Presential at left end of process

D27. PaRpp, P) =4 3C, t(Proc(P) A Chron(C) A prt(P,C) Arb(t,C) A prt(P,t,p))

(Presential at right end of proceps

We will now explore different possible extensions of the basic cautation, starting with
merely technical definitions (i.e. they are of rather marginal modeling usejwhll lead to the

82 An overview of the symbols used in the following diagrams can be founggerdix B (p. II1).
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notion of causal adhesion which — in our belief -the fundamental relation from a modeling

point of view.

5.2.2 Dual-Boundary Causality
5.2.2.1 Heterogeneous Causality

Combining the basic causal relation with PaRp and PaLp allows us to introductgoa of
heterogeneous causalibetween a presential and a process. The main idea being that the basic
causal relation holds between the presential and the PaRp/PaLp of tesgin question (cf.

fig. 5.7 and 5.8).

D28. caus@c;pres(p1, P) =4 Ip2(PaLp(pa, P) A caus€pi, p2))

(Heterogeneous causation between presential and prpcess

D29. caus@c;proc(P;p2) =4 Ip1(PaRp(p1, P) A caus€py,p2))

(Heterogeneous causation between process and pregential

P L | P2 P

te te

Figure5.7: Heterogeneous causation connecting preseptiadnd process.

Figure5.8: Heterogeneous causation connecting prodésmd presentiap,.

5.2.2.2 Sequential Causality

Starting with heterogeneous causation, it is not difficulséguentiallyconnect two processes
causally. We use the same mechanism as in the heterogeneous casebatiivdoth direc-
tions”, using PaLp and PaRp, respectively (cf. fig. 5.9).
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D30. Caus%eqProc(Pv Q) =df EIphpZ(Paqula P) A PaLp(P% Q)
Acaus€pi, p2)))

(Sequential process causatjon

Figure5.9: Sequential causality between procesBend( via the causal relation between PaRp (P)
and PaLp {2, Q), that exist on coinciding time-boundariesand,.

5.2.3 Multi-Boundary/Continuous Causality

The characteristic feature of the following causal relations is, that tlierealonger only two

time-boundaries involved (and thus not only two presentials) but infinitelyymEtnis is due to

the fact that a chronoid in GFO has infinitely many inner boundaries, whetha boundaries
of sub-chronoids (i.e. proper temporal parts of a chronoid).

5.2.3.1 Causal Cohesion

The main aim ofcausal cohesior besides introducing the core idea of multi-boundary con-
tinuous causality — is to cover the difference between processes tratahawnternal causal
structure, while others lack it. This difference can be modeled in terms afppmoach by stat-
ing that the following holds within the processvery pair of presentials at coinciding (inner)
time-boundaries is connected by the basic causal relgti@rfig. 5.10 and 5.11).

D31. cause,,(P) =4 3C(Proc(P) A Chron(C) A prt(P,C)A
Vi1, ta((innertb(ty, C) A innertb(tz, C') A coinc(ty, t2))
— Jp1, pa(Prt (P, t1, p1) A Prt(P, iz, p2) A causepy, p2))))

(Causally cohesive procéss

Examples for causally coherent processes are the rotation of all teeandgsprings in a me-
chanical watch, and the movement of the planets in the solar system. Theiffigild@scription,
on the other hand, refers to a process that clearly lacks causalaufiés

8 |f you are interested in a broader discussion of the so called probleraofél processes”, i.e.
whether processes that are not causally coherent should be caltsbges at all, BwE (2004)
gives an overview.
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Figure 5.10: Causal cohesion within (the full length of) proceBs (Detailed view on what happens
within P is given in fig. 5.11.)

p1E """"" | P2

te to

Figure 5.11: Causal cohesion in detail: causally connected presengialand p, at every inner pair of
coinciding boundaries; andt, within P.

“The Moon’s umbral shadow first touched down on Earth at 0886TG0936 BST), at
sunrise on the east coast of Bradtlthen raced across the Atlantic Oceaerfore making
African landfall in Ghana at 0908 GMT (1008 BST), where resit$ of the capital Accra
filled the streets to view the event.”

(BBC NEwWsSWEBSITE, 2006, emphasis added)

The “racing” of the moon’s shadow may indeed be described as a grdmgisthe shadows

we get at this process’s time-boundaries do not stand in cause—relfodns to each other as
causal cohesion would require.

5.2.3.2 Causal Adhesion

While causal cohesion addressed a single procassal adhesiois our expression for tempo-
rally overlapping processes, that are causally connected throutjti®overlap (cf. fig. 5.12):

D32. causgqn (P, Q) =45 Proc(P) A Proc(Q)A
3C(Chron(C) A prt(P,C) A prt(Q, C)A
Vi1, ta((innertb(ty, C') A innertb(ta, C') A coinc(ty, t2))
— dp1, p2(prt (P, t1,p1) A pre(Q, t2, p2) A caus€pi,p2))))

(Processes continuously and entirely connected by causal adhesion

The concept of causal adhesion may come in various special ways,comtéch are pre-
sented in the following.
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Figure 5.12: Processes” and @, continuously and entirely connected by causal adhesi@etgiled
view on what happens within is given in fig. 5.13.)

