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Epitome

In this thesis, a formal ontological theory of causality is developed that is conceptually based

on the intuitions of regularity and counterfactual dependency (coveringmanipulability in the

process as well). Both relations are introduced as extensions of the General Formal Ontology

(GFO), and they are defined on coincidence pairs of presentials and include a probabilistic as-

pect. While regularity covers statistical dependency on universals’ instances, counterfactual

dependency is about supportive/undermining causally contrastive clusters of coincidence pairs,

taking their relative distance to actuality as a reference cluster into account.Based on GFO’s

relations between presentials and processes, the basic causal relation isextended to cover differ-

ent kinds of causal relations between processes. The quartet of interaction being a nice example

for this extension’s modeling capability. With respect to epistemics, the theory isable to explain

our general ability to empirically discover causal relationships and in which ways it is limited.

A reconstruction of methods used in performing experiments in general, andin clinical trials in

particular, shows the epistemic adequacy of the theory developed.
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1 Introduction

1.1 Limiting the scope

It is not a new insight that terms like “causes” or “causal relation” are ambiguous. In fact, there

are so many meanings and connotations (depending on context and the speakers’ intentions) that

the discussion of causality even brought about the request to get rid of“causes” in general:

“[T]he word ’cause’ is so inextricably bound up with misleading associations as to make its

complete extrusion from the philosophical vocabulary desirable [. . . ].”

(RUSSELL, 1910, p. 180)

Nevertheless, causal knowledge plays a vital role in various fields, so we will (pace RUSSELL)

follow this general strategy: we limit the scope by making explicit what fields (and, thus, what

interpretations) are outside the focus of this thesis. Additionally, we will try to illustrate our idea

of causality as well as we can. So even if you disagree that what we take as causality “really

is” causality, we hope that you can still benefit from our considerations,interpreting them as

“causality in the sense of this thesis”, whatever technical term you may use for it.

Causality as “Physically Making Happen”

Let us plunge directly intomedias reswith some statements that refer to causal relations:

(S 1) A thunderstorm will occur because the air pressure is dropping rapidly.

(S 2) Mary caught a cold because she visited her friend Sue, who already suffered from that

disease.

(S 3) The window pane broke into pieces because Mary’s ball hit it.

Up to here, there is no problem. Each of the sentences (S 1) to (S 3) refers to a cause and its

effect. But then there are statements that look pretty much the same:

(S 4) Joe is a bachelor because he is an unmarried young man.

(S 5) 5 is prime as it is a natural number which has exactly two distinct natural number divisors:

1 and itself.

1



1 Introduction

In our view, however, these sentences do not refer to causal connections. So we shall take

some time to explain why, in order to make you familiar with how we will understand and use

terms like “cause”, “causal relation”, and so forth, in the course of this thesis.

The shortest description of what we think that “causes” – as in “A causes B” – means, is:

“makes happen” or “ physically brings about”. In sentence (S 1) e.g. , it is the drop in air pressure

that physically brings about the thunderstorm. But with sentence (S 4) things are different. It

would be strange to claim that being an unmarried young man “physically brings about” being

a bachelor. The same holds for (S 5): being divisible by only 1 and itself does not “physically

bring about” being a prime number. The connection that the latter sentences refer to is more of

a conceptual or logical inference/consequence than a causal relation: It is part of the meaning

of “bachelor” to be “unmarried”. And being divisible by only 1 and itself is the definition of

“being prime”. But why are we tricked by the surface structure? Isn’t there anything that all

these sentences have in common?

Indeed, there is. They all refer toexplanations. They give reasons in order to answer the

question about why something is the case. But – and this is what needs to be stressed – they

differ by the kind of reason they give. The first three do givecausal explanations, while the

latter giveconceptualor logical explanations.

Causality as Physical Causality

The expression of “physically bringing about” already shows that we willrestrict our analysis to

physical causality, i.e. to causal relations between physical objects and whatever is connected to

them (like qualities or processes they take part in). The ontology of e.g. themind, however, and

of the mind’s relations to the physical world (like psycho-physical interactions, or the so-called

“Mind-Body” problem) is a huge field of its own that we cannot try to cover here, so you will

not find a proposal for modeling statements such as “My anger made me crush that glass” or

similar ones.

For the same reason, we do not cover relations from the social realm (or“stratum”, as it is

e.g. called by HERRE ET AL. (2007, chapt. 4)1). We do not deal with judgments like e.g. “The

industrial revolution led to the early socialist movement.”

Nevertheless, we are convinced that if any causal notion is to be used in these or other fields, it

will share the main conceptual features ofregularityandcounterfactual dependencythat we will

develop in the course of our investigations. But everything more concrete(in terms of building

an ontological theory), like the question of the ontological nature of the causal relata, and the

connections to time, may well look very different there than it does with physical causality.

1 HERRE ET AL. (2007) follow POLI (2001), here, who, in turn, rests his framework on HARTMANN

(1964).
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1.2 Computer Science and Philosophy Overlapping

No Causal Pluralism in Physical Causality

One strategy in order to tackle the numerous accounts of causality is the approach ofcausal

pluralism, which defends the idea that there are several different notions of cause.2 We do not

follow this approach, here: as far as the realm of physics is concerned, we believe that there is

only one kind of relation that may be called causal.

“A” Cause, not “the” Cause

As the last clarification on what kind of causality we are discussing, let us make clear that we do

not identify “a cause” with being “the cause”:

The careless tossing of a lit cigarette, the recent drought,the presence of oxygen in the

atmosphere; these all count among the causes of the forest fire. [. . . ] Which cause we

single out will depend upon context and the interests of the speakers [. . . ].

(HITCHCOCK, 2003, p. 5)

So when something is identified as a cause by our theory, this does not mean that there are no

other causes as well.

1.2 Computer Science and Philosophy Overlapping

When looking at the table of contents, you will find that sections with philosophical content play

a relevant role in this thesis. The following section will explain why, and it will do so from the

perspective of both, philosophiers and computer scientists.

1.2.1 Why is Causality an AI Problem?

(An Introduction for Philosophers)

In the early days of computer usage, the term “electronic data processing” was coined. And even

if it seems outdated by now, it proves handy for illustrating why certain computer scientists care

about the nature of causality.

1.2.1.1 Machines Follow Rules

“Electronic processing” means that an electronicmachineis used to process the data, which has

an important implication: being a physical entity, a machine first of all follows thelaws of nature.

Additionally we as the machine’s creators can add extrarulesof how the machine should behave,

e.g. what it should do under certain conditions. Indeed, we must say thata machine cannot do

2 For overview and defense of causal pluralism cf. HITCHCOCK (2003); GODFREY-SMITH (2006)

3
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anything else but to follow (more or less complex) rules. In computers, most ofthese rules are

typically given by software. And even if one might be tempted to think that by adding e.g. a

randomization device the rule based character could be transcended, allit does imply is that we

may probably not be able to foretell its behaviour. Yet we do know that once it gets the data

from the randomization device, it processes that data according to the rules given.

1.2.1.2 Computers Manipulate Symbols

Regarding computers, what is the “data” that is being processed, and what does “processing”

mean with respect to this data? In modern PCs, of course, it is the bits, physically stored on

disks and memory chips, that the machine works on, which means that the processor takes

them, performs some (mathematical) operations on them, and returns bits as output which then

are stored again or e.g. presented on a display. Computers, thus, belongto what two of the

godfathers of artificial intelligence, Allen NEWELL and Herbert A. SIMON, called a “physical

symbol system”(NEWELL and SIMON, 1976) which comprises the following elements:

[. . . ] a set of entities, called symbols, which are physical patterns that can occur as compo-

nents of another type of entity called an expression (or symbol structure). Thus, a symbol

structure is composed of a number of instances (or tokens) ofsymbols related in some

physical way (such as one token being next to another). [. . . ]Besides these structures, the

system also contains a collection of processes that operateon expressions to produce other

expressions: processes of creation, modification, reproduction and destruction.

(NEWELL and SIMON, 1976, p. 116)

In short what the computer works on (the “data” in “data processing”) are physical symbols, i.e.

patterns built of physical bits.

1.2.1.3 Knowledge Representation

The consequence of computers following rules, and being symbol systems, is that whenever we

want to make use of computers, we must find a way to “translate” the problem into (or: “encode”

by) symbols and rules on how to handle these symbols. An example might be of help, here.

Let us say we want a computer to sort a list of professions alphabetically (cf. fig. 1.1). In order

to do so, we may encode the strings (as sequences of characters) into sequences of bits. Then we

have the computer sort the bit sequences following certain rules, e.g. comparing the sequences

bit by bit firstly grouping “0...” and “1...” sequences, then grouping withinthose groups to get

“00...”, “01...”, “10...”, “11...” sequences, and so on. And once we have got the binary sequences

sorted, we translate them back into characters and strings.

This procedure exemplifies the steps necessary for all computer problemsolving:

• Translate the problem into symbols the computer can work with.

4



1.2 Computer Science and Philosophy Overlapping

String Binary Code Sorted Binary Sorted String

Chauffeur 01000011[. . . ] 01000010[. . . ] Barber

Miller 01001101[. . . ] 01000011[. . . ] Chauffeur

Teacher 01010100[. . . ] 01001101[. . . ] Miller

Vet 01010110[. . . ] 01010100[. . . ] Teacher

Barber 01000010[. . . ] 01010110[. . . ] Vet

Table 1.1: Sorting a list of professions alphabetically

• Define rules on how to manipulate the symbols.

• Interpret the symbols that are created during the manipulation.

This string sorting task is trivial for a computer, of course, as the binary representation we used

here already encodes the alphabetic order of characters, i.e. it assigns smaller binary “numbers”

to characters that occur earlier in the alphabet. However, is it easy in yetanother sense: the

information that is needed to perform the task (the alphabetic order) is already present in the

characters themselves. You don’t have to knowwhat a barber is in order to sort the list. If

someone gave you words written in an alphabet you do not know, but gave you the rules for

sorting them as well, you could work out a perfectly sorted list without understanding any of the

words. And this, in fact, is what the computer does.

But for very many other tasks, it is exactly the knowledge you have on e.g.barbers that must

be used: say, we want the professions not to be sorted alphabetically but grouped by whether

they require an academic degree (cf. fig. 1.2). There is no way to solve this problem by using

strings of characters (likeBarber) alone. In order to enable a computer to solve this problem,

we must find a way to encode ourknowledgeabout professions in a computer-readable way.

Further, we must encode the rules of how to process this knowledge e.g. todraw the inferences

necessary for this specific task.

Professions Grouped Professions

Chauffeur Chauffeur

Miller Miller

Teacher Barber

Vet Teacher

Barber Vet

Table 1.2: Professions grouped by whether they require attending university

And this is the reason why computer scientists are faced with the philosophicalproblem of

the nature of causality: they need to model causal relations and causal knowledge in a way that

5



1 Introduction

can be processed in computers. This requires a discussion of what causality is. It is the question

of conceptual adequacyof models that computers may work with.

Formal ontology (which we shall hear more about in sect. 3.2), is one way of modeling (en-

coding) knowledge in a formal language computers can process. And it isthe way that we will

deal with in this thesis.

1.2.2 Why is Philosophy Relevant for the Problem of Causality?

(An Introduction for Computer Scientists)

Now that we know that knowledge modeling is necessary to make certain problems accessible

for computers, the computer scientist’s question probably is: what has philosophy got to do with

it?

To answer that question, we must note that there are two kinds of knowledgeconcerning

causality: first, there is knowledge about what entities are causally connected to each other, a

question that clearly belongs to the subject area of a domain expert ratherthan a philosopher.

The other, however, is:what isa causal relation? What does it mean when we state that “A

causesB”? What conceptual inferences can be drawn from a statement containing a certain

concept? How does a causal relation differ from other kinds of relations? In other words, it is

concept analysisthat is asked for. And concept analysis exactly is what many contemporary

philosophers (often referred to as “analyticphilosophers”) would regard as their main scientific

interest: What makes a judgment containing a certain concept true? Is causality reducible to

other, more fundamental relations or concepts? How is causality connectedto other concepts,

e.g. the concept of responsibility or guilt?3

And indeed, there is more complexity to the concept of causality than may be obvious. Here

is an example of how a commercial4, large-scale knowledge base combined with a reasoning

engine does approach causality in a way that may easily come to mind when tryingto model

causality.

Many causal statements have the form “A, thereforeB”. Here are some examples:

(S 6) The temperature dropped below 0◦C, therefore the puddle is frozen.

(S 7) There is water in the fuel, therefore the engine misfires.5

3 For the latter cf. e.g. LEHMANN (2003), which is an excellent example for how the question of

conceptual adequacy of modeling causality is relevant in even more fields besides philosophy and

computer science. In this case, it is the realm of law.

For a discussion of the concept of causality as it is relevant to the field of medicine, cf. GROSSand

LÖFFLER(1998).
4 It should be mentioned that the “Cyc” project described here has a free-of-costs sibling called

“OpenCyc”:http://www.opencyc.org/
5 For this example and the following critique on Cyc, cf. COPELAND (1997).
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1.3 Structure in Content

Being somewhat familiar with logics, this may sound like the material implication ofA → B.

And indeed, this way of representing causality has been used in a (multi-million dollar) system

called “Cyc” (cf. GUHA and LENAT, 1990; GUHA, 1990).

But then, this approach runs into serious problems concerning conceptual adequacy, as a

material implication is true if the antecedent is false (a feature called “ex falso quodlibet” or the

“principle of explosion”). In the Cyc model, the following sentences would be true, as well:

(S 8) 4 is prime, therefore the puddle is frozen.

(S 9) 4 is prime, therefore the engine misfires.

But clearly, neither a puddle’s freezing nor an engine’s misfiring is causally connected to a

number being prime or not. Thus, the Cyc concept of causality contains a grave flaw with regard

to conceptual adequacy.6

1.2.3 The Common Ground

The last two sections should have made it clear that conceptual adequacyis the point where

computer science and philosophy meet when the question of causality is concerned – it is simply

about how to model a concept correctly (for computational reasons), which involves (philosphi-

cally) analyzing what that concept means.

Computer science has the advantage that the normative aspect of concept analysis (i.e. ex-

amining what causality “really” is) can be put aside more easily by focusing on the descriptive

facet. Computer scientists can concentrate on checking whether certain (given) causal knowl-

edge (statements, conclusions, facts) can be modeled (mostly) without discussing whether the

applied causal concepts are used correctly.

But even then, the formalisms, axioms, or even full logics developed, needto be checked

with respect to their conceptual presuppositions and commitments. The philosophical part being

inseparably entangled with computer science’s task.

1.3 Structure in Content

The structure of this thesis is straightforward: While the present section gave an introduction on

both, the philosophical and the computer science view taken on causality, chapter 2 introduces

the central theories of the philosophical (conceptual) analysis. We will discuss these approaches

in more detail before moving on to our own conceptual theory of the causalrelation.

6 We will present other difficulties of the Cyc approach later, when discussing several computer

science theories/models of causality (cf. sect. 3.2.2).
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1 Introduction

Equipped with the necessary terms and concepts to evaluate models of causality(w.r.t. con-

ceptual adequacy), chapter 3 is the place to present and criticize some ofthe ways in which

computer science has dealt with causality so far.

We will then introduce our theory of causality, which is done in two steps: chapter 4 describes

the top level ontology called General Formal Ontology (GFO), as introduced in HELLER and

HERRE (2003, 2004b)7, which will be used as the basis for ontologically modeling all non-

causality-related parts.

Chapter 5, finally presents the new approach, starting with the question of the ontological

nature of the causal relata. In a next step, a formalisation of both regularity and counterfactual

dependency is presented to cover what will be called the basic causal relation. This basic theory

is then extended to cover causal relations between processes.

The concluding chapter 6 then is dedicated to the epistemic implications of our theory and its

application to natural science performing experiments with clinical trials as a special case.

7 The most recent version being HERRE ET AL. (2007)
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2 Philosophical Theories of Causality

The history of philosophy has seen a wide range of different theories on causality (cf. SCHAF-

FER, 2003). Most of them can be aligned into three main branches based on central intuitions

that our common sense concept of causality is committed to:

• Regularity

• Counterfactual dependency

• Manipulability

This chapter will provide an overview of these intuitions, showing that in certain cases we have

certain commitments/ideas about what itmeansthat something is a cause of a certain effect. Ad-

ditionally, regularity and counterfactual dependency are analyzed in order to create a coherent

GFO based theory of causality. This will include explaining why abovementioned manipulabil-

ity is not part of this list.

2.1 Regularity

Imagine the following situation (“Security Alarm”): You are leaving a shopping centre and just

when you pass the door, an alarm is set off. A member of the security service approaches you

and discretely asks you to pass the security gate again when the ringing hasstopped. Since you

know that you haven’t bought (or stolen) anything, you follow his orders, and this time, there is

no alarm. The guard apologises and you leave the store without any further inconvenience.

Why did the security officer let you go? The answer is simple, of course: If you had stolen

something, the alarm should have started again. When it did not start, the officer concluded that

you were not causing the alarm. His decision was based on a simple intuition on causality: If

something causes something else, this connection should be reproducible. If there really is a

causal relation, a reconstruction of the assumed cause (you, passing the door) should yield the

same effect (alarm is set off). If it does not, we do not have a cause–effect–relation. We call this

the intuition ofregularity.

Within the development of philosophical theories on causality, regularity plays a very im-

portant role. The first “modern” approach on this topic, written by DAVID HUME, is based on

exactly this intuition:

9



2 Philosophical Theories of Causality

[. . . ] we may define a cause to bean object, followed by another, and where all the objects

similar to the first are followed by objects similar to the second.8

(HUME, 1748, p. his emphasis)

This approach is very useful as it explains several peculiarities of causality (many of which

are already covered in HUME’ S 1748 “Enquiry”): first, we cannotperceivecausality. Even in

very obvious case of two billiard balls colliding, all we can actually see is the movement of balls,

their changing direction and speed. We can hear the clicking sound when they touch. And we

may probably feel the vibration they produce when moving on the cloth. But there is no human

sense that covers causality. It is only by comparing our observations to similar other cases that

we are able toconcludea causal relation.

Secondly, regularity makes the scientific concept offalsificationmake sense: Imagine a group

of scientists claiming to have made a certain discovery, say, that oxygen produces a loud sound

of 440Hz if it is cooled down to exactly -244◦C. They call it the “cryophon” effect and publish

their results in a scientific journal. Rival researchers will now try to reproduce this effect, and

if they cool oxygen down to -244◦C without detecting the sound, the cryophon theory (which

is a theory about a certain causal relation) must be rejected. Rejection by falsification is based

on the same inferences as in the initial example of the security guard’s decision to let you go. If

there really is a causal connection, it must be reproducible.

The cryophon example shows another interesting feature of the regularitycondition: It pre-

supposes that causality is about “kinds” or “families” or “groups” ofsimilar situations. If the

causal claim was restricted to the single occurrence in the first researchgroup’s laboratory, no

reconstruction could falsify the cryophon theory. Thus, a causal claimis about something more

general than just a unique occurrence.

Following these examples, it is tempting toidentify or equate causality with regularity. But

here the problems begin, as several counterexamples have been developed that try to show that

there are cases in which there is regularity without causality, or in which there is causality

8 Please note that the term “object” may be misleading, here. Being the empiricist that he was, HUME

makes this claim focussing onexperiencesnot objects. Three sentences later he gives another

definition: “[. . . ] an object followed by another, andwhose appearance always conveys the thought

of that other.” [his emphasis]. His idea of causality is based on a relation betweenthoughtsthat are

aroused by experience (and through anticipation).
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2.1 Regularity

without regularity.9

We begin with a well known example which we shall refer to asBarometer–Storm: Imagine

a causal connection between a rapid drop of air pressure and the arrival of a storm with the air

pressure drop having a second effect: The barometer reading falls. And now – so the coun-

terexample goes – let us apply the regularity condition to the barometer readingand the storm’s

arrival, isn’t there regularity between the barometer reading and the storm? Indeed there is.

Everytime the reading falls (i.e. the air pressure falls), a storm arrives. Equating regularity with

causality would force us to call this relation causal. But we know this is wrong. The barometer

does not cause the storm. Thus, we have regularity between barometer and storm without them

being connected as cause and effect.

This counterexample belongs to a whole family of examples built upon what may be called

“subsequent effects of a common cause”. In Barometer–Storm, the air pressure causes both the

reading’s falling and the storm’s arrival. Other members of this family of arguments may e.g.

be construed on subsequent symptoms of a single desease: A common cold often starts with

sneezing, and is later accompanied by a mild fever. Again, regularity holds between sneezing

and the fever, but it would be wrong to conclude that the sneezing causes the fever. In the light

of these counterexamples we must accept that regularity is not sufficientfor causality, i.e. it does

not logically imply causality.

This is not the only restriction: Some counterexamples claim to show that there iseven causal-

ity without regularity, which might directly render the inferences made by the guard in our Secu-

rity Alarm example (and by cryophon’s second research group’s falsification attempts) invalid.

If causality does not always entail regularity, the alarm not being set off (when you are stepping

through the gate again) does not exclude you from being its cause any more.

Let us take a look at one of these examples, which again refers to a common cold. Following

basic medical knowledge (cf. NHS CHOICES, 2009), it is viruses that cause a cold, and these

viruses are spread by a certain mechanism (airborn droplets, coughing/ sneezing, hand contact)

which might make you catch a cold by e.g. visiting a contagious patient. But - andhere is the

crucial point - you do not always catch a cold when visiting a contagious patient, even when

viruses are spread. In short, catching a cold involveschance. A cold canbe caused by visiting a

patient, but visiting not always causes a cold. In this case, causality doesnot imply regularity.

9 Even if the following sections are dedicated to the difference between regularity and causality, this

doesnot mean that regularity is somehow unimportant or that knowledge on regularity is second-

rate. Knowing about regularities has a value of its own as it e.g. allows youto predict parts of

the future so you can take precaution or otherwise adapt your actions to the expected events. If an

animal shows a certain behaviour prior to heavy rain, you can make useof that knowledge without

believing that the animal “makes” (i.e. causes) the rain.
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2 Philosophical Theories of Causality

2.1.1 Probabilistic Causality

Later, we will explain how regularity theory can easily be adjusted to cover cases of chancy

causation as well. But let us dwell on the subject of probabilistic causation for a moment,

as it is tempting for many people to assume that every causal connection is determinate “in

the end”, and that probabilistic aspects are just results of limited knowledge about the relevant

mechanisms. Nevertheless, we believe that genuine probabilistic causation isa sensible and

consistent concept that a theory of causality should be able to deal with and will present three

lines of argument to justify this assumption based on the consistency of the concept of magic,

on real word epistemical restrictions and finally on indeterminacy in modern physics.

It is very common to conceptually connect causality with non-probabilistic physical laws like

the Newtonian laws of motion. This may well be the reason why we tend to think thatonce

we understand the world in an ideal way, we will recognise that everythingis following strict

determinate mechanisms.10 On the other hand, there is the concept ofmagic, e.g. in literature

and other fields of fiction. Magic (if not understood as in “legerdemain” or“magic trick”)

means bringing about something in a way that opposed to common scientific laws.And despite

the fact that magic appears to be restricted to the realm of fiction, this example shows that we

can conceptually distinguish between causation as such and causation by physical laws. And

once we distinguish between causality and physics, there seems to be nothingproblematic about

probabilistic causation:

So finally, Merlin felt impelled to cast this most dangerous spell, which might save his

fellows’ lives. Although he well knew that indeed there was areason why it was never

written down in any of the known and of the many more forgottenlanguages of this world

but only passed on from master to apprentice as its outcome could not be foreseen and in

only one out of a thousand casts did not lead to plain disaster.

(author’s invention)

In less elegiac words, the sentence “Morgana cast a spell that with a chance of 30% would

transform her victim into a mouse at midnight.” is not “falsified” by there beingcases of cast

spells that did not succeed in any transformation. It is indeterminate. Butif there was a trans-

formation at midnight, there is no reason not to regard Morgana’s as spellthe cause of this

10 In the words of 19th century mathematician and astronomer JEAN-PIERRE DE LAPLACE: “An

intelligence knowing all the forces acting in nature at a given instant, as wellas the momentary

positions of all things in the universe, would be able to comprehend in one single formula the

motions of the largest bodies as well as the lightest atoms in the world, provided that its intellect

were sufficiently powerful to subject all data to analysis; to it nothing wouldbe uncertain, the future

as well as the past would be present to its eyes.” (DE LAPLACE, 1814, as translated in HOEFER,

2005).
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2.1 Regularity

transformation. As we have seen, the concept of (pure) causality – as opposed to identifying

causality with mechanisms of physics – does no longer rule out probabilistic notions.

The second argument comes from scientific research11: We know that smoking causes lung

cancer, but obviously not all smokers develop a cancer. Further, weknow of no definite set of

circumstances where smoking is invariably followed by lung cancer. “Rather, what we observe is

that smokers develop lung cancer at much higher rates than non-smokers; this is the prima facie

evidence that leads us to think that smoking causes lung cancer.” (HITCHCOCK, 2002). Thus,

the concept of probabilistic causation is pragmatically unavoidable e.g. in clinical contexts.

The third indication for the legitimacy of causal relations with a probabilistic aspect is that

modern physics theories, following the so called “standard (or Copenhagen) interpretation” of

quantum mechanics, make use of probability as a basic concept (cf. SCHLEGEL, 1970). This

led to heavy discussions within physics12 and was plainly rejected e.g. by Albert EINSTEIN13,

which led to rival approaches like the BOHMIAN interpretation of quantum mechanics (which

is a specimen of so-called “hidden variables” theories), which tries to evade indeterminism (cf.

PINCH, 1979). Today, the “standard interpretation” is widely accepted, and since we certainly

cannot judge on any of these approaches, we should not rule out probabilistic causal relationsa

priori . Instead, we accept that the world might be indeterministic in the following sense: “[. . . ]

there are actual events that might have failed to occur without violation of any actual laws.”

(RAMACHANDRAN , 2004).

2.1.2 Probabilistic Regularity

We were led to chancy causation because we started with identifying regularity and causality,

which implies two claims: whenever there is causality, there is regularity, and whenever there

is regularity, there is causality. The first one was refuted by examples of chancy causation, the

second by examples like Barometer–Storm.

In this section, we will show how a refined version of regularity could dealwith the counterex-

amples of the first kind, so as to keep regularity as a necessary condition of causality: whenever

there is causality, there is indeed (a certain, probabilistic, kind of) regularity.

Our solution for the problematic second claim is rather different.We accept Barometer–Storm

as a counterexample to the identification of causality and regularity. In our view, causality does

11 Argument taken from HITCHCOCK (2002).

12 Cf. COMBOURIEU (1992) for a very emotional interview with KARL R. POPPERon the debates in

quantum physics, which includes POPPER’ S statement that he “gave up Physics because of Bohr”

who was one of the central figures of the Copenhagen interpretation, because “ [Bohr] annihilated

me [Popper] with a torrent of words!”
13 As expressed in his famous quote “I, at any rate, am convinced that He[God] does not throw dice.”

(cf. CLARK , 1972).
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2 Philosophical Theories of Causality

not only depend on regularity, but also on an additional condition that will be calledcounterfac-

tual dependency(cf. sect. 2.2).

What, then, should a condition look like that, the one hand, supports our intuition and reason-

ing regarding the regularity aspect of causality and, on the other hand, allows for probabilistic

relations as well? As we see it, the solution lies in understanding common sense (i.e. strict)

regularity as an extreme case of probabilistic causality in which a certain cause is followed by a

certain effectwith a probability of one-hundred percent. This certainly fits the Security Alarm

example and the preconditions of falsification if – like in the cryophon example –the claim at

stake does not include any chances. But in order to cover connectionslike catching a cold when

visiting a patient, or developing lung cancer after smoking, we need to reformulate the regularity

condition in the following way:Regularity betweenA andB means that the occurrence ofA

heightens the chance ofB happening.1415

This is trivially true in cases whereA is alwaysfollowed byB. But it holds for more rela-

tions, as e.g. for the relation between visiting a contagious patient and catching a cold. Without

visiting the patient, you have a certain general chance to catch a cold. But when visiting, this

chance is definitely heightened. This relation fulfils the new regularity condition and is, thus, no

longer (erroneously) excluded from being a genuine cause–effectrelation.16

Let us now come back to the kind of counterexamples that did not rely on chancy causation

(causality without strict regularity) but on cases of regularity without causality, as in Barometer–

Storm.

2.2 Counterfactual Dependency

There are several possibilities for why a certainA17 is regularly followed by a certainB even

if A andB are not related as cause and effect. In Barometer–Storm,A andB are consecutive

14 As e.g. MACKIE puts it: “We could say that A tends to produce P not only where A conjoined

with some set of other factors is always followed by P, but also where there is an indeterministic,

statistical, law to the effect that most, or some, instances of A, or some definite percentage of such

instances, are followed by P, or perhaps where an A has a certain objective chance of being followed

by a P.” (MACKIE, 1980, p. 76).
15 In the following we will use the term “regularity” in this probabilistic way. The “old” interpretation

will be circumscribed as “strict regularity”, “100%-regularity” or the like.
16

Some philosphers try to show that even this revised regularity theory fails,as there are – so they

claim – causal relations where the cause does not heighten the probability of its effect, but in fact

lowers it. We will briefly discuss those arguments after introducing our formalization of regularity

(cf. sect. 5.1.2.5).
17 The question on the nature of the causal relata, i.e. “What kind of entities are connected by causal-

ity?” will be addressed in sect. 5.1.1.

14



2.2 Counterfactual Dependency

effects of the same cause, and the same holds (as we have seen) for certain successive symptoms

of a single disease. Additionally,A andB might not be effects of literally one and the same

cause, but only share some cause within the line of causes and effects that eventually lead toA

andB. Think for example of two clocks that were synchronised in the factory they were built in.

So they show the same time with strict regularity but obviously without being directly causally

related. It is not the first clock that makes the second show a certain time. Itis the mechanics

that makes it show the time. But the mechanics was synchronized by the same mechanism,

i.e. the synchronicity is somehow based on a common cause. We may extend this example to

clocks from different factories or to clocks that use very different mechanisms to “calculate” the

actual time, the alleged common cause becoming increasingly fuzzy while the clocks are still

synchronised, i.e. while regularity holds. Moreover, we can easily think of events that happen in

the same intervals without havinganycausal connection, e.g. (“Cyclist’s Watch”) the position

of the valve of a quite slowly moving bicycle’s tyre and the position of the sweephand of the

cyclist’s watch. If the cyclist is not in any way made to cycle at this specific slow speed, the

regularity between the positions of hand and valve can be completelyaccidental.

A well founded theory of causality has to be able to discriminate between mere regularities

and regularities that are results of a cause–effect relation.18 In our approach, regularity is one of

two conditions for causality, i.e. we add the condition of counterfactual dependency to rule out

cases of regularity without causality. The following sections will extensively deal with it.

Let us again start with Barometer–Storm. We know that there is no cause–effect relation

between the barometer reading and the storm, despite them being connected by regularity. But

what makes the difference? Most notably the following: the storm could nothave been prevented

by fixating the barometer’s needle.

And this line of thinking is very common to rule out alleged causes. Say, you notice that the

glasses in your kitchen start to clink every time your neighbour listens to loud techno music.

You talk to your neighbour and he agrees to stop the noise. But while it instantly becomes very

quiet in your kitchen, the glasses still clink. This convinces you that the clinking would have

taken place even if the music had not been playing. You therefore infer that whatever the reason

for the vibration was, it surely wasn’t the music.19 The general “rule” behind these inferences is

the following: if the “effect” would have taken place even if the (alleged) “cause” had not taken

place then there is no cause–effect relationship.

18 Or in terms of sequences: “[. . . ] what is our concept of causal as opposed to non-causal sequences

[. . . ]”(cf. M ACKIE, 1980, p. 29).
19 It might be, e.g. , that your neighbour uses to turn on the music in orderto drown out his washing

machine’s noise. If this is the case (note once again how naturally the counterfactual analysis fits

our intuitions on causes and effects), stopping the washing machine should stop the clinking.
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2 Philosophical Theories of Causality

Interestingly, HUME had the very same insight, too, as his famous claim, with which we

started our reflections on regularity, in fact gives two definitions:

[. . . ] where all the objects similar to the first are followed by objects similar to the second.

Or, in other wordswhere, if the first object had not been, the second never had existed.

(HUME, 1748, p. his emphasis)

He obviously did not regard this second definition as being different from the first, however,

and it was not until the 20th century that DAVID LEWIS proposed a theory of causality that

is explicitly founded on this very idea: “if the first object had not been, thesecond never had

existed”. The impact of his theory was enormous, and “helped to turn the tide” (COLLINS

ET AL ., 2004b, p. 1) against regularity theories, which were known to have their drawbacks

but nevertheless “dominate[d] the philosophy of causation” (LEWIS, 1973, p. 556) until then.

Today, counterfactual analysis has become one of the most important philosophical theories on

the topic of causality.

How, then, does this analysis work? And how does it solve our problem withspurious regu-

larities? To give a quick, but not irresponsibly short overview, we have to introduce two central

concepts:possible worldsand the relation ofcomparative similaritybetween them. Roughly

speaking, possible worlds are ways our world could have been if things had taken a different

turn. This includes worlds that look pretty much like ours with very slight differences like a

world where you started reading this sentence a second later than you actually did. The differ-

ences may also be more extensive, like Latin still being thelingua francain Europe, or e.g. the

Neanderthals never having become extinct. There are worlds in which the laws of physics are

different to a minor or major extent, e.g. one in which natural constants differ slightly from their

actual values possibly rendering carbon based (human) life impossible (cf. HAWKING , 2006).

You can compare possible worlds to the worlds created in films, in books, plays or any other kind

of fiction, their common feature being a difference from our actual world.That, of course, is

where the term “counterfactual” comes from: being different to “the factual”, to the way things

actually are.

The examples of possible worlds given above already show what comparative similarity be-

tween possible worlds is supposed to mean: the possible world which differsfrom our actual

world only by you not reading this text right now (but a second later) is certainly more similar to

the actual world than one in which there is no living being in the first place.20 LEWIS also uses

20

The judgement obviously is unproblematic in this extreme case, but there may well arise difficulties

in closer cases. We will add some remarks concerning the problem of comparative similarity in the

formal discussion of counterfactual analysis (cf. sect. 5.1.3.5) but in the end accept that a certain

vagueness cannot be overcome.
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2.2 Counterfactual Dependency

the expression “being closer to” for “being more similar to”.21 The “one-second-later-world”

can then be called closer to actuality than a world in which the natural laws themselves are

different from ours.

2.2.1 Possible Worlds Analysis of Counterfactuals

Now that we have introduced the concepts of possible worlds and comparative similarity, the

question is: how do they come into play when counterfactual intuition is concerned? How do

they help with non-causal regularities? Let us have a closer look at Barometer–Storm: we rule

out the barometer reading to be a cause because the storm would have happened anyway, even

if we prevented the barometer needle from moving. Thisjudgementcontains the central aspect.

With respect to the storm, what we do know byexperienceare simply the things that actually

happen: the pressure drops, the barometer reading falls, the storm arrives. In this very situation,

we have no empirical knowledge of “what would have happened if the barometer reading did

not drop”, as this refers to a counterfactual situation, and as a principle, we cannot measure

counterfactual data in the actual world.22 But – and this is the crucial point – we caninfer, what

would probably have happened. To do so, we imagine possible variations of the situation in

question. This is, where possible worlds (and their relative distance, as we shall see in a minute)

come into play. We compare the actual setting with variations in which the barometerreading

does not drop. Following our counterfactual intuition on causality, we should expect the storm

to arrive nonetheless, as there is no causal connection between barometer and storm. But a look

at the following examples shows that this is not the case in every possible world:

1. The barometer is broken, everything else is just as in the actual world: air pressure drops:

• Barometer reading does not drop

• There is a storm

Undermines the causal claim (as alleged cause is not present, but effect is).

2. The pressure drops, but the physical laws concerning both the barometer’s mechanics and

the weather are different to our world:

• Barometer reading does not drop

21 Formally, as LEWIS makes explicit, comparative similarity is a weak ordering of worlds where ties

are permitted, but any two worlds are comparable, and (additionally) the actual world should be

closest to actuality (cf. LEWIS, 1973, p. 560).
22 Of course, if things had gone differently, wewould have measured something different. But then

the measurement takes place in the counterfactual situation, not in our actual world. Measurement

is restricted to the very world where the measurement system actually existsand the measurement

actually takes place.
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2 Philosophical Theories of Causality

• There isnostorm

Supports the causal claim.

3. The pressure falls, but the earth is destroyed before the reading can drop:

• Barometer reading does not drop

• There isnostorm

Supports the causal claim.

Now we have a counterfactual situation where the storm arrives, and wehave two counterfac-

tual situations where there is no storm. The barometer reading does not drop in any of them. It

is only the first variation that could help to show that there is merely regularity between barom-

eter and storm, but not causality. The storm arrives despite the barometerstaying still. The

other examples imply the opposite, which leads to the following problem: counterfactuals can

rule out alleged causal connections which are in fact mere regularities, but they rely on possible

worlds, and possible worlds seem to be too “liberal”. They contain worlds which no longer do

what we need counterfactuals for – ruling out spurious regularities. Does that mean that the

counterfactual approach fails?

Fortunately, it has a second component: comparative similarity, the relative distance/difference

between possible worlds, and in particular their distance to actuality. Let us examine this aspect

in the examples above: The first world differs only with respect to the barometer. If you were, for

example, transported to this world, you would probably never experiencea difference.23 This is

no longer true in the second possible world. If the physical laws that both barometer and weather

rely upon (behaviour of liquids like mercury or water, deformation of flexible boxes, granulation

in alcoholic solution of camphor) were different, this difference would show up in many other

devices and situations in everyday life or industrial or scientific use. If you were transferred to

this world, you could not avoid noticing the difference. The same holds forthe third example,

where our planet is destroyed – provided that you are able to experience anything before you

vanish.

It may well be a matter of argument whether world number two or world number three is

more distant to actuality, but in any case the first example is closer to actuality than the others.

And – as we have seen – this very possible world is one which wecanuse to single out spurious

regularities. So this is the way to solve our problem: we do make use of possibleworlds, but we

take their difference from actuality into account. If there is a causal relation betweenA andB,

23 Of course, there might be a longer trail of consequences of this single difference: there may be

someone who is ordered to repair the barometer, or there might be an airplane accident because the

pilot relies on the barometer, all of which does not happen in the actual world. But we believe that

this is still a minor alteration compared to the massive changes in the other examples.
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2.2 Counterfactual Dependency

the counterfactual “B had not been ifA had not been” must hold and it does if there is a world

in whichA andB both fail and which is closer to actuality than any other world in whichA fails

but B takes place. In DAVID LEWIS’ words (in which a “true antecedent” corresponds to our

“A fails to take place”, and “true consequent” corresponds to “B fails to take place”):

[. . . ] it takes less of a departure from actuality to make the consequent true along with the

antecedent than it does to make the antecedent true without the consequent.

(LEWIS, 1973, p. 56024)

In Barometer–Storm, we saw that this condition is not fulfilled. Worlds two and three in

which both events (barometer reading’s falling and storm) fail to take place,are more distant

from actuality than a world in which the storm arrives notwithstanding the barometer’s reading.

The counterfactual condition rules out the alleged effect (cf. table 2.1).

World (ordered by closeness)supportive / undermining Counterfactual holds

World 1: Barometer broken undermining No

World 2: Physical laws differ supportive

World 3: Earth is destroyed supportive

Table 2.1: Counterfactual analysis of “Barometer–Storm”

When it comes to the connection between air pressure and storm, the result of the counterfac-

tual analysis should be different. To become more familiar with how it works, we will analyse

this case, too, before continuing with the ontological analysis of this additional condition of

causality.

The claim at stake is: the fall of air pressure caused the storm. The corresponding counter-

factual is: if the air pressure had not fallen, the storm would not have arrived. Hence, we need

to find possible worlds in which the air pressure does not fall. In some of them, the storm ar-

rives, in others, it doesn’t. The counterfactual condition now demandsthat worlds in which the

storm happens despite the air pressure’s stability must be more distant to actuality than a world

in which stability goes together with no storm.

1. The high pressure area is more stable and lasts longer than in the actual world:

• The air pressure does not fall

• There isnostorm

Supports the causal claim.

2. The physical laws governing the weather are different. Storms happen at high air pressure:

• The air pressure does not fall
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• There is a storm

Undermines the causal claim.

3. Magic is real and a wizard casts a storm spell:

• The air pressure does not fall

• There is a storm

Undermines the causal claim.

It is not difficult to see that the first possible world is less different to actuality than the others.

Both real magic and different laws of nature, would affect much more thanjust the weather.

Using LEWIS’ notions, the world in which the antecedent (air pressure does not fall) istrue along

with the consequent (there is no storm) is closer to actuality than worlds in whichthe antecedent

is true without the consequent. This means that the counterfactual conditionis fulfilled and air

pressure is “confirmed” as being a genuine cause of the storm (cf. table2.2).25

World (ordered by closeness) supportive / undermining Counterfactual holds

World 1: High pressure stays longer supportive Yes

World 2: Different physical laws undermining

World 3: Wizard casts storm spell undermining

Table 2.2: Counterfactual analysis of “Air pressure–Storm”

Using comparative similarity we are now able to select those possible worlds which the coun-

terfactual condition “B had not happened ifA had not taken place” relies upon: we now have a

second criterion for causal relations which allows us to refute alleged causes that “slip through”

the condition of regularity.

As yet, our theory of causality does not contain possible worlds and the relation of compar-

ative similarity, so we will have to add them. But before we do so, these notionshave to be

analyzed ontologically: what kind of entities are possible worlds? And: do we have epistemic

access to them in order to evaluate them being supportive/undermining?

25 Strictly speaking, these examples do not show thateverysuch world in which the consequent is

false is more distant to actuality than one in which antecedent and consequent both are true, even if

it is true for the given examples.

Please note that the examples rely on our loose introduction to possible worlds. In sect. 2.2.3, we

will present our theory of the nature of the possible worlds in question, which is much more restric-

tive than declaring everything imaginable a “possible world”.

Within this approach, then, the aforementioned problem becomes a epistemological one, and we

will admint that we simply never can accessall alternative situations. So our inferences on counter-

factual dependency are never fail-save.
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2.2.2 Theories of Possible Worlds

Advocating the counterfactual analysis of causality, DAVID LEWIS proposed a theory of possible

worlds (cf. LEWIS, 1986) which – put dangerously succinctly – says that possible worlds are just

as real as our world but spatio-temporally distant, and not accessible from our world (cf. fig. 2.1).

If you were an inhabitant of a certain worldw, that world is the actual world to you, just like our

world α is actual to us. Viewed fromw, the worldα is simply one of the myriad of possibilities,

but in no way something special. This theory, which treats all possible worldsas equal, is often

referred to aspossibilism(or modal realism).

Figure 2.1: Possible worlds in possibilism: All worlds are equal and they are not connected. Each of

them is actual to their inhabitants.

In contrast to possibilism, ALVIN PLANTINGA has developed a theory in which there is just

one – our – actual world. In a nutshell, our actual world is a (certain) setof states of affairs that

do obtain (take place). Other possible worlds are made of the same kind of entities (states of

affairs), but may consist of obtaining as well as non-obtaining states of affairs, or only of states

of affairs that do not obtain (cf. fig. 2.2). In short, possible worlds mayshare some states of

affairs with actuality (and with each other, for that matter), but many do not (cf. PLANTINGA ,

1974). To illustrate this point, let us consider two states of affairs “StephenHawkings’ writing

of A Brief History of Time”, and “the four dragons’ attack on Westminster Abbey”. While both

states of affairs exist, they differ in that the first obtains while the second does not. Just like all

other possible worlds, the actual world is made up of states of affairs, butthe difference is that it

consists of all the states of affairs that do obtain. This theory, which saysthat there is only one

actual world (a world that is something special), is commonly calledactualism.26

Finally there is a third theory proposed by Nicholas RESCHER (cf. RESCHERand PARKS,

1973; RESCHER, 1979, 1999) which is based on yet another idea: possible worlds existonly in

people’s minds (cf. fig. 2.3). They are ideas or thoughts about how the world could be different.27

In this view, possible worlds are neither of the same kind as the actual world (possibilism) nor

26 For a detailed analysis of PLANTINGA ’ S theory in contrast to DAVID LEWIS, cf. MICHALEK (2002)

(in German).
27 In slightly more detail: possible worlds consist of possible objects which arevariants of actual

individuals’ essential properties (cf. RESCHER, 1979).
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Figure 2.2: Possible worlds in actualism: The worlds are “made up” of thesame entities (states of

affairs) which differ in whether they obtain (starred characters) or not. The actual world consists of

exactly those states of affairs that do obtain (w2).

made up of the same entities as the actual word (possibilism/actualism). They existin a very

different way that is bound to subjects with the capacity of thought. This approach might (for

our purposes) be calledsubjectivism.
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Figure 2.3: Possible worlds in subjectivism: The worlds are variationsof actuality created by a mind.