VR

PO

-0 pe

Figure 5.13: Causal adhesion in detail: Causally connected presential@and p» at every pair of
coinciding time-boundaries andts. p; andps belong to processeB andQ, respectively.

5.2.3.3 Adhesive Overlap

The probably most relevant causal relation between processes i$ dutasive overlapvhich
means that two processes overlap in time and are connected by cawssibadhroughout the
overlap (cf. fig. 5.14).

D33. cause, (P, Q) =4 3P1, Q1 (procpart Py, P) A procparf{Q1, Q) A cause,, (P, Q1))

(Causally adhesive overlap

Figure 5.14: Processed” and ) with overlapping parts?; and @, that are connected by causal adhe-
sion.
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Example: Central Elastic Collision (Billiard Balls’ Pulse Transmission) This is the place
for a more realistic model of the billard balls’ collision, whose slimmed down brdtlbere
the momentum is exchanged instantaneously) helped us in the beginning.

What would the “full” picture look like, now? The semi-natural languagecdpson (en-
riched by basic physics) is:

e Ball 1 is moving towards ball 2. Ball 2 rests on the cloth.

e The balls. Ball 1 comes to a full stop, while ball two is accelerated to it’s finlalcity.

e Ball 1 rests on the cloth (assuming a central collision with balls of equal stzeveight),
while ball 2 moves with constant velocity (no friction, here).

This, very naturally, calls for two processes that represent the moveohehe first ball
(including the deceleration) and the movement of the second ball (includiragtieleration). As
deceleration and acceleration take place over the same period of time, th@t&eges overlap.
But does the overlap fulfil the condition that is posed on adhesivelyapy@ng processes?

The condition (as given in D33) is: At every pair of coinciding boundadering the overlap,
there must be a presential at the left boundary of this pair (belonging tdir$t& process) and
there must be a presential (belonging to the “second” process) at tiddgndary. And these
presentials must be connected by the basic causal relation. And indeey pair consists of
presential billiard balls with their respective momentum, and these pairs fulfitdhditions
for causal connection: the momenta are connected by regularity (i.e. thef amservation of
momentum) and the second ball’s movement would look very different, if thiebfds would
not hit it.

Example: Periodical Stimulation (Pushing the Swing) Another example where (causally)
adhesively connected parts of processes play a role is when, daly] B&iting on a swing, and

her friend helps her to swing really high by pushing her forward whenthe first girl reaches

the lowest point of the swing’s movement. With respect to causality, we haveitacesses

again: the girl's swinging, and the movements of her friend. And at regntlenvals, those two

are connected by causal adhesion as depicted in fig. 5.15.

You may feel uneasy about this model, as obviously, the “real” caulsgiareship is not one-
way as depicted here, but goes into both directions. From pusher to,saviddrom swing to
pusher. Itis, in short, an interaction. And we shall deal with interactiotisdriollowing.
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5 A GFO Theory of Causality

Figure 5.15: Processes periodically overlapping causally cohesively.

5.2.4 Reciprocity (Quartet of Interaction)

Physics tells us that forces always come in F4jrand we certainly do find this reciprocity in
many causal relations. Again, consider the stone that is thrown at thepglass Not only
does the stone shatter the window, but the window influences the stonhis(Higslowing it
down, for example). In modeling this situation, we may want to explicitly exgreseeciprocity
without losing the difference between causes and effects (an entity miLisé both cause and
effect). How may this be modeled in our framework?

The interesting part of the whole story obviously is the time between the stodeinguthe
pane and the stone leaving the (destroyed) window. It's not difficultedls&t the connection
between stone and pane can be modeled by adhesive overlap (just likdiding balls in sect.
5.2.3.3). But how is the “reaction”, i.e. the window influencing the stone’kffligp be modeled?

Again, we use the notion of adhesive overlap: There are two praéssedow, stone), and
for every pair of coincident time-boundaries, we find

¢ a (window) presential at the right time-boundary,
e a (stone) presential at the left time-boundary, and
e arelation between those presentials, that fulfils the conditions of the bassial calation.

This makes the window a cause for the stone’s way of movement (deceateretiange of
direction, etc.). So window—stone is a case of causal overlap, too.

Additionally, we have two cases of causal cohesion: the movement of the it@ausally
related to “itself” while the window (e.g. its structure) is causally related to hbslitaves after
the ball touches it. So the final picture is that ofiateraction quartetas shown in figures 5.16
(schematic diagram) and 5.17.