We will not discuss these theories at length, but we must mention what major problematic

consequences we would face if we simply adopted any of these theories. After all, it is due to

these issues that we decided to create our own theory, which is not a theory of possible worlds in

general (generality being the route of the troubles) but a theory of just the kind of possible worlds

that is relevant for the counterfactual condition of our theory of causality. It will be presented in

the following section.

Let us take a look at the shortcomings. In possibilism, the sentence “I could have died” is true

because a person who is my counterpart in another world dies in that possible world. This raises

two problems: firstly, what makes this very person be my counterpart? In other words, how can

trans-world-identity be understood? And secondly, isn’t there a fundamental difference between

my possible death and some other person’sexitus?

Actualism does not have these problems. There is no counterpart of mine involved. “I could

have died” is about me (although in a different set of states of affairs than the actual world),

not about some counterpart. That is why it is relevant to me. But if we adopted PLANTINGA ’ S

theory, we would have to face heavy discussion in fields like the nature of states of affairs, and

on PLANTINGA ’ S notion of “essence” (as his theory makes use of “essential properties”). Again
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2.2 Counterfactual Dependency

we cannot present those problems for reasons of brevity, but we muststate that several outcomes

of the actualist’s theory are highly controversial (cf. MICHALEK , 2002).

So what about the subjectivist approach? Firstly, it entails all the general problems of sub-

jectivism: possibilities are mind-dependent, so they rise and fall together with their thinkers.

Calling something “possible” now depends on choosing a certain mind to referto. Also, no two

minds can think of one and the same possibility, as they produce two thoughts. And secondly,

the ontological framework of GFO (General Formal Ontology, cf. chapter 4), which our theory

of causality shall become part of, does not incorporate explicitly subjectivist concepts, so we

should not introduce them unless absolutely necessary. And indeed we believe they are not, as

shall be shown in the following.

2.2.3 Causal Counterfactuals

As noted above, we believe that the aforementioned problems arise because these theories on

possible worlds are very general, trying to cope with possibility as such. Allwe need is a

theory of the very kind of possible worlds that is (only) relevant, and in fact necessary, for our

counterfactual theory of causality. To build a theory that meets our needswe should recall the

role it plays in counterfactual analysis: counterfactual dependency holds iff worlds in which the

effect takes place without its cause are more different from actuality thanworlds in which neither

cause nor effect occur. Worlds in which both do not happen must be “stranger” than worlds in

which the effect exists alone.

Earlier (cf. sect. 2.2.1) we said that we cannot measure what happens inpossible worlds, but

we caninfer what would have happened if things had been different. This requires the ability to

compare possible worlds. In possibilism, we would have to have (mental or sensorial) access to

those worlds which areex hypothesisnot spatio-temporally connected to our world. This is not

an attractive solution for sure. In actualism, we only need access to the setsof states of affairs

the possible worlds are made of. This is not so grave a consequence, and it suits the idea that

we compare situations which are variations of the actual incidents. Since, in actualism, possible

worlds are made of a set of states of affairs, we can (mentally) replace some of these while

keeping others, which yields more or less similar situations in terms of comparative similarity.

In subjectivism, possible worlds are already products of our mind, so we don’t need any special

means to access them. Thus, actualism and subjectivism allow the comparison of worlds in

thought, i.e. using our (mental) capacity of reason. But – and this is where we part with both

theories – possible worlds are still not open for empirical methods. The judgement whether the

relevant counterfactuals hold is left to mind-equipped subjects with accessto either states of

affairs or the part of mental activities that construes possible worlds.

In our view this can be avoided, and in order to explain our theory ofalternative situations
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(or: alternatives) 28, we once again take a step back, this time to the point where we said that we

are able to infer counterfactuals to hold. Instead of simply stating that this includes comparison

of alternative situations let us take a closer look at what exactly we comparethe actual situation

to. In our view, this comparison is no different to what happens all the time when we are trying

to find our way through the world: we take ourexperiencesinto consideration. We compare the

present situation to situations that have already happened. This means thatwe do not compare

“our world”, understood as containing the history of literally everything there is, was and will

be to another “world” with its own alternative history of everything that existed, exists and will

exist there. What we compare29 is an actual situation with past situations, all taken from the

history ofour world (cf. fig. 2.4).
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3p
3q

3r

Figure 2.4: Possible worlds in our account: Snapshots from the history of actuality, i.e. from the history

of our world.

Leaving the epistemic implications aside (we will deal with them later, cf. sect. 6),this ap-

proach solves the problem of how we access alternative situations: it works the very same way

we get in contact with the actual world. No special mental abilities are required.

Let us summarise our account of counterfactual dependency. Besides regularity, causality is

up to counterfactual dependency, which means that if there is a causal relation betweenA and

B, andA andB both happen in the actual situation,there must be situations (in the actual

world) similar to the actual one, and for these the following must hold: situationsin which

only the cause (A) is missing (which are called “undermining” in the following) must be more

distant to actuality than at least one situation in which both,A andB are absent (these we call

“ supportive”). 30

28 In the following we will use these terms instead of “possible worlds” to make clear that our approach

is no full-fledged account of possibilities in general but just about the kind of possibilities used in

counterfactuals as applied in our theory of causality.
29 The mental ability to compare past situations should not be mixed up with the subjectivist claim

that the alternative situations exist in our minds, only.
30 In our aproach, we will model “A andB happen/fail” by the existence or non-existence of a certain

(cause or effect) universal’s instance, cf. sect. 5.1.3.
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2.2.3.1 Exkursus: Do the Alternative Situations Suffice?

It is worth noting that compared to how we introduced alternative situations in the first place, our

theory on counterfactuals is highly restrictive in at least two ways. First of all, an alternative is no

longer a complete space-time worm of a full universe but restricted to temporally flat parts of our

world’s spatio-temporal extension. Furthermore, an alternative is a situation in the actual world,

which excludes (as far as we know) magic, strongly altered physical lawsand the existence

of entities that never show (or showed, or will show) up in our world. It isthis fundamental

restriction that made us choose the term “alternative situation” instead of “possible world”.

There might be problem with our restrictive notion of alternatives. Some of the examples

we used to illustrate the intuition of relative similarity between possible worlds (cf.sect. 2.2.1)

made use of worlds that are now excluded (e.g. physical laws are drastically altered, wizards

cast storm spells). But since relative similarity is necessary for counterfactual analyses, we shall

provide some examples ofhow differentalternative situations can be, even if they are restricted

in our sense, i.e. to situations in our world.

In fact, our first example (Barometer–Storm) does not need too many adjustments. The first

alternative is one in which the barometer was broken, which has undoubtedly happened many

times in our actual world. The third is one in which earth is being destroyed. Even if we might

feel uneasy about it, we cannot rule this event out for the future of our world like we most

probably can with the second possibility of radically different physical laws. But for those who

want to exclude both, the destruction of the Earth and altered physical laws, we may add another

alternative situation, in which (as in the first one) the air pressure falls andthe barometer is

broken, but which also features a highly sophisticated (and – at the time of writing – yet to be

developed) kind of cloud seeding that prevents rain, thunder and lightning so that there is nothing

we would call a storm in the first place. If we compare this alternative to the first one (barometer

broken, everything else unchanged), there is no doubt that an additional advanced cloud seeding

renders this alternative more distant from actuality. In other words, the first alternative situation

(no barometer drop, but storm arrives) is still closer to actuality than alternatives in which both

barometer drop and storm are absent. The barometer is thus rightly eliminated as a cause of the

storm (cf. table 2.3).

World (ordered by closeness)supportive / undermining Counterfactual holds

World 1: Barometer broken undermining No

World 2: Cloud seeding supportive

Table 2.3: Counterfactual analysis of modified “Barometer–Storm”

The two “more distant” alternative situations in the second example (air pressure and storm),

however, are both excluded from our theory of alternatives. Presumably, neither different phys-
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ical laws nor “real” magic have ever been or will ever be part of our world. To show that

counterfactual analysis is still valid, we will present another alternative which is allowed in our

approach: an alternative in which the air pressure does not fall, but a storm is created artificially

(say, with the help of steam-and-tension-producing – again, at the time of writing not yet devel-

oped – devices). Clearly, this world be more distant to actuality than the alternative situation in

which there simply is no fall in air pressure and no storm. Again, compared to the constant air

pressure going together with no storm, this alternative situation is more distant toactuality. The

conditions of counterfactual dependency are fulfilled, so air pressure is correctlynot ruled out

as a cause of the storm (cf. table 2.4).

World (ordered by closeness) supportive / undermining Counterfactual holds

World 1: High pressure stays longer supportive Yes

World 2: Artificial storm undermining

Table 2.4: Counterfactual analysis of modified “Air pressure–Storm”

We hope that these examples show that even our highly restrictive concept of possible worlds

leaves enough room for significant differences in relative similarity as required for counterfactual

analysis.

2.2.4 Preemption

Now that we have added counterfactual dependency to our theory, wecannot continue until we

have dealt with a major issue that has been raised against it:preemption.31

It actually caused LEWIS to partially revise his initial theory (cf. LEWIS, 2000b). We will

now give a quick overview of this problem and will dedicate the next sectionto our solution.32

The most basic case of preemption (in a slight variation of HALL (2001)) works as follows:

imagine two bored students in a maths class who try to pass the time with a rather special

competition. They crumble up sheets of paper, and once the professor turns to write formulas on

the blackboard, the two students aim their paper balls at an open window. Both balls succeed in

passing the window frame, but unfortunately they destroy a spider’s webthat was woven within

the frame. For the sake of this argument, we assume that the first student’s ball reached the

cobweb earlier, so it washisball that destroyed the web.

From a counterfactual perspective, this conclusion is problematic because the web would have

been destroyed (by the second ball) even if the first ball would not havebeen thrown. Thus, the

counterfactual between the first ball and the web does not hold. We seem to have causality

31 Cf. SCHAFFER(2000); NOORDHOF(1999)

32 For a critique of the adjusted theory, e.g. that it “generates a great number of spurious instances of

causation”, cf. MENZIES (2001).
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without counterfactual dependency. However, we believe that a careful reconstruction of the

situation enables us to keep counterfactual dependency as a necessary condition for causality.

First of all, note that the counterfactual dependency only fails “in the longrun”.33 If the first

paper ball had not been thrown, the web still would have been destroyedin the end. But we

should certainly be more interested in what happensright after the first ball hits the web. Since

the second ball reaches the window later than the first, the web would not have been destroyed

at that point (or, for that matter, at any other point until the second ball’sarrival). Hence, if

our causal theory is suitably fine-grained with respect to time, the counterfactualdoeshold. We

will deal with the nature of causal relata in sect. 5.1.1, and as we will argue for (temporally)

most fine-grained entities – calledpresentials– as primary causal relata, we can safely keep the

condition of counterfactual dependency.

Our current solution to the problem of preemption is based on the time difference between

the first and the second ball of paper.34 What happens if the two balls reached the cobweb at

the same time? First of all, this is no longer preemption since no potential cause is cut off

by another. But we may still call itoverdeterminationas either of the balls would have been

sufficient to destroy the web. Secondly, it is no longer entirely clear whatthe “right” result of

a causal analysis should be. If only one ball touches the web, it definitelyis the cause of its

destruction, but in this case we have two balls. We may agree that at least thetwo balls together

(taken as one entity) can be regarded as the cause, but when it comes to each individual ball,

would we say that both constitute separable causes? Or just one of them? Orneither of them on

its own? We seem to lack causal intuitions regarding the separate balls. Then, overdetermination

cannot be used against counterfactual analysis, here. It does remain a relevant topic, though, and

we will address it in a later section (cf. sect. 5.3).

2.2.5 Background Chances as a Challenge to Counterfactual Dependency

When discussing regularity (cf. sect. 2.1), we argued for probabilistic/chancy causation and

explained how to include chances in the regularity condition. In this section, we will do the

same for counterfactual analysis.

At first glance we would probably not consider the concept of chancea problem for counter-

factual analysis. Let us assume that an effectE does counterfactually depend on causeC, i.e.

E would not have happened ifC had not happened. Following RAMACHANDRAN (2004), one

might say that this is perfectly consistent with the assumption thatC does not always lead toE.

33 This argument was first introduced by LAURIE A PAUL to overcome another possible solution: that

the spider web would have been destroyed differently if the seconnd ballwould have hit him. It

turned out that the so called “fragility” of events was itself a very fragile concept (cf. PAUL , 1998).
34 For further discussion on the importance of the time difference, cf. MACKIE (1992).
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Even in a situation that involves chance,E would not have happened withoutC.

However, problems arise when “E has abackground chanceof occurring” (RAMACHANDRAN ,

2004, p. 388 his emphasis), which means that even if the cause is absent,E can happen more

or less spontaneously. It is the “would not have happened” bit of counterfactual analysis which

seems to raise doubts and as mentioned above, we will solve this problem by introducing chances

in counterfactual analysis, as well.

2.2.6 Probabilistic Counterfactual Dependency

Just as we adopted the regularity condition from “Every time C happens, E happens” to “the

chance of E happening is higher given that C happened”, we need to change the counterfactual

expression “E would not have happened if C had not happened” to “theprobability of E would

have been lower if C had not happened”. That said, this idea has to be spelled out in the right

way. It must not be read as a regularity statement about “not-C” , like e.g.“the probability of

the effect is lowered, if not-C is given”, which would hardly add anythingother to causality than

what regularity already implies.35 In particular, alternative situations – that build the core of any

counterfactual – would not playanyrole in this understanding.

In order to arrive at a more reasonable interpretation of probabilistic counterfactuals, let us

examine where the 100% connection comes into play in the counterfactual theory we have de-

veloped up to here: it is in clustering the alternative situations into supportiveand undermining

ones. And as long as we take only single alternatives into account, there is no way to include

chances: acontrastivesituation (where the alleged cause is missing) either does contain the ef-

fect, or not. Additionally, the point about the alternatives (once they weresorted into supportive

and undermining ones) was their distance to actuality. Our task, then, is, to find a replacement

for single alternative situations that allows for both, expressing chancesand a comparison with

respect to actuality.

Our proposal is the following: where we hitherto spoke of single alternatives, we now intro-

duceclustersof alternative situations. I.e. sets of alternative situations which are similar to each

other.36 Within these clusters, we can evaluate the probability of an effect, which nowno longer

is binary (“does happen” or “does not happen”), but has some valuebetween0% and100%.

The first important cluster is that which stems from the initial situation. It will playthe role

of a reference cluster. Within this cluster, we can evaluate theinitial probability of the effect.

More precisely, we do not take all the similar situations of that cluster into account (as the cluster

35 In fact the following holds:

P (A|B) > P (A) → P (A|B̄) < P (A)

i.e. if the cause heightens the effect (regularity), then it’s absence lowers it. (Cf. appendix A)
36 “Similarity” will be modeled by universals’ instances. For details, please cf. the formal descriptions

in sect. 5.1.
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may include situations that are indeed similar to the initial situation, but yet do not contain the

cause, i.e. the similarity may not rely on the alleged cause being present), butonly those which

do contain the alleged cause.

An example may illustrate this idea: say we are investigating whether using a certain switch

lights up a given bulb. What could be a similarity cluster around this situation? Actually, there

are unlimited possibilities, but let us take this one: “situations in which some switch isused”. In

order to evaluate the initial probability, we restrict this cluster to those situations, in which the

very switch is used that we are interested in (as this is the alleged cause).37 Within these, the

probabiliy of that very bulb to light up is (depending on the switch’s reliability)e.g. 99.999%.

The same kind of clustering like with the initial situation is done to the alternative situations:

instead of sorting them into supportive and underminingsituations, we cluster them by simi-

larity and callthe clusterssupportive or undermining depending on whether the absence of the

cause does lower the probability of the effect (compared to the initial probability) or not; the

probabilities being evaluatedwithin their respective clusters.

Concerning distance to reality, it is now the clusters we compare and probabilistic couterfac-

tual dependency holds iff there is a supportive cluster that is closer to theinitial (or: reference)

cluster than any undermining one. Figure 2.5 gives an overview.

2.2.6.1 Example: Catching the Flu

Let us apply this analysis to an example, and (in case the claims are controversial: just for the

sake of this argument) let us assume that people indeed can catch the flu when visiting a patient

that is already suffering from the flu, that there are other factors whichmight produce flu (like

swimming in cold water), and that there is also a chance to develop the flu withoutexternal

triggers. The initial situation is one where someone visits a patient and catchesthe flu. The

alternative situations contain visits as well as non-visits and flu-catching/developings as well as

non-catchings/developings.

Next we cluster these situations by similarity, which gives the following clusters:

1. A healthy person visits a patient who suffers from the flu.

2. A healthy person visits a patient who does not suffer from the flu.

3. A person with a compromised immune system takes part in an autumnal triathlon and does

not visit a patient.

37 Both, what cluster to evaluate, and what to take as the alleged cause may bechoosen differently to

how it was done in this example. The conclusion whether counterfactual dependency holds or not

is relative to this choice. Cf. sect. 5.1
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Figure 2.5: Clusters of alternative situations: the reference clustercr with the effect’s probabiliy of

Pr, two contrastive clusters of alternatives with the probabilities effect’s probabilities ofP1 and P2.

Additionally, the distance of the alternatives to the reference cluster is depicted by the length of arrowsd1

andd2. If C2 is supportive and if it is closer toCr than any undermining one, counterfactual dependency

holds.

Evaluating the onsets of the flu in each cluster gives the probabilitiesP1, P2, P3 for catch-

ing/developing the flu in cluster 1 (initial probability), cluster 2 or cluster 3, respectively. And

we know thatP2 will be lower thanP1, which makes the second cluster a supportive one (cause

is missing, probability of effect becomes smaller).P3, on the other hand, may well be – and for

the sake of this argument, we assume that it is – greater than the initial probabilitywhich makes

it an undermining cluster (cause is missing, but probability of effect is evenhigher).

Obviously, cluster 2 is closer to the initial situation’s cluster than the underminingcluster 3

that has nothing to do with any visits. So in the end, the probabilistic counterfactual holds (cf.

table 2.5).

World (ordered by closeness) supportive / undermining Counterfactual holds

Cluster 1: Visit non-flu patient supportive Yes

Cluster 2: Autumnal triathlon undermining

Table 2.5: Probabilistic counterfactual analysis of “Catching the flu”
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2.3 Manipulability

A very important aspect of causality is that we use causal knowledge to change the world: in

ancient times, ways to keep people dry by living in caves or building primitive huts were highly

important, as were methods for starting a fire. Later on, mankind found out how to prevent strong

wind to damage our homes, and how to use a metallic rod to resist lightning strikes.Building

machines was another very important step for human development, and againit relied on causal

knowledge used to manipulate the world. And looking at our time, sciences thatdo not seem

to have immediate benefits in terms of applicability often have a hard time explaining why they

should be valuable at all.

This “pragmatic” value of causal knowledge gave rise to another branchof causal theories that

takemanipulabilityas the core characteristic of any causal relation. The meaning of “manipula-

bility”, however is multifarious: early theories (cf.VON WRIGHT, 1971; COLLINGWOOD, 1940)

took manipulation as changes, brought about by human action. In COLLINGWOODS words:

“[. . . ] the cause of an event in nature is the handle, so to speak, by which human beings can ma-

nipulate it.” (COLLINGWOOD, 1940, 296). This view, however, gave rise to criticism centring

around their apparentanthropocentricityand the reductive status of the theories was questioned,

accusing manipulation theory ofcircularity (both aspects will be discussed in the following).

Later theories (cf. SPIRTES ET AL., 1993; HAUSMAN, 1998; WOODWARD, 1997, 2000) tried to

find characteristics of certain (not necessarily human) interactions that qualify as manipulations

in the sense of a manipulation theory. To distinguish between the two approaches, we will use

the terminterventionfor those that do not depend on human interaction, as is rather common in

this field. However – as we see it – the intervention theories, while avoiding anthropocentricity,

still fail in being reductive analyses of causality.

2.3.1 Anthropocentricity

If causality is closely tied toactualhuman interaction (i.e. human interaction that does take place

right now, or took place in the past), the existence of causal relationshipsrelies on there being

humans that perform actions. This would imply several highly counterintuitive claims, two of

which are: (1) there were no causal relations until human beings evolved– which was the case

for the major part of the universe’s history, and (2) there cannot be any causal relations in places

where no human being has yet been – which excludes not only nearly the whole universe, but

(just think of the deep sea) also a major part of the planet we inhabit.

But even if causality is based not only on actual, but also on thepossibilityof human action,

those causal relations are ruled out, where humans cannot take any action at all – which excludes

causal relationships in environments where humans cannot exist (think ofprocesses within the

sun or within it’s immediate proximity, or processes that took place in the uncomfortable envi-
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ronment close to the Big Bang). And even if humans may be able to exist, in many cases, they do

not have any influence either because they are too big (as e.g. in the worldof nano particles) or

because they are too small (think e.g. of earth tectonics or of the movement ofcelestial bodies).

2.3.2 Circularity

If formulated as reductive theories, manipulation theories face another problem: “humaninter-

action” might well be a causal concept itself. But if it is the approach to “translate” the concept

of causality to something that already is a causal concept is no reduction atall.

What about the interventionist theories? How do they describe interventions if not connected

to human interaction? Here is an example38:

Such an interventionI must meet the following requirements (M1)-(M4):

(M1) I must be the only cause ofX; i.e., as with Pearl, the intervention must completely

disrupt the causal relationship betweenX and its previous causes so that the value ofX is

set entirely byI

(M2) I must not directly causeY via a route that does not go throughX as in the placebo

example

(M3) I should not itself be caused by any cause that affectsY via a route that does not go

throughX, and

(M4) I leaves the values taken by any causes ofY except those that are on the directed path

from I to X to Y (should this exist) unchanged.

(WOODWARD, 2001, p. )

As we see, there are quite a lot of requirements, andall of them presuppose causal relations,

some of which must not hold between certain elements, and some of which must hold in a

certain way. So the concept ofinterventionindeed is built upon the concept of causality. Just

like with the manipulation approaches, interventional theories (at least as presented here) are not

of a reductive kind.39

38 For illustration cf. the graphs in sect. 3.1.1. The conditions (M1) to (M4) that will be given in the

following, describe how an intervention like in fig. 3.2 must be designed.
39 We won’t go into more detail, here, but should note that the problem of circularity understood

as non-reductivity is an issue, manipulist theorists are completely aware of (cf. WOODWARD and

HITCHCOCK, 2003, p. 14). Their answers to this challenge range from declaring human interaction

to something that differs from ordinary causality –

“The connection between an action and its result is intrinsic, logical and notcausal (extrinsic).[. . . ]

It is a bad mistake to think of the act(ion) itself as a cause of its result. ” (VON WRIGHT, 1971,

p. 67-68).)