8 Newton’s third law of motion: “Actioni contrariam semper & aequalem gssetionem [...]"
(NEWTON, 1686, p. 13) typically translated as: “To every action there is an equhbpaposite
reaction.”
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Pis - —-—- —0 P

[T — =30 Pa-

Figure 5.16: Interaction quartet,p; ; andp, » depict the stone before and after the collision, whilg
andp- - represent the window. The dotted arrows represent caudasidn (ball-window and window—
ball), the others causal cohesion (ball-ball, window—vang.

Figure 5.17: Interaction quartet. Causal adherence within procesfeand @), and causal adhesion
betweenP and (@ over a certain interval.

Note, that although expressing reciprocity, our model does not gitleeughfference between
cause and effect (no presential is both cause and effect) and it maititainauserecedinghe
effect.

The complexity of this model might be objected, but (following the four possilalgs from
the left to the right in figure 5.17) it already covers the causal relatidegamt to the following
statements:

e The ball's flight makes the window shatter (cf. fig. 5.18).
e The window slows the ball down and changes its flight's direction (cf. fitOp
e The initial velocity of the ball influences the final velocity of the ball (cf. 5g20).

e The structure of the glass pane determines the way the window shattdig. €f21).

5.2.4.1 Causally Coherent Transition

Sometimes, it is useful to refer to the beginning and the end of a causallyecwlpeocess, so
we introduce the relation of eausally coherent transitignvhich connects the presentials at the
first with those at the last boundary of a causally coherent pracess

D34. cause-ansition(P1,p2) =¢f P (cause,,(P) A PaLp(pi, P) A PaRp(ps2, P))

(Causal Transition between presentials at start/end of Prgcess
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5 A GFO Theory of Causality

Figure 5.18: Interaction quartet. B represents the ball's process; the window's. Solid black line:
effect of ball on window.

Figure 5.19: Interaction quartet. Solid black line depicts effect of dom on ball.

Note that the presentials at stake are not themselves connected by calibajtare simply
at the beginning or end of a causally coherent process.

Causal Propagation (Causality Extended in Time) Starting with a causally coherent transi-
tion, it's tempting to think of such a transition in which the coherent propessagatecausa-
tion such that the presentials at the processes beginning and at its ¢hdraselves connected
by regularity and counterfactual dependency.

However, we do not follow this idea, here, for when analyzed careftiiypears that causal
propagation cannot be introduced as an extension of our basic calat@n but is a rather
different relation:

e The time-boundaries of the presentials connected by causal propadatitot coincide
(as required by the basic causal relation).

e Regularity and counterfactual dependency are themselves definediranding time-

Figure 5.20: Interaction quartet. Solid black line depicts effect ofllma itself.
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L1
L
L
[1

Figure5.21: Interaction quartet. Solid black line depicts effect of domw on itself.

boundaries, so new relations would need to be introduced.

e The basic causal relation is defined on a pair of right-boundary antdeftdary presen-
tials while causal propagation requires a pair of left-boudary to rightxtbary.

5.3 Parallel Causal Relations

Even though many of the examples used in the sections above did not majgkdit ¢lkesides
when preemption was concerned, cf. sect. 2.2.4), our theory allovesfentity being causally
related to more than one other entity. This includes:

1. Several causal relations holding at the same time, sharing the “catiisg, eng. the
air pressure’s dropping that causes both the dropping of the baromatiing, and the
thunderstorm.

2. Several causal relations holding at the same time, sharing the “dfititgt dike e.g. two
billiard balls hitting a third at the same time.

3. A causal relation where — on second sight — only a part of the “centtg” actually does
cause the effect like e.g. a mixture of drugsand B that cures some disease. Eveif
is ineffective to that disease, there is a causal relation between admimgjstasmixture
and the cure.

We will now take some time to explain variants two and three (assuming that variaris
not problematic) on the basis of the billiard balls example. Here we have asalazlation
spanning from the first upcoming bal() to the one being hit#83). A second relation connects
the second ball®8,) to that very same balB3. Our first task, thus, is to discuss how effects of
different causes may “sum up”. Additionally, we think that there is a dae$ation between
balls B; and B, — taken as a single entity — and ba&l} which will be discussed next.
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5 A GFO Theory of Causality

5.3.1 Summing Up Effects

The GFO theory of causality allows for two cause entities being causally ddiatihe same

effect entity. However, we believe that the question of how exactly thHésegemay sum up (or:

interact) is not a question of conceptual analysis, but belongs to the oé&impirical science.
Some examples may be admissible, though:

¢ In the billiard balls example, balBs’s kinetic energy is acalar sumof the ones trans-
ferred from ballsB; and Bs.

e The velocities, on the other hand, are summed updnyor addition

e Some effectsnutually excludeach other: A cat is either alive or d€adSo if the effects
“lives” and “is dead” sum up, only one of them will show up, suppregsire other.