– to explaining how “[. . . ] a theory can be non-reductive without being trivial or uninformative.”

(WOODWARD and HITCHCOCK, 2003, p. 15)
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2.3.3 Twofold Manipulability

Acknowledging the aforementioned critics of manipulation theory, we do not adopt manipula-

tion as an additional condition on causal relations. But this does not mean that we neglect the

relevance of the manipulation aspect that causal knowledge has. As we will show in the follow-

ing, the manipulationist’s intuition is indeed composed of two components: an ontological and

an epistemic one. The first consists of manipulability being a necessary condition for causality,

while the latter focuses onfinding causal relations (or their direction) by means of manipula-

tion.40 We will come to the epistemological part later (cf. chapter 6) where we straightforwardly

accept manipulations as valuable means to identify causal relations.

The ontological content of manipulability on the other hand is, as we will arguein the follow-

ing, already covered by the two building blocks of our theory, i.e. by regularity and counterfac-

tual dependency.

2.3.4 Manipulation: What is left?

Putting the epistemological question of how to identify causal relations aside, manipulability

means that (some) changes in the cause yield changes in the effect. Moreover, if one conse-

quence of manipulability is that we can affect the effect according to our intentions, there should

be “predictable” changes in the effect (given specific changes in the cause). Taken this way, ma-

nipulability relies on aregular connection that holds between cause and effect. But this relation

obviously is, what regularity and counterfactual dependency41 already do provide, so there’s no

need to add manipulability as a separate criterion.

However, manipulability may shed light on an aspect of regularity hitherto notmade explicit

as we have not yet focussed on the question of the ontological nature ofthe causal relata. As

this is a cental topic of a later section (cf. sect. 5.1.1), we shall not discussit here, but some

remarks might be admissible. The kind of entity that is probably most easily related to changes or

manipulations areproperties(or whatever your ontology provides as an appropriate surrogate):

changing the tension of a bow’s string, or manipulating the initial direction of thearrow allows

the archer to make the arrow hit a certain position on the target, for example. In order to cover

such cases of manipulability, we must take care that our theory – where manipulability is not

explicitly included – must (nevertheless) be able to connect properties in anappropriate way.

Yet, it is not only the “difference in properties” that may be used in manipulations, but also what

40 So in an “ontological” reading it is

causality⇒ manipulability (manipulability is a necessary condition for causality), while in the

epistemiological reading, the direction of the inference changes:

manipulability⇒ causality(if manipulability is found, we may infer causality).
41 In this section, we will simply speak of regularity. All remarks concerningthe causal relata of

regularity do also apply to counterfactual dependency.
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could be called “difference in existence”. We can prevent some effectsnot only by altering the

cause, but also by completeeliminationof the cause.

One way to combine both kinds of manipulations is to take existence as just another property,

a proposal, whose discussion has an honorable history of its own.42 But even if we do not follow

this route, what we do stay committed to (in order to cover the manipulationist intuition) is that

out theory does not only have to provide means to connect properties in the right way, but also

for properly connecting theexistence and nonexistenceof entities.43

42 A historical reference is Immanuel KANT (cf. KANT, 1787, p. 401). For an overview of the issue

cf. NAKHNIKIAN and SALMON (1957); LEJEWSKI(1954).
43 We will see that the GFO theory of causality takes exactly the opposite route w.r.t. unifying prop-

erties and existence. Rather than taking existence as a property; the condition on properties is

understood as a condition of existence: changing a property’s value means that the old property

value (as entity) is no longer existent, while the new value (as entity) comes intoexistence. Cf. sect.

5.1.4 for more details.
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Looking at computer science, there are very different ways in which causality is dealt with.44

Starting with the field of statistics, we will present and discuss the causal modelsdeveloped

by Judea PEARL that rest on directed acyclic graphs (DAGs). Then we will concentrate on

ontological approaches (DOLCE, Cyc, and the work of John SOWA), as our theory will be based

upon an ontology too (called GFO: General Formal Ontology). Indeed, itcan be seen as an

extension to that ontology.

3.1 Statistics

3.1.1 Directed Acyclic Graphs (J.Pearl)

The probably best known approach to formal causal representation (also called “causal model-

ing”) is the one connected to Judea PEARL and his causal interpretation of BAYESIAN nets.45

Those nets (cf. fig. 3.1) consists of two components: a directed acyclic graph (DAG) consist-

ing of verticesV and edgesE, plus the local mechanisms46 kv(xpa(v); xv) – associated to each

vertexv – that generate/compute the output values of thexv given the values of the parents of

xv (where “generating” may include stochastic mechanisms):B = (V, E, (kv)v∈V )

In figure 3.1 there is a very simple DAG with four nodes and four directed arcs. To each node

there is a local mechanism assigned. For this net’s joint distribution, the following holds:

p(x1, x2, x3, x4) = k1(x1)k
2(x1; x2)k3(x1; x3)k

4(x2, x3; x4)

with the general joint distribution of any DAG configuration being

p = p(B) =
∏

v∈V

kv(xpa(v); xv)

44 We will roughly follow the distinction between “Numerical” and “Symbolic” approaches as intro-

duced in LEHMANN (2003).
45 This introduction follows PEARL (1993, 1994, 2000)

46 The idea of using “mechanisms” to get a grasp on causality goes back to SIMON (1977), cf. PEARL

(1994)
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x1

x2 x3

x4

Figure 3.1: Simple DAG with four nodes (“Diamond”)

Up to here, the DAGs can be interpreted as “carriers of independence assumptions” (PEARL,

1994, 4). However, the picture (literally) changes, if we do not stick to theobservationalvari-

ablesxv but allow for interventionalones. Figure 3.2 shows the diamond with an intervention

onx2 that solely sets the value ofx2 breaking all other parental connections ofx2 (i.e. the edge

betweenx1 andx2).

c2

x2

x4

x1

x3

Figure 3.2: The diamond DAG with an intervention onx2

As the mechanisms stay the same (the nodes are “modular” i.e. “it is conceivable to change

one such relationship without changing the others” (PEARL, 2000, p. 22)), the joint distribution

under the interventionc2 can be calculated as

p(x1, x2, x3, x4 || c2) = k1(x1)δc2(x2)k
3(x1; x3)k

4(x2, x3; x4)

with δc2(x2) replacingk2(x1; x2) from the original diamond’s formula. Under the interven-

tion, we find thatx3, for example, is no longer dependent onx2. There is no link of “causal

influence” (cf. PEARL, 1994, 3) between them.

The difference in content is this: while Bayesian networks contain information about ob-

servable distributions of the vertices’ values, the causal DAGs tell us, what observables would

change, if an intervention were to take place. In PEARLS words:
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A joint distribution tells us how probable events are and howprobabilities would change

with subsequent observations, but a causal model also tellsus how these probabilities would

change as a result of external interventions – such as those encountered by policy analysis,

treatment management, or planning everyday activity.

(PEARL, 2000, p. 22)

3.1.1.1 Analysis

First of all, we must state that PEARL is not explicitly interested inwhat causality is, but aims

his analysis at two epistemological questions: “(1) What empirical evidenceis required for

legitimate inference of cause–effect relations? (2) Given that we are willing to accept causal

information about a phenomenon, what inferences can we draw from such information, and

how?” (PEARL, 2000, p. xiii).

But clearly, what lies conceptually (i.e. putting aside the remarkable analysisof causal DAGs

as mathematical objects) behind modeling causality by causal DAGs is the manipulation account

of causality: a relation is causally relevant, if the alleged effect is dependent on the alleged cause

under an “atomic” (PEARL, 2000, p. 70) intervention (on the cause). Furthermore, he calls

“influence, manipulation and control” the “more basic notions associated to causation” (PEARL,

1994, 5).

3.2 Ontology

Although we shall not go any further into detail about what an ontology is47, we will collect

some constituents, that at least the following approaches have in common:

• Categories are used to structure the (knowledge) content in question

• Hierarchies are used to structure the order of categories

• A formal language (based on mathematical set theory and first order logics) is used for

machine readable representation and

• Natural language sentences are provided to help the reader understand the concepts in

question.

47 In computer science ontological literature GRUBER’ S definition plays the role of a classical dictum:

“An ontology is an explicit specification of a conceptualization.” (GRUBER, 1993, p. 1), but in

almost any field of research where ontologies are considered as playing an important role, people

have developed their own understanding of the term. For an impressiveoverview cf. GUARINO

(1998).

37



3 Computer Science Theories of Causality

These constituents nicely depict the double nature of formal ontology as touching both, philo-

sophical (categories, concepts and their order) and computer scienceissues (machine readable

formal representations).

3.2.1 DOLCE

Developed as a module48 of the “WonderWeb49 Foundational Ontologies Library” the aim of

the “Descriptive Ontology for Linguistic and Cognitive Engineering”, DOLCE, is to “capture

the ontological categories underlying natural language and human common-sense”, which the

authors call a “clearcognitive bias”, as they are not interested in the “intrinsic nature of the

world”, but in the “cognitive artifacts ultimately depending on human perception, cultural im-

prints and social conventions”. (MASOLO ET AL., 2003, p. 13 their emphasis).

This “cognitive bias”, however, does not mean that DOLCE’s choice ofbasic categories

(cf. fig. 3.3) is profoundly different to other, rather realistically oriented, top-level ontologies.

Roughly spoken, the difference is not about how to conceptualise the world, but about what

“world” is to be conceptualised. In case of DOLCE, it is the world of our cognition and lan-

guage – independently of how it may correspond to an external reality.

The DOLCE theory of causality was presented in LEHMANN ET AL . (2004) which will be

the main reference for this section’s content.

3.2.1.1 The DOLCE Theory

We will start our quick, informal overview of the relevant concepts of theDOLCE theory of

causality with those entities that are not causality related (cf. LEHMANN ET AL ., 2004, sect.

4.1):

• Physical endurantLocated in space and time, wholly present at any time it is present (no

temporal parts). Examples are: a car, Barack Obama, the K2, an amount of gold

• Perdurant/EventTemporally extended entity. The authors give reaching the summit of

K2, a conference and eating as examples.50

• Physical/Temporal qualityThis entails “‘aspects’ of entities that can be perceived and

measured like shapes, colors, lengths, speeds and energies” as well as temporal locations

48 Alongside OCHRE and BFO (cf. MASOLO ET AL., 2003; SCHNEIDER, 2003b,a; GRENON, 2003).

49 Cf. http://wonderweb.semanticweb.org/index.shtml (as of 2007/06/29); accord-

ing to this site, the WonderWeb project officially finished in Juli 2004. The final report is HOR-

ROCKS(2005).
50 Just like the authors, we will use “perdurant” and “event” synonymously.
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Figure 3.3: Taxonomy ofDOLCE basic categories (taken fromMASOLO ET AL., 2003, p. 14)

(of perdurants) and spacial locations (of physical endurants).

• Physical/Temporal region/qualeFollowing GOODMAN (1951); GÄRDENFORS(2000) and

the philosophical concept of “tropes” (cf. BACON, 2002), DOLCE distinguishes between

qualities and qualia (singular: quale). In short, a quale is an individual quality’s position

in “quality space”. Having the same (single) quale e.g. justifies speaking of two roses

having the same color, i.e. their (distinct, individual) qualities have the same quale.

• Participation of an endurant to a perdurantEndurants can participate in perdurants during

the full event, or just at certain times.

• Temporal inclusion/coincidenceTemporal coincidence of perdurants (roughly) means that

both entities exist for the same time interval.

In addition to this part of the DOLCE ontology, the authors firstly introduce the(non-causal)

concepts of “unique participation”51 and “common quality change” to define the central category

of “basic quality change” (cf. LEHMANN ET AL ., 2004, sect. 4.3):

• Unique participationAt every time there is no other endurant thanx participating to a

certain evente.

51 Note that the subsequent expressions “unique participation” and “common quality change” are

not used in LEHMANN ET AL . (2004), where the authors define the corresponding predicates

(UPCC(x, e) andBQC∗(e, x, PQi)) without providing a descriptive term. We introduce them

for convenience reasons.
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• Common quality changeThere is an endurantx uniquely participating to an evente, and

a certain physical property ofx has different qualia at different times.

• Basic quality change“Perdurant capturing the change of an endurant along just one as-

pect/quality type”. This means that it fulfils the following conditions:

1. There is unique participation between the (changing) endurant and thechange (as an

event).

2. The endurant has a common quality change with respect to a certain pyhsical quality.

3. There is no part of the event, that temporally coincides with the event (likea hori-

zontal layer) and has a common quality change in whatever physical quality.52

In a further step, the authors introduce dependency relations between basic quality changes.

With respect to the “temporal relations between quality changes and of the identity relation be-

tween their participants” they introduce the following “three different kindsof genericexistential

dependence[. . . ] that individuate sets of quality changes” (LEHMANN ET AL ., 2004, sect. 4.4,

their emphasis; cf. that section for the following as well):

• Synchronic dependenceEg. if the shape changes, the spatial locations changes simultane-

ously. This does not hold vice versa.

• Backward dependenceThis relation covers the idea that some changes in one entity ne-

cessitate different changes of other entities that are temporally prior. If,for example, a

change in shape takes place, some change in the spatial location must have taken place.

• Forward dependenceThis is the “opposite” of backward dependency expressing that a

certain change is to be followed by another certain change.

For covering different simultaneous quality changes, the notions ofmultiple forward/backward

and mixed back/forward dependenciesare introduced.

With these expressions at hand, the first causal expression is introduced in a tern of more

restricted synchronous/forward/backward dependencies:

• Structural dependenceThis relation holds, if there is a synchronous dependency between

the basic quality changes of the same object. These represent very general laws based on

its “structure (ontological characteristics)” (LEHMANN ET AL ., 2004, sect. 4.4).

• Causality dependenceThese dependencies hold between types of quality changes non-

synchronically occurring on distinct objects.

52 We think that the corresponding definitions D3-D5 of LEHMANN ET AL . (2004) should express

“in any physical quality different to the one that the basic quality change is about” instead of “in

whatever physical quality”. A difference, however, that is not of relevance, here.
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• Circumstantial dependenceThese are connections between quality changes that take the

qualia into consideration:

– Intrinsic dependencewith respect tohowthe qualia change (e.g. if one increases, the

other decreases).

– Relational dependencecomparing the temporal or physical qualia of the partici-

pants’ qualities, e.g. spatial location at a given time.

Note thatcausalityis meant to refer to the relation between types of quality changes, while

the authors usecausationfor concrete, individual causal relations. And here is what they under-

stand as causation: Given a set of events that isstructurally closed(i.e. satisfies the structural

constraints of the system), thecausation relationholds, if at least one of the following conditions

hold (cf. LEHMANN ET AL ., 2004, sect. 4.5):

1. A forward or backward dependency holds between the two relatas’ basic quality change

types (or between a the set of events, synchronously dependent on the relata)

2. There are events that are synchronously dependent on the relata and condition 1 holds for

them

3. There is an (intermediate) additional event that is on the one hand connected with the first

relatum (under the conditions given above) and on the other hand connected to the second

relatum, forming a kind of “transitive mediator”.

3.2.1.2 Analysis

From an ontological perspective, the DOLCE theory has two important characteristics:

1. The relata are “basic quality changes” (or kinds of “basic quality changes”).

2. Causality is handled as a kind of constraint.

The first aspect refers to the ontological nature of the causal relata, which we did not yet

discuss. However, we will address this question here, without anticipatingtoo much of later

discussion (cf. sect. 5.1.1).

The second aspect locates the DOLCE theory within the regularity theories53, as the con-

straints are expressed by dependencies that are defined in terms of existential conditionals.54

53 The authors are aware of that: “We proposed to look at these constraintsas forms of dependencies

among event types that cover physical laws”. (cf. LEHMANN ET AL ., 2004, sect. 6).
54 As for example the definition of “synchronic dependence” (sect.4.4, notation slightly changed):

sQD(α, β) =df ∃(α(x)) ∧ ∀x(α(x) → ∃y(β(y) ∧ CNT (x, y) ∧ pc(x) = pc(y)))
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Thus, it is not only regularity, but what we introduced as “strict” or “100%” regularity (cf. sect.

2.1.2).

This leads us to the following problematic aspects of the DOLCE theory’s basicassumptions:

• Some causespreventchanges (i.e. they prevent change processes/events from happening)

or account for stability, like e.g. a break prevents a vehicle from moving, or like a sprin-

kler system prevents a fire or like the “strong force” in physics keeps quarks and gluons

together to form protons and neutrons. These causes are not covered in DOLCE

• Looking closely at changes, one may question whether it really is the change that causes

anything, and not the “final state” at the end of the change. If two changes lead to the

same “final state”, wouldn’t they have the same causal consequences?If you agree to this,

it seems like it is not the change that is causally relevant, but the “final state”(however it

is evoked).

• The first problematic consequence of relying on regularity55 is that (subsequent) effects

of a common cause erroneously are identified as cause–effect pairs.

• Secondly, strict regularity does not cover probabilistic causal relations, which are very

common in e.g. medicine.

However, although we do not agree to these basic assumptions, we acknowledge that the

DOLCE theory’s details (like the concept and the kinds of basic property changes, and the

connection to the non-causal parts of DOLCE) are impressingly comprehensive, and in fact the

most extensive formal ontological analysis up to now.

3.2.2 Cyc

Founded in 1984 with an initial budget of US$ 50 million (cf. COPELAND, 1997), the large-scale

knowledge base of Cyc – according to their developers – currently contains “nearly two hundred

thousand terms and several dozen hand-entered assertions about/involving each term.”(CYCORP

INC., 2008). And as we already mentioned in the introduction (cf. sect. 1.2.2),the makers of

Cyc decided to model causality by material implication.

3.2.2.1 Analysis

We already saw that material implication (taken as means to model causality) has thestrange

consequence that literally everything causally follows from a wrong assertion: “5 is prime” thus

becomes the cause of “there is a thunderstorm”. But this is not the only shortcoming.

55 As discussed in sect. 2.1.
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Material implication does not contain information about time. So this approach allows for

the implication’s consequence to be be prior in time than the antecedens. This allows for causal

relations that go backwards in time. A view many people would disagree with.

And finally Cyc falls into the trap of taking regularity as equivalent to causality. Every case

of non-causally connected regularities we’ve mentioned so far (Barometer–Storm, subsequent

symptoms of an underlying disease, etc.) would be understood as a cause–effect relation.

It should be noted that when searching the OpenCyc56 concept browser online, you will

find that the developers obviously have taken the early critics like those mentioned COPELAND

(1997) into account as they added some notes on the “causes” relation that connects propositions

in order to make the difference to the “implies” relation explicit. This contains the temporal or-

der (effect proposition must not precede cause proposition), as wellas the following: “a Causes

Prop Prop sentence presumes an underlying mechanism of causation.” (CYC FOUNDATION,

2008). We assume that this “mechanism of causation” is meant to prevent thecausal relation

from falling into the shortcomings mentioned above, however, OpenCyc does not tell us, how

this is done. Actually, no information on these “mechanisms” is given.

3.2.3 Sowa’s Theory

3.2.3.1 Continuous Processes

The most basic concept in the ontological theory of John SOWA (as laid out in (SOWA, 2000c)57,

which is the main reference for this section) is that of a mathematical function asused in physics,

on which SOWA then relies when defining “continuous processes”58:

“A continuous processP is a pair(F,M) consisting of a collectionF of differentiable

functions defined on a four-dimensional manifoldM .

• Every pointp of M has an openneighborhoodU that is homeomorphic to some sub-

set of four-dimensional Euclidean space,E4. The homeomorphism atp determines a

coordinate systemx1, x2, x3, x4 over the neighborhoodU .

• A path throughM is the image of a continuous map m from a real interval[a, b] into

M . The pointm(a) is called thebeginning, andm(b) is called theendingof the path.

• The coordinatex4 of a pointp, which may also be represented ast(p), is calledtime.

56 OpenCyc is a restricted open source version of Cyc, cf.http://www.opencyc.org.

57 According to (SOWA, 2000a), this text is based on contents of (SOWA, 2000b) plus some additional

material.
58 Formally, the function is the most basic concept, but how to tell which “collection” of functions

counts as a process? Every collection? If not, then whatever accounts for the process-identity is

even more basic.
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(SOWA, 2000c, sect. 2.1, his emphasis)

Conceptually, continuous processes are a certain kind of process (cf. fig. 3.4), whose “in-

cremental changes take place continuously” (SOWA, 2000c, sect. 1), and are thus opposed to

“discrete processes”, where changes “occur in discrete steps calledevents, which are interleaved

with periods of inactivity calledstates.” Depending on whether the beginning or ending are of

concern, continuous process may be divided into “Initiations” (without ending), “continuations”

(wihtout beginning and ending) and “cessations” (without beginning).

Figure 3.4: SOWA’ S process hierarchy (taken fromSOWA, 2000c, sect. 1)

With processes and functions, SOWA introduces the first causal notion – that of “causally

equivalent” functions:

Let P = (F,M) be a continuous process [. . . ].

• Two functionsf andg in F are said to becausally equivalentwith respect to a point

p in M if for any pointq in the past with respect top, f(q) = g(q).

(SOWA, 2000c, sect. 2.6, his emphasis)

In a next step, the author introducesconstraintson continuous processes:

“A constrainton a continuous processP = (F,M) is a predicate

C : 2F × M → {true, false}. If S is any subset of functions inF andU is any open

neighborhood ofM for whichC(S, p) is true for allp in U , thenC is said toconstrainthe

functions inS on the neighborhoodU .”

(SOWA, 2000c, sect. 2.4, his emphasis)
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The concept of a constraint, thus, is to restrict the values of a function’sprocesses. This

includes very detailed constraints (as e.g. in theoretical physics) as well as mere rule of thumb

in everyday life (SOWA, 2000c, sect. 2.4).

Certain constraints are then called “causal constraints”, which is the corecausal notion in

SOWA’ S theory:

Let P = (F,M) be a continuous process, andC a constraint onP .[. . . ]

• The constraintC is said to be acausal constraintif for any point p, the truth ofC

at p is unchanged when any functionf in F is replaced by another function that is

causally equivalent tof with respect top.

(SOWA, 2000c, sect. 2.6, his emphasis)

The notion of a causal constraint then is a means to discriminate between “law governed”,

“random” and “deterministic” processes depending on whether there is a causal constraint on

some or all functions of the process (on some neighborhood), or whether there is no such con-

straint, or whether the process is not only law governed, but even more constrained such that the

future values of the process’s functions are uniquely determined by values in the past.

The theory about continuous processes, however, is just one part of SOWAS causal theory. It

tries to cover discrete (i.e. step-by-step) connections as well.

3.2.3.2 Discrete Processes

SOWA introduces discrete processes as a directed, acyclic, bipartite graph consisting of two kinds

of nodes (“states” and “events”) and ordered pairs of nodes, the “arcs”. Depending on what

nodes are connected by arcs, the following terms are introduced: Whenever an arc connects two

nodes one of which is a state and the other an event, it is said that the first node has a “causal

influence” on the second. If the first node of a causal influence arc isa state (connected to

an event), the arc is called “input arc” and the state “input state”. If the first node of a causal

influence arc is an event, the arc is called “output arc” and the second (state) node “output state”.

The causal influence is defined as transitive (cf. SOWA, 2000c, sect. 3.1).

With the intermediate step of introducing “event [and state] types” (SOWA, 2000c, sect. 3.2),

the “preconditions” (which are certain input state types of an event type)and “postconditions”

(which are certain output state types of an event type) are called the “signature” of an event

(SOWA, 2000c, sect. 3.3).

The immediate causal interpretation of this model comes from understanding thepre- and

postconditions as causes and results of the event.

A second way, causality is covered by this theory is that there are axioms that connect the

universes of discrete and continuous processes (cf. SOWA, 2000c, sect. 3.3):
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Refinement A discrete process can be refined by replacing some state or event nodeby a new

discrete process.

Embedding Maps states and events of a discrete process into points in the continuous processes

manifold.

Approximation Whenever there is a discrete process, mapped into a continuous one, there

exists another discrete process, which is a) a refinement of the first discrete process, b) also

embedded into the continuous process, and c) a better approximation to the continuous one

(compared by terms oferror in prediction

3.2.3.3 Analysis

SOWA’ S theory is obviously rooted in two scientific domains: The definition of continuous pro-

cesses as functions on three-dimensional manifolds is very similar to how (theoretical) physics

describes the (causal) world, and his treamtent of discrete processes clearly stems from insights

of distributed systems modeling (e.g. like with Petri nets) in computer science.59

Both, typically, do not wear their causal content on their sleeves. In physics, it is all about

functions and the distribution of their values, while Petri nets are usually described as modeling

systems with concurrency and resource sharing (cf. PETRI NETS WORLD, 2007; DESEL ET AL.,

2004). Researchers in both fields, however, tend to use causal notions (like “A makesB do

/ become / act likeC”) in informal settings, which is not surprising, as – as laid out in the

introduction (cf. sect. 1.2) – they are modeling parts of the world that belongto the realm of

what we call connected by causality. SOWA’ S aim, therefore, is what may either be called giving

the scientific models a causal interpretation, or it may be termed rooting the concept of causality

in the universe of natural sciences’ findings. This, undeniably, is an important part of any causal

theory that does not want to find itself opposed to natural sciences, which are indeed our best

way to discover causal relations.

This being said, what is the conceptual content of SOWAs causal theory? In the case of

concrete processes, causes and effects are certain types of pre- and postconditions of event types

(the pre-and postconditions being states). The states and events are thenconnected by arcs of

causal influence.

Just like in DOLCE, SOWA seems to rely heavily on regularity: it istypesof pre- and postcon-

ditions of eventtypes, which means that similar events (given similar preconditions) by causal

influence are tied to similar outcomes. And again like DOLCE, causality is tightly related to

changes (which are not as elaborated as in DOLCE, but still arethe essential criterion to dis-

criminate between states and events).

59 Another case is the use of numerical methods to approximate e.g. differential equations.
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In the case of continuous processes, we have “causal equivalence” and “causal constraint”.

The first refers to two processes sharing a history of past values (compared to a point), the

second to a certain kind of condition that restricts the values of a process’s functions. Again,

it is the idea of regularity that can be found in these concepts. “Causal equivalence” is strict

regularity between values in the past, while “causal constraints” are regularities that pertain on

a process’s function in general.

Is it strict (100%) regularity, that SOWA is committed to? In the field of discrete processes,

thetypesseems to refer to strict regularity, but what about the “causal constraints” in continuous

processes? This is not easy to answer, as SOWA does not say much about what these constraints

may look like. All that he says is that they might be of different coarsenessvarying between the

“fundamental laws of electrodynamics or derived laws that relate averaged functions, such as

temperature, pressure, and heat” and “ ‘People can’t run much farther than a mile in 4 minutes’

or ‘People can’t spontaneously metamorphose into ducks or tomatoes”’ (SOWA, 2000c, sect.

2.8, emphasis removed). Mentioning the laws of thermodynamics may indicate thatstatistical

expressions might be part of the constraint, which might protect this theoryfrom falling into the

first major pitfall of regularity based theories.

But how about the second one, i.e. regularity does not necessitate causality? In our view, the

notion of a law, i.e. a causal constraint is too liberal, so it fails in non-causal but regular cases.

Every regularity may be regarded as a constraint, and those which fulfill certain conditions (e.g.

they are limited to “a region called thelight cone” (SOWA, 2000c, sect. 2.4, his emphasis)) may

be called causal constraints. Constraints that refer to the two effects of acommon cause would

fall under this concept, just as real causal relations.
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4 General Formal Ontology: GFO

4.1 GFO and the Project of GOL (General Ontological Language)

Development on the top-level ontology of GFO (General Formal Ontology)started in 1999 at

the University of Leipzig, as the central part of a project called “General Ontological Language”

(GOL, cf. HELLER and HERRE (2003, 2004b)). Over the years, however, several directions of

research have been followed that split the initial project into various fields, such that GFO is

now regarded as one (though important) component of a larger ontology–based framework for

knowledge representation (cf. ONTO-MED RESEARCHGROUP, 2008).

4.2 GFO Basics

Our first task is quickly to introduce those parts of GFO that are either directly connected to

our theory of causality, or necessary to get a grasp of the underlying “GFO-spirit”. For the sake

of brevity and readability, this overview will not present a finicky description of the relevant

concepts within the GFO-concept hierarchy, coveringall the reasons and problems, but we shall

use a more narrative style, which – according to our experiences – is easier to follow, and is not

that much in danger of distracting our concentration from the main topic, whichis causality.60

Starting with some background information, we should firstly be aware that GFO takes a

rather “realistic” point of view, when it comes to the entities captured. This is amajor differ-

ence to e.g. DOLCE, which is – as the authors point out – cognitively biased(cf. MASOLO

ET AL ., 2003, p. 13). So we will speak of modeling the world (or a domain) insteadof modeling

an agent’s view on the world. In the words of William J. CLANCEY: “The primary concern

of knowledge engineering is modeling systems in the world, not replicating howpeople think

[. . . ].” (CLANCEY, 1993).61 Secondly, calling it a “Top-Level Ontology” means that it is con-

cerned with those concepts that are domain-independent i.e. they are needed in almost every

specific domain.

60 For a detailed overview on GFO cf. HELLER and HERRE(2004a) and HERRE ET AL. (2007).

61 A discussion of various realistic/cognitive/constructivist approaches and their relationship to truth

(understood as correspondence) can be found in GUARINO (1995).
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Summarising, GFO aims at covering those entities in the world, that are so general that they

are of use in almost any concrete domain. And this is a good point to start oursurvey.

4.2.1 Time and Space

A nice example of highly domain independent concepts are those which express temporal and

spacial relations: A public library needs to know, where a certain book is at any given moment,

while biologists and medics for example are interested in certain processes that happen in certain

places at certain times.

The GFO theory of time is aglass continuum(cf. HAYES, 1996), and indeed, a glass stick

might be a good analogue to the temporal entities in GFO. Such a stick is spatially extended and

always has two endings:a anda′. And because it is all solid glass, there is no structure to be

seen within. But once you break it, two new endings,b andb′ are created out of the same point

of the old stick. So now you have two smaller sticks one with the endingsa andb and the other

with a′ andb′.

The GFO theory of time starts with temporally extended entities calledchronoidsthat have

exactly two (extremal)time-boundaries. And just like the stick can be broken at (nearly) any po-

sition, a chronoid can be split up everywhere. In other words: a chronoid has an infinite number

of inner time-boundaries that would become extremal boundaries of the resulting new chronoids.

Note that just as it does not make sense to call a stick the sum of all the endings any possible

breaking would create, a chronoid is not the sum of all its (inner) time-boundaries. Coming back

to the splitting, we find that it creates two boundaries out of “the same point” within a chronoid.

So there should not be a temporal difference between such a pair of boundaries. GFO introduces

the notion ofcoincidenceto indicate that such a pair is so tightly connected that there is no tem-

poral gap between them. They are, in a sense, “at the same time”, while still being different

entities. Using the concept of coincidence, GFO allows for seamlessly “(re-) connecting” two

chronoids with the old endings becoming a pair of coinciding time-boundaries,that belong to

the inner time-boundaries of the new, bigger, chronoid.

4.2.1.1 Summary

• There are two basic temporal entities: chronoids and time-boundaries.

• Every chronoid has two extremal and infinitely many inner time-boundaries (which are

extremal boundaries of sub-chronoids).

• Every part of a chronoid is a chronoid itself.

• A chronoid is not the sum of all its time boundaries.

• Pairs of time-boundaries (one right, and one left time-boundary) may coincide.
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A very similar route is taken in modeling space: The basic entities aretopoids, which have

boundaries, as well. The only difference is, that there are topoids of different dimensions, while

time is seen as a one-dimensional “line”.

4.2.2 Individuals

The aforementioned entities thatconstitutetime and space are relevant in order to establish

temporal or spacial relations between entities that arein time and space. The latter are called

individuals in GFO, and they share some characteristics of what philosophical literature calls

“particular” or “concrete” (cf. GRACIA, 1995; BUTCHVAROV, 1995).

4.2.2.1 Processes

As the basic temporal entity is a chronoid, we begin with those individuals that are extended in

time, like a 100-meter sprint, a series of lectures or the pumping of a person’sheart. GFO calls

those entitiesprocesses, and assigns a chronoid to each process, such that the chronoidframes

exactly that amount of time the process unfolds in. Another GFO expressionfor the special

relation between a process and its temporal extension is that the process isprojected onto a

chronoid.

The strong connection to chronoids leads to other features of GFO’s processes: Parts of

processes are processes themselves, and processes have boundaries, too, which can coincide, if

the processesmeet.62 Those boundaries will be subject to the next section.

4.2.2.2 Presentials

Processes cannot only be projected onto chronoids, they can beprojected on time-boundaries,

too. The result is a process boundary, and the entities found there are calledpresentials, as they

arenot extended in time. Another way to put this, is, that presentials have no temporalparts, or

that they fully exist at single time-boundaries.

An example would be a bottle at a certain timet1. It simply is a bottle. But if we take a

“snapshot” of a 100m-sprint, it is no longer a 100-meter sprint.

4.2.2.3 Summary

• Processes are entities that are extended in time or unfold in time.

• Processes can be projected onto their framing chronoids.

62 With the backup of GFO’s theory on chronoids, the meeting relation betweenprocesses is as pow-

erful as the “meet” relation of ALLEN (1989), so all the other relations of Allen and Hayes (“BE-

FORE”, “STARTS”, “DURING”, etc.) can easily be defined, too.
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• Processes can be projected onto time-boundaries, yielding presentials.

• Parts of processes are processes themselves.

• Process boundaries coincide if their chronoids extremal time-boundariescoincide. The

processes are then called meeting.

• Presentials are – in a temporal sense – the opposite of processes, because they exist fully

at a single time-boundary.

4.2.3 Universals

Having a look at presentials, a very basic relation between them is similarity. Some presentials

(bottles, cells, bones) can be grouped together by certain similarities. So webelieve, that this,

again, is something, a top-level ontology should be prepared to deal with.

GFO uses the classic notion ofuniversals, here, and introduces theinstantiation relation

between an abstract universal and the concreteinstance. The bottles on my table are similar (as

are all bottles), because they are instances of the same bottle universal. Being “abstract” means

that unlike individuals (and unlike time and space entities themselves), it does not make any

sense, to make temporal or spatial claims about universals. They do not exist at a certain time,

or at a certain space: they are in a very fundamental way out of time and space.63

To avoid confusion, it should be added, that two distinct universals may have the same in-

stances (extension), as in the well known example of “human” and “featherless biped”.

4.2.3.1 Summary

• Universals are abstract entities that can be instantiated.

• The (concrete) instances of a universal share similarities in some respect. So universals

group similar entities together.

• Unlike sets, two universals are not necessarily identical if they have the same extension.

4.2.4 Properties, Qualities, Values

If we have another look at the bottle on my desk, we find that it has certain characteristics, like

a particular colour or a certain weight. And having such characteristics is surely not specific to

a domain: neurons have specific shapes, newspapers have a certain layout, and singers’ voices

have a specific pitch. Again, this is something, a top-level ontology should contain.

63 To stress this fundamental difference, JUBIEN (1997) calls the separation of abstract and concrete

entities the “Great Line of Being”.
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Relying on the abstract/concrete distinction as introduced in section 4.2.3, we find that some

features should be abstract, making the following claim possible: “The two bottles on my table

have the same colour”. If “the same colour” was a concrete entity, it could not be in two different

places at the same time. It could not be literally “the same” if there are two distinctconcrete

objects. This abstract feature is calledpropertyin GFO.

On the other hand, we may refer to the concrete colour of one of the bottles.This entity, called

quality in GFO, is something different to the colour of the other bottle, or the colour ofsome

car driving by.

The abstract/concrete distinction was based on the relation to time and space. And its easy to

see, that properties/qualities indeed differ in this respect. Speaking about the lung of a smoker

having the same colour as asphalt, it does not make sense to ask whether thisabstract property is

left or right, or before, or after another property. With the concrete qualities, we can: The lung’s

particular grey existed only after several years of heavy smoking.

In order to give the full picture on properties et. al., we should note another distinction. The

one between “the lung has a colour” and “the lung is red”, or between “thistable has a particular

height” and “this table’s particular size is 0.95cm”. It is the difference between properties and

property values, or qualities andquality values, respectively.

Taking all these kinds of entities together, the “full”64 picture of, say, a rose being red, involves

the following entities :

1. The rose, which is a presential.

2. The abstract property colour.

3. The abstract property’s value “Redness”.

4. The concrete quality: the colour of that specific rose.

5. The concrete quality value: the particular redness of that specific rose.

These entities are related by several relations:

1. The abstract property and the concrete quality are connected byinstantiation, the property

being a universal.

2. Quality and presential are connected byinherence.

3. Properties (and qualities) and their values are connected by another relation calledvalue_of.

64 Depending on what you are about to model, you will not need all of theseentities, of course.

53



4 General Formal Ontology:GFO

4.2.4.1 Summary

• Properties are universals of certain characteristics.

• Qualities are instances of properties.

• Qualities and their bearers are connected by inherence.

• Properties have abstract property values, while qualities have concretequality values.
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After quite a lot of necessary background information and discussion onthe main topics of

causality analysis, the time has come to introduce the GFO proposal concerning causality.

It is split into three parts: first, the most fundamental relation cause(x, y) is formally intro-

duced with discussion of its components.65 Secondly, the basic causal relation is extended in

numerous ways to cover processes as causal relata. And thirdly, cases of parallel causal relations

are discussed.

5.1 The Basic Causal Relation

5.1.1 Presentials as Primary Causal Relata

If the question comes to the nature of the causal relata, the philosophical repertory is overwhelm-

ing (cf. SCHAFFER, 2003), but if the discussion is not directly focussed on the relata, they are

usually assumed to be events. As LEHMANN ET AL . (2004) puts it: “[. . . ] events have a strong

causal flavor, due to their tight relationship with the notions of change and time, and this makes

them appealing causal relata.”

And we agree that everyday language prefers events (which we will call processes, as intro-

duced in 4.2.2.1) as causal relata. Yet we think that serious problems may well arise, if we

take everyday language to express an ontological theory rather than being a pragmatically justi-

fied abbreviation of an underlying ontology that is shared by the speaker’s community. In other

words: While the surface structure seems to presuppose processes to be the primary causal relata,

fine-grained analysis might show that another kind of entity does play that role without chang-

ing the surface structure. And – after presenting the problems that arise,if we treat processes

as being primary – we will present such an analysis in the following, starting with presentials

that are connected by the basic causal relation cause(x, y), a relation which then can easily be

extended to cover processes (and claims about causally connected processes) as well.

65 Parts of this section’s arguments and results were first presented in MICHALEK (2005).
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5.1.1.1 Problematic Processes: Causal Relevance

Imagine a billiard ball running towards another ball which rests on the cloth. The second ball is

hit, and begins moving (while the first ball might change speed and angle of itsmovement).

Analysed in terms of processes, we would identify two of them, meeting at the twoballs’

collision. And now, the puzzle begins:66 What part of the first process is relevant to the second?67

Let’s divide processP1 in its two halves yieldingP1.1 andP1.2 (cf. fig. 5.1). The question now

becomes: What part ofP1 is relevant to the second processP2?

P P1 2

P1.1 P1.2

P1.2.1 P1.2.2 P2

P2

P1.2.2.1 P1.2.2.2

P2

Collision
Ball 1 running at ball 2 Ball 2 running

Figure 5.1: What part of processP1 is relevant to processP2?

Take the first half, i.e.P1.1, alone: It does not contain the collision and there is a temporal gap

betweenP1.1 andP2. So its status of being the one that causesP2 is quite questionable.68 The

second half, i.e.P1.2 that includes the collision, is definitely more promising, because givenP1.2

(alone, or even together with a differentP1.1), the result would be the same as in the unmodified

situation: P2 would be the same. Indeed,P1.2 seems to bearall the causal power of the first

process (with respect to the effects on the second process).

But if we disregard the first half, and concentrate on the second alone,we might raise the

same question again: Which of the two halves ofP1.2 is relevant toP2? The first half –P1.2.1

– has the same problem asP1.1 before, it does not contain the collision, and there is a temporal

gap betweenP1.2.1 andP2. The causal power seems, again, to lie in the second half, where the

same question will lead to the same answer: it always is the last part of everynew last part, that

66 The following argument is based on a thought experiment in JUBIEN (1997) which actually expli-

cates an idea of RUSSELL (1910) (cf. footnote 68, below).
67 Some readers might be tempted to deny that this question makes sense, asit might always be the

wholeprocess at stake, if it causes something. We will come to this objection at theend of the actual

section (p. 57).
68

As RUSSELL (1910, p. 184) puts it when discussing one of several definitions of causality: “earlier

parts are not contiguous to the effect and therefore (by the definition [introduced before]) cannot

influence the effect”.
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is causally relevant to the effect.

This leads us to the assumption, that it is the situation or state of affairs (both in anon-technical

reading, here)at the very end of the first process, that is causally relevant to the second process.

And looking at GFO, the very last piece is the presential at the processes’ end.

Objection: No Splitting The above argument relied on splitting the process that is the alleged

cause, and it might be objected, that this argument fails because it presupposes that it is a part of

the process that contains the causal power. The rival thesis would thenbe: it is always thewhole

process, that is causally relevant, and not one of its parts; least of all asingle time-slice (i.e. a

presential).

We believe, that this does not work for important parts of sciences that deal with causal re-

lationships. Think of physicists testing the predictions of a certain theory. They will proceed

by creating the initial conditions, the theory is about, and then check for the expected results.

However if the initial conditions contain, a certain low temperature for example,the scientists

are free in choosing the way of cooling. All that matters is generating the right (presential)

conditions. Without regard to the kind of process that comes up with these conditions.

The same holds for the billiard balls. It is not relevant,howthe first ball got its speed or angle

of movement. It may as well be struck by the queue, as be hit by another ball,or by some fancy

automata. The effect, i.e. the movement of the second ball would be exactly thesame, as long

as the situation at the very moment of touching is the same.

5.1.1.2 Problematic Processes: Temporal Connection

Taking processes as primary causal relata leads to another difficulty: How should cause and

effect be directly connected?69 Typically, the temporal extension of processes is modelled by

intervals of real numbers, but this is where the problem arises. Intervalsmay be open or closed,

so we get the following combinations (cf. fig. 5.2):

• The first interval is right-closed, the second left-closed. This includes two possibilities:

– The two intervals do not overlap. Because of the nature of the real numbers, this

immediately leads to the conclusion that there is a temporal gap between the two

processes. Thus the connection is not immediate.70

69 It might well be that there are causal chains, where the (first) cause and the (last) effect are not

immediately connected, but in this case, at least some intermediate elementshave to be directly

connected.
70 The problem of a temporal gap is nicely depicted in RUSSELL (1910, p. 187): “I put my penny in

the slot, but before I can draw out my ticket, there is an earthquake whichupsets the machine and

my calculations.”
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– The two intervals overlap. This, again, would not be immediate succession aswe

wanted the connection to be. Furthermore, the time-structure between causeand

effect would be confusing. Parts of the cause would be before the effect, some

would be synchronous to the effect, and some even after (several) parts of the effect.

• One of the two intervals is closed while the other is open. The problem with thesesolu-

tions is the ontological interpretation of an open interval, i.e. a process without a definite

endpoint. Either the cause has no definite ending, or the effect has no definite beginning.

In case of the billiard balls, this means that there is no definite time point, where thefirst

ball stops, or changes its speed or angle.

If we take our considerations from the last section into account: no point of an open inter-

val is able to carry the causal relevance, as there is always some other point being closer

to the point of “connection”.

• Both intervals are open. Here, the same problems arise, only this time in both, cause and

effect simultaneously.

Gap

No final point

Overlap

Gap

No initial point

Figure 5.2: Variations of connecting time intervals

If we take the GFO model of time (as introduced in sect. 4.2.1), these problems do not appear.

We simply have two chronoids whose time boundaries coincide, i.e. there is no temporal gap

between the boundaries, yet the boundaries stay two distinct entitites. Hence we have true initial

and ending points.

The final picture is as follows: processes are temporally framed by chronoids. Two chronoids

are temporally immediately connected by their extremal boundaries coinciding. The projec-

tion of time-boundaries onto processes are presentials and it is precisely the presentials at the
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coinciding time-boundaries that are connected by causality in our theory.71

A1. cause(x, y) → Pres(x) ∧ Pres(y) ∧ ∃t1, t2(at(x, t1) ∧ at(y, t2) ∧ coinc(t1, t2))

(The causal relata are presentials at coinciding time-boundaries.)