¢ In cases obverdeterminationthe combination of two causes can lead to the same result
as each of the causes alone. Think of the two students throwing papeoiallsobweb,
which is destroyed.

¢ As in the destructive interference of waves (also called: wave subtnactigo effects
might interfere in a way that none of them shows up.

5.3.2 Collated Causes

As a consequence of effects summing up in various ways, the followingsilge: there is a
causal relation between presentigland presentigl,. Butp; can be decomposed into two parts
p1.1 andpy o with only p; 1 being causally related t@,. In other words, only some part of the
cause presential “actually” influences the efféct.

Note that knowing about the inner structure does not render the initidlorelaThe one
betweenp; ; andp, is just an additional parallel relation besides the one connegtirend
po. Both fulfil the conditions on regularity and counterfactual dependeltéy only that these
conditions do not rely on the same clusters of alternative situations.

Take e.g. the causally contrastive alternatives that counterfactugbendepends on. With
respect to the first relatiom{, p2), the contrast would lie ip; not taking place. With respect
to the second relatiom( 1, p2), the contrast would be that ; does not take place. So while
the first relation needs alternatives as close as possihbe taking place, the second needs
alternatives as close as possible to only some part @fe. p;.1) taking place.

8 Leaving “Schrédinger’s cat”, i.e. the Copenhagen interpretation afiqum mechanics’ concept of
superposition, aside.
8 This issue will play a role in the following chapter on epistemics (cf. sect4.2
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Itis, thus, perfectly fine to both identify some cause via regularity andtediactual depen-
dency and to find that only some part of it is relevant to the effect. As statbe introduction:
we are not interested in identifyinge cause. We are interested in what physically makes some-
thing happen. And even if we know thai ; is the causally relevant part pf, it is still true that

p1 makesp, happen.
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6 Epistemics and Application

In this section we will discuss the epistemic consequences of our theorha.gquestion of:
in what sense can we (or a machine) find out causal relations usingeosess (extended by
measuring devices) and our cognitive apparatus. We will start by colieatirthe elements
that our theory consists of and describe whether (and to what extest) ¢éfements are within
epistemic reach.

Then we will show theepistemic adequacgf our theory by reconstructing the (apparently
successful) procedures used in the natural sciences in terms of thetli@by of causation.
This, actually, means applying our theory to the realm of experiments andatlinais.

6.1 Epistemic Status of our Theory’s Ontological Constituents

Let us quickly summarise the ontological building blocks of our theory:

e Presentials

Coincidence pairs of presentials

Universals

A presential being an instance of a universal

Clusters of (similar) coincidence pairs

Clusters of causally similar coincidence pairs

Probabilistics on clusters of coincidence pairs

Distance between alternative situations

To describe the epistemic status of our theory, we need to show which dethergs listed
above are subject to experience, to measurements or to detectionsr@dathly to what extent)
- and which may not be.

Presentials Objects and properties are examples of presentials, and many of thenreaehn
of our experiences. Although it may be debatable, in which way e.g. arc@maperty
can be operationalised.
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Examples of presentials we can measure/detect:

the kinetic energy of a bullet

the temperature of water in a container

a fibre in a cobweb being ripped

a glass pane being in good order
Status:Partially accessible.
Coincidence pairs of presentialsBesides being able to detect an object (or a property) we need

to tell the time of the measurement. Again, this might be problematic in detail, but in very
many cases, there is no doubt about the possibility of measuring time.

Status:Partially accessible.

Universals Universals might not be directly accessible, but what indeed is heedgpistemic
access to its extension (cf. the next entry)
Status:Not of relevance.

A presential being an instance of a universalWhile it may not be possible for all universals,

there are those where we can identify whether a presential is an insfiethat universal,
or not.

Examplesfor presentials where we can measure/detect whether they belong to sbme u
versal's extension:

a human being that instantiates the universal “woman”

e an animal that is an instance of the universal “hedgehog”

a colour that belongs to “redness”

e an instance of “physical object”
Status:Partially accessible.
Clusters of (similar) coincidence pairs In case we know how to identify a universal’s instance,
we can collect all presentials (we know of) that indeed are an instanbatafiniversal.

Status:Partially accessible (through universals’ instances).

Clusters of causally similar coincidence pairsThis just means clustering inside a cluster.
Status:Partially accessible (through universals’ instances).

Probabilistics on cluster of coincidence pairsOnce we have collected the causally similar co-
incidence pairs, we can calculate the ratios, our theory depends oncl@é#fy it as

“partially accessible” due to the limitations of our experience; we cannasaed the
relevant alternative situations).
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6.2 Experiments, Studies, Trials
Status:Partially accessible.

Distance between alternative situationsAs we do not have identified the criteria for closeness
in our theory, we cannot say much, here. But again there are casesicimwe are sure
about the “is closer to actuality than” relation.