Looking at axiom A1, we find that the basic causal relation istrivially transitive (cf. C1

below) because there is no entity that can play the role of the connecting variable (b in C1) in

transitivity’s antecedent. Playing that role would require being both, the second participant in

one causal relation and the first participant in another causal relation. This, however would imply

that the connecting variable (b) is both a left time-boundary presential and a right time-boundary

presential, a distinction that that GFO explicitly introduces as being exclusive.

C1. cause(a, b) ∧ cause(b, c) → cause(a, c)

(Transitivity, trivial)

We call the causal relation’s transitivity “trivial” to stress that although the formal condition for

transitivity is fulfilled, this is the case only because there are no entities to whichtransitivity can

be applied. In short: transitivity holds, but can not be used (or: can not be of any use) in a logical

deduction.

5.1.1.3 Processes Do Still Belong to the Full Picture

The previous arguments against the use of processes as primary causal relata should not compro-

mise the vital role processes play with regard to presentials. The latter only exist as projections

of processes onto time boundaries, so there is no presential without its underlying process. Ad-

ditionally, the process it depends on might even be necessary for the presential to be able to have

certain properties72

All that is argued for, is that causality does not hold directly between processes, but only by

means of their presentials which could be called anindirectcausal connection. Section 5.2 deals

with causal relations within and between processes.

5.1.2 Regularity

Now that we have the relata, their relation is the next crucial point. Following our considerations

in the introduction, we will begin by covering the idea of regularity.

71 In the following formulae, axioms, definitions and corollaries (understood as immediate conse-

quences following from axioms and definitions) are marked with “A”, “D”, and “C”, respectively.
72 Like, e.g. an object having a certain velocity. Having a velocity is only possible if the object (here:

the presential) takes part in a process.
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Recall that regularity calls for a number ofsimilar causes (and effects) to be connected in a

certain way. Similarity, however, is why universals had been introduced in GFO, so we may use

them here, too: the causes (and the effects) must be grouped by being instances of universals.

Additionally, astatistical dependencymust hold between (the existence of) instances of the

cause and (the existence of) instances of the effect universals: Theexistence of the former must

heighten the probability of the existence of the latter.

5.1.2.1 Coincidence Pairs

To formalise regularity, we shall begin by introducingcoincidence pairsof presentials, i.e. pre-

sentials that exist at coinciding time boundaries:

D1. coincPair(x, y) = dfPres(x) ∧ Pres(y) ∧ ∃t1, t2(at(x, t1) ∧ at(y, t2) ∧ coinc(t1, t2))

(Coincidence pair: presentials at coinciding time boundaries)

The collection of all the coincidence pairs gives the uncountable universe (sample space)Ωcpr

of the subsequent probability considerations73

D2. Ωcpr = df{(x, y) | coincPair(x, y)}

(Universe of coincidence pairs)

5.1.2.2 Probabilistics

Following the standard textbook account on probability in uncountable sample spaces (cf. CHUNG

and AITSALHLIA , 2003), we introduce a non-empty setSr as aσ-algebra over subsets ofΩcpr :

A2. A ∈ Sr → Ā ∈ Sr

(Closed under complements)

A3. A1, A2, . . . ∈ Sr →
⋃

i Ai ∈ Sr

(Closed under countable unions)

This includes thatSr contains the empty set and is (via DEMORGAN’ S Law) also closed

under countable intersections.

Next, we introduce a functionPr assigning real numbers (probabilities) to members ofSr,

with Pr fulfilling the KOLMOGOROV conditions:

73 The indexr indicates that we deal with regularity, here.
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A4. Pr(A) ≥ 0 for A ∈ Sr

(No negative values)

A5. Pr(Ωcpr) = 1

(Total measure one)

A6. Pr(
⋃

i Ai) =
∑

i Pr(Ai) for Ai ∈ Sr with Ai pairwise disjoint, i countable

(σ-additivity)

The triple (Ωcpr , Sr, Pr) is a probability spacewhere we can use the common expression

of statistical dependencebetween two events74 C andD, i.e. “Probability ofC, given thatD”

denoted by “Pr(C | D)”. But what doC andD refer to, ontologically, if regularity is concerned?

5.1.2.3 Probabilistic Regularity

With the abbreviations

D3. coincPairUf(x, y, U) = dfcoincPair(x, y) ∧ x :: U

(Coincidence pair with universal’s instance in first participant)

D4. coincPairUs(x, y, U) = dfcoincPair(x, y) ∧ y :: U

(Coincidence pair with universal’s instance in second participant)

and the corresponding subsets ofΩcpr

D5. Ef (U) = df{(x, y) | coincPairUf(x, y, U)}

(Coincidence pairs with an instance ofU as the first participant)

D6. Es (U) = df{(x, y) | coincPairUs(x, y, U)}

(Coincidence pairs with an instance ofU as the second participant)

we can formally express a statistical dependency between instances of universals:

D7. statDepU(U1, U2) = dfP (Es (U2)) < P (Es (U2) | Ef (U1))

(Statistical dependence between universals, mediated by instances)

74 The term “event” is used here as common in probability theory. No ontological connotation in-

tended.
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Definition D7 now captures the idea that the probability to “find” an instance ofthe effect

universal is higher, if there already is an instance of the cause universal.75 Finally, we are able

to summarise the regularity condition on causality:

D8. statDepP(x, y, Uc, Ue) = dfx :: Uc ∧ y :: Ue ∧ statDepU(Uc, Ue)

(Statistical dependency between presentials w.r.t. universalsUe, Uc)

A7. cause(x, y) → ∃Uc, Ue(statDepP(x, y, Uc, Ue))

(Regularity Axiom)

5.1.2.4 Objection: Is Immanence at Stake?

Causal theories may be divided by their answer to the following questions: “Are the causal relata

immanent, or transcendent? That is, are they concrete and located in spacetime, or abstract and

non-spatiotemporal?” (SCHAFFER, 2003, sect. 1.1).

Our theory makes use of universals which clearly belong to the realm of theabstract. So let us

take some time to check whether this might turn out to be a flaw. The argument we will briefly

go into is that abstract entities cannot interact, or as an opponent to immanence puts it (when

defending abstract “facts” as causal relata): “Some people have objected that facts are not the

sort of item that can cause anything. A fact is a true proposition (they say); it is not something

in the world but is rather somethingabout the world, which makes it categorically wrong for

the role of a puller and shover and twister and bender.” (BENNETT, 1988, p. 22, his emphasis)

Translated to our approach the question is: as universals are not partof the (spatiotemporal)

world, are they categorically unsuitable for the role of pullers and shovers and twisters and

benders?

In order to answer this question, let us reconsider what role universals play in our theory.

To begin with, they are not the basic causal relata. The basic causal relation is defined on

coincidence pairs of presentials. And as presentials are a perfectly immanent kind of entities,

there should be no disagreement that they indeed can interact, or - in BENNETT’ S words –

“behave like elbows in the ribs” (BENNETT, 1988, p. 22). Universals come into play to group

75 “Higher”: compared to the probability of finding an instance of the effectuniversal in some arbi-

trary coincidence pair of the full universeΩcpr
.

Note that this is not the same as the probability being higher compared to the probability of find-

ing an instance of the effect universal in an coincidence pair where thecause-universal is absent

like for example HITCHCOCK understands probability raising: “[. . . ] A causes B if and only if

P (B|A) > P (B|Ā).” (H ITCHCOCK, 2002). Adjusted to his formulae, our approach would de-

mand thatP (B|A) > P (B). While the latter expression entails HITCHCOCK’ S, they are not

equivalent, cf. appendix A.
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similar presentials for comparison, as comparability (or: similarity) is a necessary constituent

of the concept of regularity. But even if we defined a relation of statisticaldependency between

universals (cf. D7), this relation is defined upon the universals’ instances. So in the end, we

find our causal relation being grounded in the realm of the concrete, spatio-temporally located,

immanent world.

5.1.2.5 Objection: May Causes Lower the Probability of Their Effects?

In the discussion on regularity we announced that we would check our theory against the claim

that there are situations in which the cause may lower its effect’s probability. So how would

such an argument go? Here is an example:

Pam throws a brick through the window. Meanwhile, Bob (a morereliable vandal), holds

his throw on seeing Pam in action, though had Pam not thrown Bob would have. [. . . ] Pam’s

throw is obviously a cause of the window shattering. But her throw is a probability lowerer

of the shattering: since Bob is a more reliable vandal, the window’s chances would have

been worse with Bob in action. Thus probability raising is not necessary for causation.

(SCHAFFER, 2001, p. 79)

Let us make it clear, where this analysis differs from what we said up to here. SCHAFFER

compares the actual situation to situations where not Pam, but Bob has thrownhis stone. So,

say, when Pam throws the brick, it hits its target in 10% of the cases, while Bobs has a success

rate of 90%. As Pam’s throw prevented Bob from throwing his brick, the window’s chances of

not breaking were lowered from 90% to 10%.

But this is not the only way to compare probabilities, here. Another reasonable way would be

comparing Pam’s throw with Bob’s not throwing to other situationswhere Bob does not throw.

There we still have the probability of the window’s being destroyed by Pam’sstone (10%) which

is definitely higher than the window breaking on it’s own. Given this comparison, our initial

claim about causes raising their effects probabilities still holds.

Figure 5.3: Does the cause lower the effect’s probability from 90% to 10%? (Taken fromSCHAFFER

(2001, p. 79).)

Let’s take SCHAFFER’ S diagram to illustrate the difference (cf. fig. 5.3). Advancing in time,

we find Pam’s throw first to prevent Bob’s throw, then shattering the window. So the actual
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situation may be compared to either the situation before Bob’s throw is prevented, or to the

situation after the prevention. SCHAFFER chooses the first option: if Pam had not thrown,

Bob would have. When taking the situation after Bob’s throw is prevented (i.e. Bob does not

throw), Pam’s throw becomes a probability raiser again and our approachis still valid. And when

carefully reviewing our approach, we find that there is good reason tonot follow SCHAFFER’ S

analysis: our basic causal relation is defined on coincidence pairs ofpresentials. They are not

extended in time. If the window’s shattering is addressed as an effect of the stone, the causal

setting is about the stone right when touching the window pane. And this clearly is after Bob’s

throw was prevented, so in the end, we might state that our theory is not affected by examples

of this kind.76

5.1.3 Counterfactual Dependency

As presented in section 2.2, counterfactual dependency has the following conceptual constituents:

• Alternative situations and the relation ofsimilarity between them

• Clusters of similar situationsneeded for the probabilistic aspects. The cluster around the

initial situation, e.g. gives the initial probability of the effect.

• Causally similarand causally contrastivealternative situations – causally similar ones

contain the cause, contrastive ones don’t.

• Supportiveandunderminingcausally contrastive alternative situations

– Non-probabilistic: undermining situations contain the effect (although the cause is

missing), supportive ones don’t.

– Probabilistic: undermining clusters of situations are those, where (the cause is absent

and) the probability of the effect is lower or equal to the initial probability. Insup-

portive clusters, it is higher. (This covers the non-probabilistic variantas a special

case.)

• A notion ofdistancewith respect to a reference cluster that allows for comparing clusters.

So far we loosely spoke of “situations”, but as our considerations on thecausal relata (cf. sect.

5.1.1) have shown, it is presentials that are causally relevant in the world of concrete entities.

76 Secondly, the argument relies on the causal relation being transitive (Pam’s throw causing Bob not

to throw which causes the window not being shattered by Bob’s brick). We, however, do believe

that although there is some kind of transitivity in certain circumstances, the basic causal relation

cannot be used transitively. (In more detail: it is trivially transitive, but there cannot be any b such

that cause(a, b) ∧ cause(b, c), cf. C1 on p.59).
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So we need to adjust the concepts above. And we do so by replacing the “situations” by two

presentials that build a coincidence pair. So what we need now becomes:

• Coincidence pairs of presentials, and a notion of similarity between presentials.

• Clusters of similar coincidence pairs, initial probability

• Causally similar and causally contrastive clusters of coincidence pairs – causally similar

are those, whose first participants are similar to each other and contain an instance of the

cause universal, while contrastive coincidence pairs are similar to each other but do not

contain an instance of the cause universal in the first participant.

• Supportive and undermining clusters or causally contrastive coincidence pairs

– Non-probabilistic: undermining coincidence pairs’ second participants are instances

of the effect universal (although the cause is absent in the first participant of this

pair), in supportive coincidence pairs, there is no instance of the effect universal in

the second participant (i.e. the effect is missing as the cause is missing).

– Probabilistic: in undermining clusters of coincidence pairs, the probability ofthe

effect (as instance of the effect universal in the second participant)is higher or equal

to the initial probability (although the cause is absent in this pair). In supportive

pairs, it is lower (so an absent cause lowers the effect’s chance).

– A (distance) relation that orders clusters of coincidence pairs with respect to a refer-

ence cluster.

5.1.3.1 Similarity and Contrast

Similarity andcontrastbetween presentials is modelled by instances of universals77. The uni-

versal might be made explicit or not:

D9. similarPres(x, y) = dfPres(x) ∧ Pres(y) ∧ ∃U(Univ(U) ∧ x :: U ∧ y :: U)

(Ordinary similarity between presentials)

D10. similarPresU(x, y, U) = dfPres(x) ∧ Pres(y) ∧ x :: U ∧ y :: U

(Similar presentials w.r.t. a universal)

D11. contrastPresU(x, y, U) = dfPres(x) ∧ Pres(y) ∧ ¬(x :: U) ∧ y :: U

(Contrastive presentials w.r.t. a universal)

77 We will use the GFO symbol :: to express instantiation.

So “a is an instance ofU ” will be formalized asa :: U (cf. HERRE ET AL., 2007, p. 53).
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This implies the following:

C2. Pres(x) ∧ x :: U → similarPresU(x, x, U)

(Reflexive “self-similarity” of a presential)

C3. similarPresU(x, y, U) ↔ similarPresU(y, x, U)

(Symmetry on fixed universal)

C4. similarPresU(x, y, U) ∧ similarPresU(y, z, U) → similarPresU(x, z, U)

(Transitivity on fixed universal)

C5. ¬contrastPresU(x, x, U)

(Irreflexivity)

C6. contrastPresU(x, y, U) ↔ ¬contrastPresU(y, x, U)

(Asymmetry on fixed universal)

5.1.3.2 Clusters of Presentials and of Coincidence Pairs

The relation of similarity with respect to a certain universal is the basis for defining clusters of

presentials on which clusters of coincidence pairs (what we hitherto called“similar situations”)

do rely:

D12. SimilarPresU(Us) = df{x | x :: Us}

(Us-cluster of similar presentials centered around a certain universal)

D13. SimilarCpU(Us) = df{(x, y) | coincPair(x, y) ∧ x :: Us}

(Similar coincidence pairs whose first participants areUs-clustered)

D14. ContrastCpU(Us) = df{(x, y) | coincPair(x, y) ∧ ¬(x :: Us)}

(Contrastive coincidence pairs whose first participants are outside

theUs-cluster)

Within the clusters of coincidence pairs there are those that have (or explicitly do not have)

an instance of a certain universal as the first participant . These clusters – we labeled them

“causally similar / causally contrastive” – build the basis for counterfactual dependency and all
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its probabilistic aspects78:

D15. CsimilarCpU(Us, Uc) = df{(x, y) | x :: Us ∧ x :: Uc}

(Us-cluster of causally similar coincidence pairs, i.e. with first

participant being an instance of (the cause) universalUc)

D16. CcontrastCpU(Us, Uc) = df{(x, y) | x :: Us ∧ ¬(x :: Uc)}

(Us-cluster of causally contrastive coincidence pairs, i.e. the first

participant is not an instance of (the cause) universalUc)

D17. Ωi = df CsimilarCpU(i)

with i ∈ {Us, Uc | Univ (Us) ∧ Univ (Uc)}

(For abbreviation purposes; Universe of (causally similar)

coincidence pairs restricted toUs andUc)

D18. Ωī = df CcontrastCpU(̄i)

with i ∈ {Us, Uc | Univ (Us) ∧ Univ (Uc)}

(For abbreviation purposes; Universe of (causally contrastive)

coincidence pairs restricted toUs and contrastive w.r.t.Uc)

5.1.3.3 Probabilistics

Following the strategy we used for covering probabilistic regularity (cf. sect. 5.1.2) we define

non-empty setsSi asσ-algebrae over subsets of clusters of coincidence pairsΩi:

A8. A ∈ Si → Ā ∈ Si

(Closed under complements)

A9. A1, A2, . . . ∈ Si →
⋃

j Aj ∈ Si

(Closed under countable unions)

78 You will note that the setSimilarCpU from definition D12 in the subsequent formulae, is the same

asEf , defined before in D5. This probably calls for an explanation: in the sectionon regularity,

the focus was on whether the first or the second participant of a coincidence pair was an instance

of some universal; therefore we introducedEf andEs . In the present section, however, the focus

lies on similarity and contrast (SimilarCpU andContrastCpU), so we took the freedom to define

an equivalent expression in order to symbolically (i.e. with respect to thesets’ “names”) support the

line of logically constructing our account of counterfactual dependency on similariy.
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Each of theSi contains the empty set and is closed under countable intersections.

The functionsPi, then, assign real numbers (probabilities) to members ofSi, with Pi fulfilling

the KOLMOGOROV conditions:

A10. Pi(A) ≥ 0 for A ∈ Si

(No negative values)

A11. Pi(Ωi) = 1

(Total measure one)

A12. Pi(
∑

j Aj) =
∑

j Pi(Aj) for Aj ∈ Si with Aj pairwise disjoint,j countable

(σ-additivity)

The triples(Ωi, Si, Pi) areprobability spaces(defined over causally similar clusters) we will

use for expressing theinitial probability as well assupportiveandunderminingclusters of coin-

cidence pairs.

Note that the same apparatus can be applied to theΩī (i.e. causally contrastive clusters of

coincidence pairs that explicitly lack an instance of the cause universal) yielding the probability

spaces(Ωī, Sī, Pī), respectively.

Let us now introduce two more abbreviations to express the probability of theeffect – i.e. of

“finding” an instance of the effect universal – in the second participant of coincidence pairs that

belong to either causally similar or causally contrastive clusters:

D19. Pi(Ue) = dfPi({(x, y) | CsimilarCpU(i) ∧ y :: Ue})

with i ∈ {Us, Uc | Univ (Us) ∧ Univ (Uc)}

(Probability of effecte in causally similar clusterUs)

D20. Pī(Ue) = dfPī({(x, y) | CcontrastCpU(̄i) ∧ ¬(y :: Ue)})

with i ∈ {Us, Uc | Univ (Us) ∧ Univ (Uc)}

(Probability of effecte in causally contrastive clusterUs)

5.1.3.4 Supportive and Undermining Clusters

Compared to a reference cluster where the cause is present, a second cluster is calledsupport-

ive79, if it does not contain the cause, and the probability of the effect is lower than in the

79 I.e it supports the causal claim one might make if only observing the reference cluster.
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reference cluster. If the probability of the effect is higher or equally high (even though the cause

is missing), it is calledundermining:

D21. supportiveCluster(Us, Ur, Uc, Ue) = dfPUr,Uc(Ue) > PUs,Uc
(Ue)

(U -cluster supportive w.r.t.Ur-cluster and cause/effect universals)

D22. underminingCluster(Uu, Ur, Uc, Ue) = dfPUr,Uc(Ue) ≤ PUu,Uc
(Ue)

(U -cluster undermining w.r.t.Ur-cluster and cause/effect universals)

5.1.3.5 Distance Between Clusters

The next element needed isdistancebetween causally contrastive clusters with respect to a

reference cluster.

LEWIS gives some rough ideas of what the distance between possible worlds canrely on,

like “similarities in matters of particular fact trade off against similarities of law” (LEWIS, 1973,

p. 560). However, he accepts that the vagueness of what he calls “comparative overall similarity”

(LEWIS, 1973, p. 559) (which take several of these “rules” and assigns different weights to each

of them) cannot be overcome as it simply is part of causality (cf. LEWIS, 1973, 560).

We follow his analysis and accept this limitation of our theory.80 The distance thus is intro-

duced as a primitive relation between three clusters of coincidence pairs that means “clusterU1

is closer to clusterUr (the reference cluster) thanU2 is toUr”:

A13. closerToThan(U1, Ur, U2) → Univ (U1) ∧ Univ (Ur) ∧ Univ (U2)

(Based on universals around which the clusters are centered)

A14. closerToThan(U1, Ur, U2) ∧ closerToThan(U2, Ur, U3) → closerToThan(U1, Ur, U3)

(Transitivity w.r.t. reference universal)

A15. closerToThan(U1, Ur, U2) → ¬closerToThan(U2, Ur, U1)

(Asymmetry)

A16. ¬closerToThan(U1, Ur, U1)

(Irreflexivity)

5.1.3.6 Probabilistic Counterfactual Dependency

Counterfactual dependency now holds if there is a supportive cluster that is closer to a reference

cluster (representing the actual situation in which both, cause and effecttook place) than every

80 It should be noted, though, thatpragmatically, science indeed has developed ways to distinguish

between sensible and far fetched alternatives when performing experiments.
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underminig one:

D23. counterfactDep(Uc, Ue, Ur) = df∃U(U 6= Ur ∧ supportiveCluster(U, Ur, Uc, Ue)

∧ ∀Uu(underminingCluster(Uu, Ur, Uc, Ue) → closerToThan(U, Ur, Uu)))

(Counterfactual dependency with respect to a reference universal)

On the level of presentials, counterfactual dependency demands that the presentials are in-

stances of universals that are connected by counterfactual dependency as defined above:

D24. counterfactDepP(c, e, Uc, Ue, Ur) = dfcoincPair(c, e) ∧ c :: Uc ∧ e :: Ue

∧ counterfactDep(Uc, Ue, Ur)

(Counterfactual dependency between presentials, mediated by cause,

effect and reference universal)

This leads to the final formulation of the counterfactual condition on causality:

A17. cause(c, e) → coincPair(c, e) ∧ ∃Uc, Ue, Ur(counterfactDepP(c, e, Uc, Ue, Ur))

(Axiom of counterfactual dependency)

5.1.3.7 Sufficient Conditions

Axioms A8 and A17 presented the two necessary conditions of regularity and counterfactual

dependency that causality relies on. In our view, the conjunction of theseconditions (based on

the same cause and effect universals) are in turn sufficient for causality:

D25. causeexpl(c, e, Uc, Ue, Ur) = dfcoincPair(c, e) ∧

c :: Uc ∧ e :: Ue ∧ statDepU(Uc, Ue) ∧ counterfactDep(Uc, Ue, Ur)

(Causal relation with cause and effect universals made explicit)

A18. causeexpl(c, e, Uc, Ue, Ur) → cause(c, e)

(Explicit causal relation implies basic causal relation)

5.1.4 Manipulability Recreated

As explained in sect. 2.3.4, we believe that the manipulability intuition (in short: if there is a

causal relation, the effect must be modifiable by manipulating the cause) is covered by regularity

and counterfactual dependency as introduced above – and thus doesnot need to be introduced

separately. Now that we have our theory at hand, we shall show how it covers what we figured

out to be the manipulationist’s main points:
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• An effect’s properties may be changed by changing the cause’s properties.

• Effects may be changed by the non-existence of the cause.

The first point can be made easily: the basic causal relation holds betweenpresentials, and

this is exactly, what an object’s propertiesare. The color of a rose, or the weight of a stone are

not extended in time: at any point in time, we can say what color the rose has,or what weight

a stone has. This means that causal relations between properties are perfectly covered by our

theory.

Now it may well be that some properties require a process taking place like a bullet’s velocity

or a billiard ball’s momentum. Moreover, if we had a look at some flying bullet or amoving

billiard ball at a single time boundary, it will not move, apparently so it might be tempting to say

that there are properties which are not presentials. However, we knowthat this bullet or billiard

ball is (ontologically) different to non-moving bullets or billiard balls. Even if this difference is

not visible at the single time boundary. We can still model it by a presential.81

Now, having a look at how GFO models properties and their values (cf. sect. 4.2.4), we find

that the change of a property’s value is modeled by one value being removed by an (ontologi-

cally) different value. So changing properties already includes one entity coming into existence,

while the other is no longer there. Additionally, if whole objects should disappear, this will

immediately change the clusters of alternative situations that both, regularity and counterfac-

tual dependency depend on. In the end we can conclude that the relevance of both, changing a

cause’s properties and removing a cause completely, indeed is contained inour theory.

5.2 Extending the Basic Relation: Processes

Starting with the basic relationcause(x, y) relating presentials as defined above, we can now

go on to extend it to cover processes as causal relata as well. This does not add to the concept of

causality as introduced up to here (it still is all about regularity and counterfactual dependency

between presentials), but simply provides means to connect the basic causal relation to a wider

range of GFO ontological categories.

5.2.1 Processes and Presentials

Recall the two projection relations of GFO. The first, prt(P, C), connects a processP and a

chronoidC (which is roughly the time-interval, the process takes place in; cf. fig. 5.4).The

second, prt(P, t, p), projects a chronoid’s time-boundaryt on the process yielding a presential

p (cf. fig. 5.5). If C framesP and if the time-boundaries are exactly the extremal left and right

81 Additionally: manipulability does not rely oneveryproperty of the effect being manipulable by

alteration of the cause.
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time-boundary ofC, we can call the corresponding presentialspresential at the left/right end of

processP (cf. fig. 5.6).82

P

C

Figure 5.4: ProcessP projected onto chronoidC with its left and right boundary.

P

C

t 1 t 2

p p

1

21

Figure 5.5: ProcessP projected onto a right and a left (inner) time-boundaryt1 and t2, respectively,

yielding presentialsp1 andp2.

P

C

p p1 2

Figure 5.6: Process P with PaLp (p1, P ) and PaRp (p2, P ).

D26. PaLp(p, P ) =df ∃C, t(Proc(P ) ∧ Chron(C) ∧ prt(P, C) ∧ lb (t, C) ∧ prt(P, t, p))

(Presential at left end of process)

D27. PaRp(p, P ) =df ∃C, t(Proc(P ) ∧ Chron(C) ∧ prt(P, C) ∧ rb(t, C) ∧ prt(P, t, p))

(Presential at right end of process)

We will now explore different possible extensions of the basic causal relation, starting with

merely technical definitions (i.e. they are of rather marginal modeling use) which will lead to the

82 An overview of the symbols used in the following diagrams can be found in appendix B (p. III).
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notion of causal adhesion which – in our belief – isthe fundamental relation from a modeling

point of view.

5.2.2 Dual-Boundary Causality

5.2.2.1 Heterogeneous Causality

Combining the basic causal relation with PaRp and PaLp allows us to introduce a notion of

heterogeneous causalitybetween a presential and a process. The main idea being that the basic

causal relation holds between the presential and the PaRp /PaLp of the process in question (cf.

fig. 5.7 and 5.8).

D28. causehetPres(p1, P ) =df ∃p2(PaLp(p2, P ) ∧ cause(p1, p2))

(Heterogeneous causation between presential and process)

D29. causehetProc(P, p2) =df ∃p1(PaRp(p1, P ) ∧ cause(p1, p2))

(Heterogeneous causation between process and presential)

p 2p1

t t1 2

P

Figure 5.7: Heterogeneous causation connecting presentialp1 and processP .

t t1 2

p 1 2pP

Figure 5.8: Heterogeneous causation connecting processP and presentialp2.

5.2.2.2 Sequential Causality

Starting with heterogeneous causation, it is not difficult tosequentiallyconnect two processes

causally. We use the same mechanism as in the heterogeneous cases above, but “in both direc-

tions”, using PaLp and PaRp , respectively (cf. fig. 5.9).
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5 A GFO Theory of Causality

D30. causeseqProc(P, Q) =df ∃p1, p2(PaRp(p1, P ) ∧ PaLp(p2, Q)

∧cause(p1, p2)))

(Sequential process causation)

P

p 2p1

Q

t t1 2

Figure 5.9: Sequential causality between processesP andQ via the causal relation between PaRp (p1, P )

and PaLp (p2, Q), that exist on coinciding time-boundariest1 andt2.

5.2.3 Multi-Boundary/Continuous Causality

The characteristic feature of the following causal relations is, that there are no longer only two

time-boundaries involved (and thus not only two presentials) but infinitely many. This is due to

the fact that a chronoid in GFO has infinitely many inner boundaries, which are the boundaries

of sub-chronoids (i.e. proper temporal parts of a chronoid).

5.2.3.1 Causal Cohesion

The main aim ofcausal cohesion– besides introducing the core idea of multi-boundary con-

tinuous causality – is to cover the difference between processes that have an internal causal

structure, while others lack it. This difference can be modeled in terms of ourapproach by stat-

ing that the following holds within the process:every pair of presentials at coinciding (inner)

time-boundaries is connected by the basic causal relation(cf. fig. 5.10 and 5.11).

D31. causecoh(P ) =df ∃C(Proc(P ) ∧ Chron(C) ∧ prt(P, C)∧

∀t1, t2((innertb(t1, C) ∧ innertb(t2, C) ∧ coinc(t1, t2))

→ ∃p1, p2(prt(P, t1, p1) ∧ prt(P, t2, p2) ∧ cause(p1, p2))))

(Causally cohesive process)

Examples for causally coherent processes are the rotation of all the cogs and springs in a me-

chanical watch, and the movement of the planets in the solar system. The following description,

on the other hand, refers to a process that clearly lacks causal cohesion:83

83 If you are interested in a broader discussion of the so called problem of “causal processes”, i.e.

whether processes that are not causally coherent should be called processes at all, DOWE (2004)

gives an overview.
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P

Figure 5.10: Causal cohesion within (the full length of) processP . (Detailed view on what happens

within P is given in fig. 5.11.)

p 2p1

t t1 2

Figure 5.11: Causal cohesion in detail: causally connected presentialsp1 andp2 at every inner pair of

coinciding boundariest1 andt2 within P .

“The Moon’s umbral shadow first touched down on Earth at 0836 GMT (0936 BST), at

sunrise on the east coast of Brazil.It then raced across the Atlantic Oceanbefore making

African landfall in Ghana at 0908 GMT (1008 BST), where residents of the capital Accra

filled the streets to view the event.”

(BBC NEWS WEBSITE, 2006, emphasis added)

The “racing” of the moon’s shadow may indeed be described as a process, but the shadows

we get at this process’s time-boundaries do not stand in cause–effectrelations to each other as

causal cohesion would require.

5.2.3.2 Causal Adhesion

While causal cohesion addressed a single process,causal adhesionis our expression for tempo-

rally overlapping processes, that are causally connected throughoutthis overlap (cf. fig. 5.12):

D32. causeadh(P, Q) =df Proc(P ) ∧ Proc(Q)∧

∃C(Chron(C) ∧ prt(P, C) ∧ prt(Q, C)∧

∀t1, t2((innertb(t1, C) ∧ innertb(t2, C) ∧ coinc(t1, t2))

→ ∃p1, p2(prt(P, t1, p1) ∧ prt(Q, t2, p2) ∧ cause(p1, p2))))

(Processes continuously and entirely connected by causal adhesion)

The concept of causal adhesion may come in various special ways, someof which are pre-

sented in the following.
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P

Q

Figure 5.12: ProcessesP and Q, continuously and entirely connected by causal adhesion. (Detailed

view on what happens within is given in fig. 5.13.)

p

2p

1

t t1 2

Figure 5.13: Causal adhesion in detail: Causally connected presentialsp1 and p2 at every pair of

coinciding time-boundariest1 andt2. p1 andp2 belong to processesP andQ, respectively.

5.2.3.3 Adhesive Overlap

The probably most relevant causal relation between processes is that of adhesive overlap, which

means that two processes overlap in time and are connected by causal adhesion throughout the

overlap (cf. fig. 5.14).

D33. causeov(P, Q) =df ∃P1, Q1(procpart(P1, P ) ∧ procpart(Q1, Q) ∧ causecoh(P1, Q1))

(Causally adhesive overlap)

P

Q

1P

Q1

Figure 5.14: ProcessesP andQ with overlapping partsP1 andQ1 that are connected by causal adhe-

sion.
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Example: Central Elastic Collision (Billiard Balls’ Pulse Transmission) This is the place

for a more realistic model of the billard balls’ collision, whose slimmed down brother (where

the momentum is exchanged instantaneously) helped us in the beginning.

What would the “full” picture look like, now? The semi-natural language description (en-

riched by basic physics) is:

• Ball 1 is moving towards ball 2. Ball 2 rests on the cloth.

• The balls. Ball 1 comes to a full stop, while ball two is accelerated to it’s final velocity.

• Ball 1 rests on the cloth (assuming a central collision with balls of equal size and weight),

while ball 2 moves with constant velocity (no friction, here).

This, very naturally, calls for two processes that represent the movement of the first ball

(including the deceleration) and the movement of the second ball (including the acceleration). As

deceleration and acceleration take place over the same period of time, the two processes overlap.

But does the overlap fulfil the condition that is posed on adhesively overlapping processes?

The condition (as given in D33) is: At every pair of coinciding boundaries during the overlap,

there must be a presential at the left boundary of this pair (belonging to the“first” process) and

there must be a presential (belonging to the “second” process) at the right boundary. And these

presentials must be connected by the basic causal relation. And indeed, every pair consists of

presential billiard balls with their respective momentum, and these pairs fulfil theconditions

for causal connection: the momenta are connected by regularity (i.e. the lawof conservation of

momentum) and the second ball’s movement would look very different, if the first ball would

not hit it.

Example: Periodical Stimulation (Pushing the Swing) Another example where (causally)

adhesively connected parts of processes play a role is when, say, a child is siting on a swing, and

her friend helps her to swing really high by pushing her forward whenever the first girl reaches

the lowest point of the swing’s movement. With respect to causality, we have two processes

again: the girl’s swinging, and the movements of her friend. And at regularintervals, those two

are connected by causal adhesion as depicted in fig. 5.15.

You may feel uneasy about this model, as obviously, the “real” causal relationship is not one-

way as depicted here, but goes into both directions. From pusher to swing, and from swing to

pusher. It is, in short, an interaction. And we shall deal with interactions inthe following.
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Figure 5.15: Processes periodically overlapping causally cohesively.

5.2.4 Reciprocity (Quartet of Interaction)

Physics tells us that forces always come in pairs84, and we certainly do find this reciprocity in

many causal relations. Again, consider the stone that is thrown at the glasspane. Not only

does the stone shatter the window, but the window influences the stone’s flight (by slowing it

down, for example). In modeling this situation, we may want to explicitly expressthe reciprocity

without losing the difference between causes and effects (an entity must not be both cause and

effect). How may this be modeled in our framework?

The interesting part of the whole story obviously is the time between the stone touching the

pane and the stone leaving the (destroyed) window. It’s not difficult to see that the connection

between stone and pane can be modeled by adhesive overlap (just like thebilliard balls in sect.

5.2.3.3). But how is the “reaction”, i.e. the window influencing the stone’s flight, to be modeled?

Again, we use the notion of adhesive overlap: There are two processes (window, stone), and

for every pair of coincident time-boundaries, we find

• a (window) presential at the right time-boundary,

• a (stone) presential at the left time-boundary, and

• a relation between those presentials, that fulfils the conditions of the basic causal relation.

This makes the window a cause for the stone’s way of movement (deceleration, change of

direction, etc.). So window–stone is a case of causal overlap, too.

Additionally, we have two cases of causal cohesion: the movement of the stone is causally

related to “itself” while the window (e.g. its structure) is causally related to how itbehaves after

the ball touches it. So the final picture is that of aninteraction quartet, as shown in figures 5.16

(schematic diagram) and 5.17.

84 Newton’s third law of motion: “Actioni contrariam semper & aequalem essereactionem [. . . ].”

(NEWTON, 1686, p. 13) typically translated as: “To every action there is an equal and opposite

reaction.”
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p p

pp

1.1 1.2

2.1 2.2

Figure 5.16: Interaction quartet.p1.1 andp1.2 depict the stone before and after the collision, whilep2.1

andp2.2 represent the window. The dotted arrows represent causal adhesion (ball–window and window–

ball), the others causal cohesion (ball–ball, window–window).

P

Q

Figure 5.17: Interaction quartet. Causal adherence within processesP and Q, and causal adhesion

betweenP andQ over a certain interval.

Note, that although expressing reciprocity, our model does not give upthe difference between

cause and effect (no presential is both cause and effect) and it maintains the causeprecedingthe

effect.

The complexity of this model might be objected, but (following the four possibleways from

the left to the right in figure 5.17) it already covers the causal relations relevant to the following

statements:

• The ball’s flight makes the window shatter (cf. fig. 5.18).

• The window slows the ball down and changes its flight’s direction (cf. fig. 5.19).

• The initial velocity of the ball influences the final velocity of the ball (cf. fig.5.20).

• The structure of the glass pane determines the way the window shatters (cf.fig. 5.21).

5.2.4.1 Causally Coherent Transition

Sometimes, it is useful to refer to the beginning and the end of a causally coherent process, so

we introduce the relation of acausally coherent transition, whichconnects the presentials at the

first with those at the last boundary of a causally coherent process:

D34. causetransition(p1, p2) =df ∃P (causecoh(P ) ∧ PaLp(p1, P ) ∧ PaRp(p2, P ))

(Causal Transition between presentials at start/end of Process)
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B

W

Figure 5.18: Interaction quartet.B represents the ball’s process,W the window’s. Solid black line:

effect of ball on window.

B

W

Figure 5.19: Interaction quartet. Solid black line depicts effect of window on ball.

Note that the presentials at stake are not themselves connected by causality. They are simply

at the beginning or end of a causally coherent process.

Causal Propagation (Causality Extended in Time) Starting with a causally coherent transi-

tion, it’s tempting to think of such a transition in which the coherent processpropagatescausa-

tion such that the presentials at the processes beginning and at its end arethemselves connected

by regularity and counterfactual dependency.

However, we do not follow this idea, here, for when analyzed carefully, it appears that causal

propagation cannot be introduced as an extension of our basic causalrelation but is a rather

different relation:

• The time-boundaries of the presentials connected by causal propagationdo not coincide

(as required by the basic causal relation).

• Regularity and counterfactual dependency are themselves defined on coinciding time-

B

W

Figure 5.20: Interaction quartet. Solid black line depicts effect of ball on itself.
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B

W

Figure 5.21: Interaction quartet. Solid black line depicts effect of window on itself.

boundaries, so new relations would need to be introduced.

• The basic causal relation is defined on a pair of right-boundary and left-boundary presen-

tials while causal propagation requires a pair of left-boudary to right-boundary.

5.3 Parallel Causal Relations

Even though many of the examples used in the sections above did not make it explicit (besides

when preemption was concerned, cf. sect. 2.2.4), our theory allows foran entity being causally

related to more than one other entity. This includes:

1. Several causal relations holding at the same time, sharing the “cause entity”, e.g. the

air pressure’s dropping that causes both the dropping of the barometerreading, and the

thunderstorm.

2. Several causal relations holding at the same time, sharing the “effect entity”, like e.g. two

billiard balls hitting a third at the same time.

3. A causal relation where – on second sight – only a part of the “causeentity” actually does

cause the effect like e.g. a mixture of drugsA andB that cures some disease. Even ifB

is ineffective to that disease, there is a causal relation between administering this mixture

and the cure.

We will now take some time to explain variants two and three (assuming that variantone is

not problematic) on the basis of the billiard balls example. Here we have one causal relation

spanning from the first upcoming ball (B1) to the one being hit (B3). A second relation connects

the second ball (B2) to that very same ballB3. Our first task, thus, is to discuss how effects of

different causes may “sum up”. Additionally, we think that there is a causal relation between

ballsB1 andB2 – taken as a single entity – and ballB3 which will be discussed next.
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5.3.1 Summing Up Effects

The GFO theory of causality allows for two cause entities being causally related to the same

effect entity. However, we believe that the question of how exactly these effects may sum up (or:

interact) is not a question of conceptual analysis, but belongs to the realmof empirical science.

Some examples may be admissible, though:

• In the billiard balls example, ballB3’s kinetic energy is ascalar sumof the ones trans-

ferred from ballsB1 andB2.

• The velocities, on the other hand, are summed up byvector addition.

• Some effectsmutually excludeeach other: A cat is either alive or dead85. So if the effects

“lives” and “is dead” sum up, only one of them will show up, suppressing the other.

• In cases ofoverdetermination, the combination of two causes can lead to the same result

as each of the causes alone. Think of the two students throwing paper ballson a cobweb,

which is destroyed.

• As in the destructive interference of waves (also called: wave subtraction), two effects

might interfere in a way that none of them shows up.

5.3.2 Collated Causes

As a consequence of effects summing up in various ways, the following is possible: there is a

causal relation between presentialp1 and presentialp2. Butp1 can be decomposed into two parts

p1.1 andp1.2 with only p1.1 being causally related top2. In other words, only some part of the

cause presential “actually” influences the effect.86

Note that knowing about the inner structure does not render the initial relation. The one

betweenp1.1 andp2 is just an additional parallel relation besides the one connectingp1 and

p2. Both fulfil the conditions on regularity and counterfactual dependency. It is only that these

conditions do not rely on the same clusters of alternative situations.

Take e.g. the causally contrastive alternatives that counterfactual analysis depends on. With

respect to the first relation (p1, p2), the contrast would lie inp1 not taking place. With respect

to the second relation (p1.1, p2), the contrast would be thatp1.1 does not take place. So while

the first relation needs alternatives as close as possible top1 taking place, the second needs

alternatives as close as possible to only some part ofp1 (i.e.p1.1) taking place.

85 Leaving “Schrödinger’s cat”, i.e. the Copenhagen interpretation of quantum mechanics’ concept of

superposition, aside.
86 This issue will play a role in the following chapter on epistemics (cf. sect. 6.2.4).
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It is, thus, perfectly fine to both identify some cause via regularity and counterfactual depen-

dency and to find that only some part of it is relevant to the effect. As statedin the introduction:

we are not interested in identifyingthecause. We are interested in what physically makes some-

thing happen. And even if we know thatp1.1 is the causally relevant part ofp1, it is still true that

p1 makesp2 happen.
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6 Epistemics and Application

In this section we will discuss the epistemic consequences of our theory, i.e.the question of:

in what sense can we (or a machine) find out causal relations using our senses (extended by

measuring devices) and our cognitive apparatus. We will start by collecting all the elements

that our theory consists of and describe whether (and to what extent) these elements are within

epistemic reach.

Then we will show theepistemic adequacyof our theory by reconstructing the (apparently

successful) procedures used in the natural sciences in terms of the GFOtheory of causation.

This, actually, means applying our theory to the realm of experiments and clinical trials.

6.1 Epistemic Status of our Theory’s Ontological Constituents

Let us quickly summarise the ontological building blocks of our theory:

• Presentials

• Coincidence pairs of presentials

• Universals

• A presential being an instance of a universal

• Clusters of (similar) coincidence pairs

• Clusters of causally similar coincidence pairs

• Probabilistics on clusters of coincidence pairs

• Distance between alternative situations

To describe the epistemic status of our theory, we need to show which of the elements listed

above are subject to experience, to measurements or to detections (and, probably, to what extent)

- and which may not be.

Presentials Objects and properties are examples of presentials, and many of them are inreach

of our experiences. Although it may be debatable, in which way e.g. a certain property

can be operationalised.
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Examples of presentials we can measure/detect:

• the kinetic energy of a bullet

• the temperature of water in a container

• a fibre in a cobweb being ripped

• a glass pane being in good order

Status:Partially accessible.

Coincidence pairs of presentialsBesides being able to detect an object (or a property) we need

to tell the time of the measurement. Again, this might be problematic in detail, but in very

many cases, there is no doubt about the possibility of measuring time.

Status:Partially accessible.

Universals Universals might not be directly accessible, but what indeed is needed isepistemic

access to its extension (cf. the next entry)

Status:Not of relevance.

A presential being an instance of a universalWhile it may not be possible for all universals,

there are those where we can identify whether a presential is an instance of that universal,

or not.

Examplesfor presentials where we can measure/detect whether they belong to some uni-

versal’s extension:

• a human being that instantiates the universal “woman”

• an animal that is an instance of the universal “hedgehog”

• a colour that belongs to “redness”

• an instance of “physical object”

Status:Partially accessible.

Clusters of (similar) coincidence pairs In case we know how to identify a universal’s instance,

we can collect all presentials (we know of) that indeed are an instance ofthat universal.

Status:Partially accessible (through universals’ instances).

Clusters of causally similar coincidence pairsThis just means clustering inside a cluster.

Status:Partially accessible (through universals’ instances).

Probabilistics on cluster of coincidence pairsOnce we have collected the causally similar co-

incidence pairs, we can calculate the ratios, our theory depends on. (Weclassify it as

“partially accessible” due to the limitations of our experience; we cannot accessall the

relevant alternative situations).
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Status:Partially accessible.

Distance between alternative situationsAs we do not have identified the criteria for closeness

in our theory, we cannot say much, here. But again there are cases, inwhich we are sure

about the “is closer to actuality than” relation.

Examples were given in section 2.2.1 where counterfactual analysis was introduced.

Status:Partially accessible.