Examples were given in section 2.2.1 where counterfactual analysis inadloed.

Status:Partially accessible.

It is important to see what “partially accessible” means: it implies that therénaitations
in what concrete causal relations we can find out and that there are limitatomow much we
can rely on our results, but none of these elements of causality is hiddaneameriences (and
experiments) on principle.

One patrticularly relevant practical restriction (as mentioned above wigieces$o the proba-
bilistic aspects of the causal relation) is thag cannot access all relevant alternative situations
However, we can extend the limits of, say, a single person’s experignce b

e Communicating our experiences to others and hearing or reading abiosit the

¢ Increase the accessed alternative situations by intenticcrallyingthem, i.e. by perform-
ing experiments or studies.

Especially the last point is the key to natural science being as succassfndertaking for
identifying causal relations as in fact it is. In the following section we will thase a closer
look at their methods of performing experiments or trials, and we will find tresiglare perfectly
backed up by our causal theory.

6.2 Experiments, Studies, Trials

We are strongly convinced that modern science (through its historicaelafenent and success)
pragmatically is the best way to find causal relations. So any theory chligubat claims to
be not only conceptually, b@pistemically justifiednust be able to interpret scientific practice
in this theory’s terms, i.e. the theory must be able to “reconstruct” scientigisedures, and
it must be able to explain why these procedures are indeed (valuable)twéipd causal rela-
tionships. Our claim is that the GFO theory hitherto developed is indeed abdethisgdand we
will demonstrate this by applying our theory to the techniques used in perfgrexiperiments
in general, and to clinical trials in particular.
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6.2.1 Experiments
6.2.1.1 Basic Characteristics
What are the main elements of performing an experiment? We think they are thveiriglio

Explicit Operation Procedure To perform an experiment means to create an environment and
perform actions in this environment in a (for the relevant parts) explicithcgied way.
This includes the involved objects, some of their properties, and the pextstake part.

Measurement Part of this explicit specification is about what measurements are taketn an
which way.

Repetition In most cases, the experiment will be run several times.

6.2.1.2 Reconstruction in the GFO Theory of Causality

Explicit Operation Procedure The explicitly specified procedure, i.e. the description of the
objects and processes that will be involved, allows for creating a clasisndar exper-
iments. Taken this way, the specification describes the universals whsisadas are
relevant for drawing causal conclusions. More specifically, thegatoe describes the
operation, not the outcome, so it is the universals related to the causedhgidfation
procedure mainly is about.

Measurement Here, the outcome of the experiment is captured. In order to check that the
experiment came out in a certain way, the measurements have to be inte(jket&ek-
pected effect took place”). In terms of our theory, this interpretation sieahecking
whether the result belongs to, i.e. is an instance of, a certain (effegtraal.

Repetition Performing an experiment repeatedly allows for statistical analysis of sdiseln
terms of the GFO theory, repetition means creating alternative situationsd\simoiarity
is generated by following the operation procedure) that then can bdarsegularity and
couterfactual analyses.

6.2.1.3 Summary

Given the reconstruction above, we can conclude that performingimq@s incorporates all
elements that a causal relation needs:

e To make sure that the alternative situations are clustered around ceriamuwaversals,
an operation procedure is to be followed.

¢ Effect universals then support the measurement, or more preciselinténpretation of
the raw measurement.
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e And finally, the experiment is repeated to allow for analysis of probabilistjalegity and
counterfactual dependency.

6.2.2 Clinical Trials

Even if scientists of different professions share the approach &rpgng experiments, they
have developed certain methods specific to their particular fields of oés¥afo demonstrate
that these methods fit our theory as well as the generic case discussex] aie will dwell
on the medical field and go into some more detail concerning prospectiggmased clinical
trials.

6.2.2.1 Basic Characteristics

Performed on Groups of Patients Clinical trials are not about single, individual cases, but are
performed on groups of patients.

Inclusion/Exclusion There are strict criteria on what patients are included in the study. In-
clusion may be based on sex, age, kind and severeness of a disghseary other
parameters.

Blocks, Branches of Treatment, Control Groups and Operation Praedures As the main idea
of a clinical trial is to compare different treatments (which includes compaonge treat-
ment with a controlled non-treated control group), there is an explicitfisgn of how
the treatments in the different branches are to be performed.

Randomisation The included patients are assigned to the different treatments by randomisatio
procedures.

Collecting Results A very important part of the trial’s specification is how the immediate re-
sults are interpreted. E.g. when does a patient count as cured? Howrpoentepatients
decease within a six month period after the treatment, or within a two year period?

Analysis Using statistical tools, the effect of the treatment (in comparison to other tretsme
or against a non-treatment) is calculatéd.