It is important to see what “partially accessible” means: it implies that there arelimitations

in what concrete causal relations we can find out and that there are limitations on how much we

can rely on our results, but none of these elements of causality is hidden to our experiences (and

experiments) on principle.

One particularly relevant practical restriction (as mentioned above with respect to the proba-

bilistic aspects of the causal relation) is thatwe cannot access all relevant alternative situations.

However, we can extend the limits of, say, a single person’s experience by:

• Communicating our experiences to others and hearing or reading about theirs.

• Increase the accessed alternative situations by intentionallycreatingthem, i.e. by perform-

ing experiments or studies.

Especially the last point is the key to natural science being as successfulan undertaking for

identifying causal relations as in fact it is. In the following section we will thushave a closer

look at their methods of performing experiments or trials, and we will find that these are perfectly

backed up by our causal theory.

6.2 Experiments, Studies, Trials

We are strongly convinced that modern science (through its historical development and success)

pragmatically is the best way to find causal relations. So any theory of causality that claims to

be not only conceptually, butepistemically justifiedmust be able to interpret scientific practice

in this theory’s terms, i.e. the theory must be able to “reconstruct” scientists’ procedures, and

it must be able to explain why these procedures are indeed (valuable) ways to find causal rela-

tionships. Our claim is that the GFO theory hitherto developed is indeed able to do this, and we

will demonstrate this by applying our theory to the techniques used in performing experiments

in general, and to clinical trials in particular.
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6.2.1 Experiments

6.2.1.1 Basic Characteristics

What are the main elements of performing an experiment? We think they are the following:

Explicit Operation Procedure To perform an experiment means to create an environment and

perform actions in this environment in a (for the relevant parts) explicitly specified way.

This includes the involved objects, some of their properties, and the processes to take part.

Measurement Part of this explicit specification is about what measurements are taken, and in

which way.

Repetition In most cases, the experiment will be run several times.

6.2.1.2 Reconstruction in the GFO Theory of Causality

Explicit Operation Procedure The explicitly specified procedure, i.e. the description of the

objects and processes that will be involved, allows for creating a class ofsimilar exper-

iments. Taken this way, the specification describes the universals whose instances are

relevant for drawing causal conclusions. More specifically, the procedure describes the

operation, not the outcome, so it is the universals related to the cause that the operation

procedure mainly is about.

Measurement Here, the outcome of the experiment is captured. In order to check that the

experiment came out in a certain way, the measurements have to be interpreted(like “ex-

pected effect took place”). In terms of our theory, this interpretation means: checking

whether the result belongs to, i.e. is an instance of, a certain (effect) universal.

Repetition Performing an experiment repeatedly allows for statistical analysis of the results. In

terms of the GFO theory, repetition means creating alternative situations (whose similarity

is generated by following the operation procedure) that then can be usedfor regularity and

couterfactual analyses.

6.2.1.3 Summary

Given the reconstruction above, we can conclude that performing experiments incorporates all

elements that a causal relation needs:

• To make sure that the alternative situations are clustered around certain cause universals,

an operation procedure is to be followed.

• Effect universals then support the measurement, or more precisely: theinterpretation of

the raw measurement.

88



6.2 Experiments, Studies, Trials

• And finally, the experiment is repeated to allow for analysis of probabilistic regularity and

counterfactual dependency.

6.2.2 Clinical Trials

Even if scientists of different professions share the approach of performing experiments, they

have developed certain methods specific to their particular fields of research.87 To demonstrate

that these methods fit our theory as well as the generic case discussed above, we will dwell

on the medical field and go into some more detail concerning prospective, randomised clinical

trials.

6.2.2.1 Basic Characteristics

Performed on Groups of Patients Clinical trials are not about single, individual cases, but are

performed on groups of patients.

Inclusion/Exclusion There are strict criteria on what patients are included in the study. In-

clusion may be based on sex, age, kind and severeness of a disease, and many other

parameters.

Blocks, Branches of Treatment, Control Groups and Operation Procedures As the main idea

of a clinical trial is to compare different treatments (which includes comparingsome treat-

ment with a controlled non-treated control group), there is an explicit specification of how

the treatments in the different branches are to be performed.

Randomisation The included patients are assigned to the different treatments by randomisation

procedures.

Collecting Results A very important part of the trial’s specification is how the immediate re-

sults are interpreted. E.g. when does a patient count as cured? How to interpret if patients

decease within a six month period after the treatment, or within a two year period?

Analysis Using statistical tools, the effect of the treatment (in comparison to other treatments

or against a non-treatment) is calculated.88

87 Cf. SELWYN (1996); COBB (1997); DEAN (1999)

88 It is important to note that our analysis does not touch the relevance and use of the statistical meth-

ods used in analyzing trials. What we give is a conceptual background of how the trial is to be

understood ontologically.
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6.2.2.2 Clinical Trials: Reconstruction in the GFO Theory of Causality

Performed on Groups of Patients In the GFO view, both, regularity and counterfactual de-

pendency rely on groups (clusters) of alternative situations. So, observing many treat-

ments – each individual treatment creating an alternative situation, a treatmentbranch

creating a cluster of similar treatments – is necessary in order to discover causal relations

Inclusion/Exclusion In terms of our theory, inclusion and exclusion make sure that the alterna-

tive situations are indeed clusters of similar alternative situations. In a sensethey “define”

the universals that the clusters’ similarity relies on.

Branches of Treatment, Control Groups and Operation Procedures Branches of treatments

(or explicit non-treatments in case of control groups) lead to groups of alternative situa-

tions within those which are similar through the inclusion criteria. In terms of our causal

theory, these branches create causally similar (or causally contrastive)clusters that do (or

explicitly do not) contain the cause. It is these clusters, then, that are relevant for evaluat-

ing the result (with respect to regularity and counterfactual dependency).

Randomization Randomisation is a technique to equally distribute variables that are not ob-

served in the trial. In terms of the GFO theory randomisation takes additional care of the

clusters of alternative situations being similar.

Collecting Results The interpretation of the results means deciding to which class an outcome

belongs. This ontologically corresponds to the question of whether the result universal is

instantiated or not.

Analysis The statistical methods for analysis take two things into account: counting the results

within the treatment branches, and then comparing the treatments to each other.In terms

of our theory this refers to the probabilities within the clusters, and to the comparison

between the clusters (for regularity and couterfactual dependency analyses).

Just as a prospective, randomised clinical trial is a more elaborated version of what we have

simply called “experiment” above, we find that the reconstruction is just as well elaborated. But

still the GFO theory is able to cover all the presented aspects. And as we will see, they apply to

even more of the actual performance of such a trial.

6.2.3 Reconstruction of Epistemic Difficulties

It is not just the successful natural science procedures that our theory is able to describe, but

also its deficiencies and restrictions. Let us have a brief look at how eachof the steps of a trial

(as listed above) may fail, and how these restrictions can be understood asconsequences of the

nature of causality as we have introduced it:
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Performed on Groups of Patients Sometimes, e.g. for very rare diseases, it may be difficult

to get enough patients who are willing to participate in a trial. This makes evaluation

difficult, both when determining the outcome of each treatment group (e.g. the success

rate) and when determining the differences between the treatments.

In our theory, this is a direct implication of regularity and counterfactual dependency

relying on clusters of alternative situations.

Inclusion/Exclusion If inclusion and exclusion do not follow strict criteria, a trial can easily

become void. In our view, the reason for this is that similarity then is in question,which in

turn bears the task of clustering alternative situations. Additionally, judging on the relative

distance between the clusters may well become impossible.

But there is another effect of wide and narrow criteria: the more narrowthe inclusion cri-

teria are, the less people take part in the trial, which (as noted above) undermines analysis

of the effect. However, if the inclusion criteria are too wide, applying the result to an

individual (for reasons of treatment) is difficult. In our theory, the reason is that including

a wide range of different situations potentially undermines their similarity.

Branches of Treatment, Control Groups and Operation Procedures Just like with inclusion

and exclusion, a controlled study must make sure that the operation procedure is indeed

being followed. It must be clear, which individuals were treated in what way, and which

were not treated. In case of a trial on caffeine, for example, the membersof the control

group must not drink coffee during the trial.

In terms of our theory, not following the procedure (in our example: not making sure

the that the control group does not drink coffee) prevents the necessary clustering of the

individual treatments by similarity and prevents telling causally similar clusters apart from

causally contrastive ones.

Randomisation Randomisation is introduced to have unobserved factors uniformly distributed

among the groups. In cases where the procedure is e.g. connected to cause or effect itself

(think of a doctor who finds himself not being able to deprive severely ill patients from a

promising treatment – although the randomisation would have put them into the control

group) this may “taint” the clusters.89 We cannot graspall alternative situations, so we

must make sure they do not show a significantly different behaviour than the “average”

elements of that cluster.
89 Another unsatisfying way would be relying on people choosing a number “at random”. Here’s how

DEAN (1999, p. 4) summarizes a study reported in theRoyal Statistical Society News and Notes

(January 1988): “The study [. . . ] asked students to pick a number at random between 0and 9. The

numbers 3 and 7 were selected by about 40% of the students. This is twice as many as would be

expected if the numbers were truly selected at random.”
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Collecting Results Non-specific or vague interpretation criteria for the trials’ outcomes (e.g.

patient counts as cured) can render a trial useless.

The reason (in terms of our theory) is, that in this case, we are not able to tell supportive

from undermining clusters.

Analysis A first implication of our theory (which again conforms to scientific practice) isthat

regularity may indicate causality, but a researcher may well go wrong if shetakes regular-

ity as implying causality. For us, it is only one of two conditions.

But there is another implication we will have a closer look at in the next section.

6.2.4 Testing Parts of a Cause as Creating Closer Alternatives

There is a certain peculiarity about the result of clinical trials we will introduce by the following

example, before reconstructing/modeling it in the terms of our causal theory:

In order to test whether drugA does cure diseaseB, a trial might be set up as follows:

• Treatment group: patients are given a certain portion of some substance ina particular

manner e.g. they need to visit their doctor twice a week and swallow some pills.

• Control group: patients are not treated in any way similar to the above.

The outcome then might be that 30% of the treatment group’s patients is cured,while there was

no cure in the control group. From this, it may be reasonably inferred that the drug works as

expected, i.e. drugA cures diseaseB.

However, another trial might be set up with an additional branch, which takes the so called

placebo effect into account.

• Placebo group: The patients do follow the same treatment procedure as in thetreatment

group, but their pills do not contain drugA (instead they swallow a substance known to

have no effect onB).

And now it might turn out that this “treatment” has a success ratio of 40% (which is more

than with the real drug). While the first trial leads us to thinking that the drug indeed cures the

disease, the second trial, now, persuades us to accept the opposite result: A does not cureB; at

the same time indicating the treatment procedure being the cause for the healing.And if asked

about the efficacy ofA on B, we would denyA any effect. But does this mean that the first

trial’s outcome is somehow rejected or denied? It clearly must havesomesignificance.

To solve what seems to be a dilemma, let us first examine what lead us to our inference:

The difference between the first and the second trial is that the first tookdrugA and a certain

treatment procedure (P , say) as a single, united, cause. The result, then, was that this cause
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indeed is causally related to diseaseB. The second trial, however, was not about the same

hypothesis (“A andP have effect onB”), but split off P which then lead to the result thatA

withoutP does not cureB. The final picture, then, is the following: while the first trial tried to

test the effect ofA onB it actually testedA+P onB. And re-formulated in this way, it matches

the result of the second trial:A + P does have an effect, as it contains the “real” causeP .

This situation can be described very easily using our causal theory: In the first trial, there was

one contrastive alternative situation and it proved to be supportive so counterfactual dependency

was inferred (cf. fig. 6.1).

World (ordered by closeness)supportive / undermining Counterfactual holds

World 1: No drug supportive Yes

Table 6.1: Counterfactual analysis of first trial

But in the light of the second trial’s result, we find that what the first trial simply referred to

“drug A” actually consisted ofA andP , so the situations becomes like depicted in table 6.2

World (ordered by closeness) supportive / undermining Counterfactual holds

World 1: No drug, no procedure supportive Yes

Table 6.2: Counterfactual analysis of first trial, re-interpreted after the second trial

For testing the drug without the procedure, the second trial created contrastive situations that

were closer to “A andB causeC” than the one in the first trial. And that closer cluster proved

to be undermining (cf. fig. 6.3).

World (ordered by closeness) supportive / undermining Counterfactual holds

World 2: No drug; but procedure undermining No

World 1: No drug; no procedure supportive

Table 6.3: Counterfactual analysis of clinical trial of drug trial including placebo

As we are not able to testall alternative situations, it can never be ruled out that new experi-

ments/trials may reveal that only part of what we discovered as a cause is relevant for the effect

to take place. This, as said before (cf. sect. 5.3.2), does not imply that the“old” causal relation

no longer holds. We just discovered another (additional) causal relation.

Summarizing, we can say that experiments or clinical trials can ontologically be understood

as ways ofcreating custom-made alternative situationson which regularity and counterfactual

dependency can then be evaluated (probabilistically). This approach allows for reconstructing

the way that natural sciences’ methods succeed in discovering causal relations. Additionally,

it allows for ontologically illustrating the various ways in which experiments and clinical trials

may go wrong.
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7 How to Move On

In the preceding chapters, we have discussed what the concept of causality is about, how it can

be modeled with the inventory of GFO, and finally how adequate our theory is with respect to

epistemics. Starting from each of these steps, there are several areas that the present work may

be extended to: concept analysis, formal ontological modeling, and relations to other fields of

research. Here are some examples:

Concept Analysis

• Our investigations were restricted to physical causality. What does “make happen”

mean to other fields, like in “this made me laugh”?

• Do other kinds of causality still rely on regularity and counterfactual dependency?

Or do we need to discriminate between several kinds of causality?

• We explicitly refrained from the question of how to identifythecause as opposed to

stating that something isa cause. Is there a way to conceptually single out the one

cause from the causes that our theory is about? At least for a given context and a

certain interest of the speaker?

• We did not discuss possible causal relations. How would we approach thequestion

of dispositions from our theory’s point of view?

• The notion of “distance” between clusters of alternative situations was introduced as

a primitive relation. But we already saw that when performing experiments, scien-

tists do share some pragmatic idea of what rules for achieving relevance are. Could

a general theory of distance be derived from that knowledge?

Ontological Modeling

• Our theory is based on presentials and has been extended to cover processes as well.

Is it possible to make it cover even more kinds of entities?

• If we leave the realm of physical entities, what takes the place of presentials, then?

And whatever the replacement is, what is its relation to time?

• We allowed for effects to “sum up”, or “interact”. Is there a theory that covers these

interactions? Are there families of properties, for example, that share the way they

are summed up?
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• The basic causal relation relies on coincidence pairs, which are characteristic of

GFO compared to other top-level ontologies. Does that mean that causal theories

based on these other ontologies are flawed right from the start? Could these theories

be adjusted to other areas (with respect to the nature of the relata for example) to

account for that?

• For modeling counterfactual dependency, we relied on a restricted variant of possible

worlds, i.e. possible worlds understood as alternative situations of the actual world’s

history and future. Is this a feasible approach to possibilities as they are discussed

outside the causal context? Can our alternative situations be used in full-fledged

theories of necessity?

Relations to Other Fields

• We have seen that the GFO theory of causality supports the practice of clinical trials.

How, then, does it fit in with ontologies in exactly that field, like the “Ontology of

Clinical Research”(cf. CARINI ET AL ., 2009) for example?

• When discussing the epistemic status of our theory, we did not discriminate sharply

between a constituent of causality being accessible to human senses and that con-

stituent being detectable by a machine’s sensors. But does a machine reallyhave

access to all the relevant entities? How would universals need to be understood in

this case? As a list of detectable parameters?

• If “detecting causality” (following our theory, that is) is open to machines, could

our theory of causality contribute to “the automation of science”, as KING ET AL .

(2009) call the aim of their project of a “Robot Scientist” that is said to identify

“genes encoding orphan enzymes”?

Or, the other way round, starting from observing causal relations, could our theory

play a role in machines’ “Distilling Free-Form Natural Laws from Experimental

Data” as presented in SCHMIDT and LIPSON(2009)?

We started our investigations by intentionally ignoring RUSSELL’ S advice to remove causality

from the scientific vocabulary because of its “misleading associations” (RUSSELL, 1910, p. 180).

Instead, we have succeeded in giving it a clearly defined meaning, at least for the physical world.

Our conclusion therefore is as different to RUSSELL’ S as it can be. We do not only explicitly

include causal relations into our own ontology, but we also believe that several other fields would

benefit from introducing causality to their ontological models as well.

96



A Proofs on Conditional Probabiliy

Proposition 1.

P (A|B) > P (A) → P (A|B̄) < P (A) (Prop1)

Proof.

P (A) = P (A|B)P (B) + P (A|B̄)P (B̄) [Law of total probability] (A.1)

P (A) = P (A)P (B) + P (A)P (B̄) [P (B) + P (B̄) = 1] (A.2)

0 = [P (A|B) − P (A)]P (B) + [P (A|B̄) − P (A)]P (B̄) [A.1 = A.2] (A.3)

Examining (A.3), we know thatP (B) andP (B̄) are nonnegative. And, given the antecedent

of (Prop1), the same holds for[P (A|B) − P (A)]. So [P (A|B̄) − P (A)] of (A.3) must be

negative, which is the consequent of (Prop1).

Starting from (Prop1) the following holds as well:

Corollary 1.

P (A|B) > P (A) → P (A|B) > P (A|B̄) (Cor1)

Proof.

P (A|B) > P (A) [Antecedent of (Cor1)] (A.4)

P (A) > P (A|B̄) [A.4 and (Prop1)] (A.5)

P (A|B) > P (A|B̄) [A.4, A.5] (A.6)

Interchanging antecedent and consequent, however, leads to a contradiction, so the expres-

sionsP (A|B) > P (A) andP (A|B) > P (A|B̄) are not equivalent:

Corollary 2.

¬ [ P (A|B) > P (A|B̄) → P (A|B) > P (A) ] (Cor2)
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Proof.

P (A|B) > P (A|B̄) → P (A|B) > P (A) [Negating (Cor2)] (A.7)

P (A|B̄) > P (A) [A.7] (A.8)

P (A|B̄) > P (A|B) [A.8, (Cor1)] (A.9)

Contradiction! [A.7, A.9] (A.10)
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B Keys for Ontological Diagrams

Chronoid with its two extremal boundaries Chronoid’s external boundaries explicitly marked as

left and right boundary.

Chronoid with inner time-boundaries explicitly

marked as right and left boundary

Coinciding right and left time-boundary

Presential at a right time-boundary Presential at a left time-boundary

Process Process with presentials at inner time-boundaries

(projected on process boundaries)

Causal relation between two presentials Coincidence pair (Presential at coinciding time-

boundaries which are connected by causality)

Causally cohesive part of a single process Causally adhesive parts of different processes
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Index

Actualism, 21–23

Adhesive overlap, 76

Alternative situations

Clusters of,seeClusters

Alternative situations, 23–26, 64, 85, 87, 88,

90, 91, 93

Contrastive, 28, 64

Similar, 64

Supportive, 24, 29, 64

Undermining, 24, 29, 64

Alternatives,seeAlternative situations

Anthropocentricity, 31

Causal relevance, 56

Causal adhesion, 75–81

Causal cohesion, 74

Causal Pluralism, 3

Causal propagation, 80

Causality

Adhesive,seeCausal adhesion

As: physically make happen, 2

Chancy,seeCausality, Probabilistic

Cohesive,seeCausal cohesion

Condition of regularity,seeRegularity

Condition of counterfactual dependency,

seeCounterfactual dependency

Continuous, 74–81

Dual-boundary, 73–74

Get rid of, 1

Heterogeneous, 73

Magical,seeMagic

Multi-boundary,seeCausality, Contin-

uous

Ontological approaches, 37–47

Physical, 2

Probabilistic, 11–14, 60–62, 64, 65, 67,

85, 86

Psycho-physical, 2

Relata, 55–59

Sequential, 73

Social, 2

Statistical approach, 35–37

Temporal connection,seeTemporal con-

nection

Causality, Probabilistic, 60

Causally coherent transition, 79

Chronoid, 50, 51, 58

Circularity, 31, 32

Clinical trials, 87, 89–93

Cluster

Contrastive, 90

Similar, 90

Clusters, 28, 64–67, 85, 86, 88, 90, 91

Contrastive, 65, 91

Similar, 65, 85, 86, 91

Supportive, 29, 65, 68, 92

Undermining, 29, 65, 68, 92

Coincidence, 50, 58

Coincidence pair, 85, 86
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Coincidence pairs, 60, 65

Collated causes, 82, 92

Comparative similarity, 16,seeDistance

Concept analysis, 6, 7

Conceptual adequacy, 6

Contrast, 65, 66

Counterfactual dependency, 9

Counterfactual dependency, 2, 14–30, 64–

70

Probabilistic, 28, 67–68, 88–90, 93

Cyc, 6, 42–43

Directed Acyclic Graphs, 35–37

Distance, 18, 29, 64, 65, 69, 85, 87, 91

DOLCE, 38–42

Electronic Data Processing, 3

Epistemics, 85–93

Example

Barometer-Storm, 11, 19, 25

Barometer-storm, 81

Billiard balls, 56, 57, 77, 81, 82

Brick thrown at window, 63, 78

Catching the flu, 29

Clinking glasses, 15

Cryophon, 10, 57

Cyclist’s watch, 15

Drug trial, 92

Mixture of drugs, 81

Paper balls destroying cobweb, 26

Pushing the swing, 77

Reliable vandal, 63

Security alarm, 9

Synchronized clocks, 15

Experiments, 87–89, 93

Extension, 52

Falsification, 10

GFO, 49–54

Glass continuum, 50

Immanence, 62

Individual, 51

Inherence, 54

Initial probability, 28

Initial probability, 64, 65, 68

Instance, 52, 54, 85, 86, 88, 90

Instantiation, 52

Intervention, 31, 32

Interventional variables, 36

Knowledge representation, 4

Manipulability, 9, 31–34, 70–71

Modal Realism,seePossibilism

Ontology, 37

Overdetermination, 27

Parallel causal relations, 81–83

Physical symbol system, 4

Possibilism, 21–23

Possible worlds, 16, 17

Theories, 21–23
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Subjectivism,seeSubjectivism

Preemption, 26–27

Presential, 27, 51, 52, 57, 59, 64, 71, 85
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Process, 51, 56, 59, 71

Projection, 71

Property, 52–54, 85
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Quality, 52–54
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Strict, 14

SOWA’ S approach, 43–47

Similarity, 64–66, 88, 91

Statistical Dependency, 61
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Subjectivism, 22, 23
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Transitivity
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