87 Cf. SELWYN (1996); GoBB (1997); DEAN (1999)

8 |t is important to note that our analysis does not touch the relevancesenf the statistical meth-

ods used in analyzing trials. What we give is a conceptual backgrouhdwothe trial is to be
understood ontologically.
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6.2.2.2 Clinical Trials: Reconstruction in the GFO Theory of Causality

Performed on Groups of Patients In the GFO view, both, regularity and counterfactual de-
pendency rely on groups (clusters) of alternative situations. Soywbgamany treat-
ments — each individual treatment creating an alternative situation, a treabnaech
creating a cluster of similar treatments — is necessary in order to discowsal calations

Inclusion/Exclusion In terms of our theory, inclusion and exclusion make sure that the alterna-
tive situations are indeed clusters of similar alternative situations. In a densélefine”
the universals that the clusters’ similarity relies on.

Branches of Treatment, Control Groups and Operation Procedurs Branches of treatments
(or explicit non-treatments in case of control groups) lead to groupieryhative situa-
tions within those which are similar through the inclusion criteria. In terms of ausal
theory, these branches create causally similar (or causally contradtisers that do (or
explicitly do not) contain the cause. It is these clusters, then, that arantlier evaluat-
ing the result (with respect to regularity and counterfactual depegilenc

Randomization Randomisation is a technique to equally distribute variables that are not ob-
served in the trial. In terms of the GFO theory randomisation takes additiorabttre
clusters of alternative situations being similar.

Collecting Results The interpretation of the results means deciding to which class an outcome
belongs. This ontologically corresponds to the question of whether tbk vesversal is
instantiated or not.

Analysis The statistical methods for analysis take two things into account: countingshksre
within the treatment branches, and then comparing the treatments to eachrothens
of our theory this refers to the probabilities within the clusters, and to the aisopa
between the clusters (for regularity and couterfactual dependeatyses).

Just as a prospective, randomised clinical trial is a more elaboratdédrvefavhat we have
simply called “experiment” above, we find that the reconstruction is just dla@orated. But
still the GFO theory is able to cover all the presented aspects. And as wegjilley apply to
even more of the actual performance of such a trial.

6.2.3 Reconstruction of Epistemic Difficulties

It is not just the successful natural science procedures that oorytieeable to describe, but
also its deficiencies and restrictions. Let us have a brief look at howadable steps of a trial
(as listed above) may fail, and how these restrictions can be understoodseqjuences of the
nature of causality as we have introduced it:
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Performed on Groups of Patients Sometimes, e.g. for very rare diseases, it may be difficult
to get enough patients who are willing to participate in a trial. This makes evaluation
difficult, both when determining the outcome of each treatment group (e.gutiess
rate) and when determining the differences between the treatments.

In our theory, this is a direct implication of regularity and counterfactugleddency
relying on clusters of alternative situations.

Inclusion/Exclusion If inclusion and exclusion do not follow strict criteria, a trial can easily
become void. In our view, the reason for this is that similarity then is in questioich in
turn bears the task of clustering alternative situations. Additionally, judgirterelative
distance between the clusters may well become impossible.

But there is another effect of wide and narrow criteria: the more nattevinclusion cri-
teria are, the less people take part in the trial, which (as noted abovaminde analysis
of the effect. However, if the inclusion criteria are too wide, applying ttelteto an
individual (for reasons of treatment) is difficult. In our theory, the ogais that including
a wide range of different situations potentially undermines their similarity.

Branches of Treatment, Control Groups and Operation Procedurs Just like with inclusion
and exclusion, a controlled study must make sure that the operation prededndeed
being followed. It must be clear, which individuals were treated in what wad which
were not treated. In case of a trial on caffeine, for example, the mermb#ére control
group must not drink coffee during the trial.

In terms of our theory, not following the procedure (in our example: ndtingasure
the that the control group does not drink coffee) prevents the regesisistering of the
individual treatments by similarity and prevents telling causally similar clustersfapan
causally contrastive ones.

Randomisation Randomisation is introduced to have unobserved factors uniformly distibute
among the groups. In cases where the procedure is e.g. connectegéccaffect itself
(think of a doctor who finds himself not being able to deprive severely flepts from a
promising treatment — although the randomisation would have put them into thelcon
group) this may “taint” the clustef®. We cannot graspll alternative situations, so we
must make sure they do not show a significantly different behaviour tteatatierage”
elements of that cluster.

8 Another unsatisfying way would be relying on people choosing a nunsieahidom”. Here’s how
DEAN (1999, p. 4) summarizes a study reported in Royal Statistical Society News and Notes
(January 1988)“The study [...] asked students to pick a number at random betwaed 0. The
numbers 3 and 7 were selected by about 40% of the students. This is tuicary as would be
expected if the numbers were truly selected at random.”
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Collecting Results Non-specific or vague interpretation criteria for the trials’ outcomes (e.g.
patient counts as cured) can render a trial useless.

The reason (in terms of our theory) is, that in this case, we are not ablié sagportive
from undermining clusters.

Analysis A first implication of our theory (which again conforms to scientific practicahat
regularity may indicate causality, but a researcher may well go wrong ib&les regular-
ity as implying causality. For us, it is only one of two conditions.

But there is another implication we will have a closer look at in the next section.

6.2.4 Testing Parts of a Cause as Creating Closer Alternates

There is a certain peculiarity about the result of clinical trials we will intredoy the following
example, before reconstructing/modeling it in the terms of our causal theory
In order to test whether drug does cure disead®, a trial might be set up as follows:

e Treatment group: patients are given a certain portion of some substaageairicular
manner e.g. they need to visit their doctor twice a week and swallow some pills.

e Control group: patients are not treated in any way similar to the above.

The outcome then might be that 30% of the treatment group’s patients is ahidelthere was
no cure in the control group. From this, it may be reasonably inferradhieadrug works as
expected, i.e. drugl cures diseass.

However, another trial might be set up with an additional branch, whiabstétke so called
placebo effect into account.

e Placebo group: The patients do follow the same treatment procedure astigatment

group, but their pills do not contain drud (instead they swallow a substance known to
have no effect o3).

And now it might turn out that this “treatment” has a success ratio of 40% {wisiecnore
than with the real drug). While the first trial leads us to thinking that the drdged cures the
disease, the second trial, now, persuades us to accept the oppasditedatoes not cure3; at
the same time indicating the treatment procedure being the cause for the héalihg.asked
about the efficacy oA on B, we would denyA any effect. But does this mean that the first
trial’s outcome is somehow rejected or denied? It clearly must baressignificance.

To solve what seems to be a dilemma, let us first examine what lead us to a@ncde
The difference between the first and the second trial is that the firstdmkA and a certain
treatment procedurer, say) as a single, united, cause. The result, then, was that this cause
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indeed is causally related to diseaBe The second trial, however, was not about the same
hypothesis (4 and P have effect onB”), but split off P which then lead to the result thait
without P does not cure3. The final picture, then, is the following: while the first trial tried to
test the effect ol on B it actually testedd + P on B. And re-formulated in this way, it matches
the result of the second trial + P does have an effect, as it contains the “real” callse

This situation can be described very easily using our causal theorye firghtrial, there was
one contrastive alternative situation and it proved to be supportivewsterdactual dependency
was inferred (cf. fig. 6.1).

World (ordered by closeness)supportive / undermining Counterfactual holds

World 1: No drug supportive Yes

Table 6.1: Counterfactual analysis of first trial

But in the light of the second trial’s result, we find that what the first trial $ymeferred to
“drug A” actually consisted ofi and P, so the situations becomes like depicted in table 6.2

World (ordered by closeness) | supportive / undermining Counterfactual holds

World 1: No drug, no procedure supportive Yes

Table 6.2: Counterfactual analysis of first trial, re-interpreted efthe second trial

For testing the drug without the procedure, the second trial createchstivér situations that
were closer to A and B causeC” than the one in the first trial. And that closer cluster proved
to be undermining (cf. fig. 6.3).

World (ordered by closeness) | supportive / undermining Counterfactual holds

World 2: No drug; but procedure undermining No

World 1: No drug; no procedure supportive

Table 6.3: Counterfactual analysis of clinical trial of drug trial imgding placebo

As we are not able to tesll alternative situations, it can never be ruled out that new experi-
ments/trials may reveal that only part of what we discovered as a caweevant for the effect
to take place. This, as said before (cf. sect. 5.3.2), does not imply thaltliecausal relation
no longer holds. We just discovered another (additional) causal relation
Summarizing, we can say that experiments or clinical trials can ontologicallynderstood
as ways ofcreating custom-made alternative situaticors which regularity and counterfactual
dependency can then be evaluated (probabilistically). This approaeysdto reconstructing
the way that natural sciences’ methods succeed in discovering caie#bns. Additionally,
it allows for ontologically illustrating the various ways in which experiments dimical trials
may go wrong.
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7/ How to Move On

In the preceding chapters, we have discussed what the conceptsaflibais about, how it can
be modeled with the inventory of GFO, and finally how adequate our theorithsr@spect to

epistemics. Starting from each of these steps, there are several atethe thresent work may
be extended to: concept analysis, formal ontological modeling, and redatioother fields of

research. Here are some examples:

Concept Analysis

e Our investigations were restricted to physical causality. What does “megiqaeim”
mean to other fields, like in “this made me laugh”?

e Do other kinds of causality still rely on regularity and counterfactual ddpecy?
Or do we need to discriminate between several kinds of causality?

e We explicitly refrained from the question of how to identifye cause as opposed to
stating that something & cause. Is there a way to conceptually single out the one
cause from the causes that our theory is about? At least for a giveext@nd a
certain interest of the speaker?

¢ We did not discuss possible causal relations. How would we approaciuéstion
of dispositions from our theory’s point of view?

e The notion of “distance” between clusters of alternative situations waslinteg as
a primitive relation. But we already saw that when performing experimeciens
tists do share some pragmatic idea of what rules for achieving relevamc€auld
a general theory of distance be derived from that knowledge?

Ontological Modeling
e Ourtheory is based on presentials and has been extended to covesgaoas well.
Is it possible to make it cover even more kinds of entities?

¢ If we leave the realm of physical entities, what takes the place of prelsettian?
And whatever the replacement is, what is its relation to time?

e We allowed for effects to “sum up”, or “interact”. Is there a theory thaters these
interactions? Are there families of properties, for example, that sharedapehsy
are summed up?
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7 How to Move On

e The basic causal relation relies on coincidence pairs, which are thastic of
GFO compared to other top-level ontologies. Does that mean that causaéghe
based on these other ontologies are flawed right from the start? Couddtlieesies
be adjusted to other areas (with respect to the nature of the relata for leyamp
account for that?

e For modeling counterfactual dependency, we relied on a restrictedvafipossible
worlds, i.e. possible worlds understood as alternative situations of thal acitld’s
history and future. Is this a feasible approach to possibilities as they anesded
outside the causal context? Can our alternative situations be used in dgkde
theories of necessity?

Relations to Other Fields

¢ We have seen that the GFO theory of causality supports the practice oéttiats.
How, then, does it fit in with ontologies in exactly that field, like the “Ontology of
Clinical Research”(cf. @RINI ET AL ., 2009) for example?

e When discussing the epistemic status of our theory, we did not discriminafgysha
between a constituent of causality being accessible to human senses tacahtha
stituent being detectable by a machine’s sensors. But does a machineheaadly
access to all the relevant entities? How would universals need to bestwatin
this case? As a list of detectable parameters?

o If “detecting causality” (following our theory, that is) is open to machines)ld
our theory of causality contribute to “the automation of science”, aseKET AL.
(2009) call the aim of their project of a “Robot Scientist” that is said to idgntif
“genes encoding orphan enzymes™?

Or, the other way round, starting from observing causal relationdd @aur theory
play a role in machines’ “Distilling Free-Form Natural Laws from Experimknta
Data” as presented incsMIDT and LIPSON(2009)?

We started our investigations by intentionally ignoringd8ELL s advice to remove causality
from the scientific vocabulary because of its “misleading associationsS$RLL, 1910, p. 180).
Instead, we have succeeded in giving it a clearly defined meaningsafdethe physical world.
Our conclusion therefore is as different t §SELL S as it can be. We do not only explicitly
include causal relations into our own ontology, but we also believe thataether fields would
benefit from introducing causality to their ontological models as well.
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A Proofs on Conditional Probabiliy

Proposition 1.

P(A|B) > P(A) — P(A|B) < P(A) (Propl)
Proof.
P(A) = P(A|B)P(B)+ P(A|B)P(B) [Law of total probability (A.1)
P(A) = P(A)P(B)+ P(A)P(B) [P(B) + P(B) = 1] (A.2)
0 = [P(A|B) - P(A)|P(B) + [P(A|B) — P(A)P(B) [Al=A2Z (A3)

Examining (A.3), we know thaP(B) and P(B) are nonnegative. And, given the antecedent
of (Propl), the same holds foP(A|B) — P(A)]. So[P(A|B) — P(A)] of (A.3) must be
negative, which is the consequent of (Prop1l). O

Starting from (Prop1) the following holds as well:

Corollary 1.
P(A|B) > P(A) — P(A|B)> P(A|B) (Corl)
Proof.
P(A|B) > P(A) [Antecedent of (Corl) (A.4)
P(A) > P(A|B) [A.4 and (Prop1) (A.5)
P(A|B) > P(A|B) [A.4, A5 (A.6)
O

Interchanging antecedent and consequent, however, leads to adictidn, so the expres-
sionsP(A|B) > P(A) andP(A|B) > P(A|B) are not equivalent:

Corollary 2.
- [P(A|B) > P(A|B) — P(A|B) > P(A)] (Cor2)



A Proofs on Conditional Probabiliy

Proof.

P(A|B) > P(A|B) — P(A|B) > P(A) [Negating (Cor2)] (A7)

P(A|B) > P(A) [A.7] (A.8)
P(A|B) > P(A|B) [A.8, (Corl)] (A.9)
Contradiction! [A.7,A.9] (A.10)
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B Keys for Ontological Diagrams

-

Chronoid with its two extremal boundaries

o

Chronoid’s external boundaries explicitly marked
left and right boundary.

s

Chronoid with inner time-boundaries explicit
marked as right and left boundary
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yCoinciding right and left time-boundary
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Presential at a left time-boundary

]

L 4 p ]

Process Process with presentials at inner time-bounda
(projected on process boundaries)
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