

Ontology of Functions

A Domain-independent Framework

for Modeling Functions

Der Fakultät für Mathematik und Informatik

der Universität Leipzig

eingereichte

D I S S E R T A T I O N

zur Erlangung des akademischen Grades

DOCTOR RERUM NATURALIUM

(Dr. rer. nat.)

im Fachgebiet

Informatik

vorgelegt

von Magister Patryk Burek

geboren am 6. Juli 1978 in Lublin

Leipzig, den 20. Juli 2006

Bibliographische Angaben

Burek, Patryk

Ontology of Functions: A Domain-independent Framework for Modeling Functions

Universität Leipzig, Dissertation

240 S., 214 Lit., 31 Abb., 8 Tab.

To Łucja

v

Abstract

In many domains entities are considered in terms of their functions, starting with the design of

artifacts, through natural and social sciences and ending with folk theories and common sense

knowledge. However, there is a lack of a domain-independent ontological framework for

representing and modeling functions. Such a framework could be given by top-level

ontologies, providing the specification of the most general, domain-independent concepts, in

contrast to domain ontologies which describe conceptualizations of particular domains.

However, current top-level ontologies such as DOLCE, SUMO or GFO either do not include

the notion of function or handle it scantily.

The objective of this work is to develop a formal top-level ontology of functions (OF),

applicable across various domains, and to incorporate it into a broader ontological framework.

OF is concerned with five main issues, namely the representation of the structure of functions

and their interrelations, the realization of functions, function ascription, and the incorporation

of OF into the top-level ontology GFO. The first two issues are of relevance in functional

modeling, where it is required to represent functions independently of the particular ways of

their realization. Secondly, we find it important to provide the ontological foundations for the

evaluation of entities against their capabilities of realizing functions. Thirdly, since the

functional description is often a part of the knowledge about entities, it is important to provide

conditions for assigning functions to entities. Finally, OF is incorporated into the wider

framework of GFO which provides the means for a cohesive representation of both functional

and non-functional knowledge.

The developed solution is intended to be applied in domain ontologies and conceptual

models. For example, OF has been recognized to be beneficial for the Open Biomedical

Ontologies (OBO) as a general framework for representing biological functions and together

with GFO it is used as the foundation for a Biological Core Ontology. In addition, OF provides

the basis on which an extension to the Unified Modeling Language (UML) has been proposed,

the current de facto standard in object-oriented conceptual modeling, that is recently also

proposed for ontological engineering. The extension is introduced to UML in the form of a

profile, enabling the construction of functional models. The profile, among others, introduces

graphical notations which allow for the visualization of functional models.

vi

vii

Acknowledgements

I am thankful to my wife, Łucja, and to my parents.

Moreover, I cannot imagine accomplishing this work without the support of the many

people who I was lucky to be surrounded by during my stay in Leipzig. First of all I am

grateful to my supervisor, Professor Heinrich Herre who guided my work with kindness,

wisdom and patience. He introduced me to the subject of ontologies in computer science and

helped me to shape the topic of my work. In critical moments he encouraged me to work

further and was always ready to help me. I am thankful to him for the numerous inspiring

discussions. I am also grateful to Dr. Barbara Heller, the tragically deceased second supervisor

of mine, who supported my efforts especially in the early stages of my work on this thesis.

I am deeply indebted to the members of the Onto-Med Research Group established by

Professor Herre and Dr. Heller. The collaboration within the group gave me many scientific

inspirations as well as the chance to find good friends. In particular I am deeply grateful to

Frank Loebe who read every page of this thesis and spent long hours on discussing issues

relevant for this work. Moreover, I have learned a lot from Frank about roles and my results

rely on his account of them. Hannes Michalek and his research on the issue of causality also

became of great help in my work, especially in the context of function realization. I owe to

Robert Hoehndorf the application of my results to biological ontologies, which greatly

contributed to the evaluation and improvement of my results.

The activities of the Onto-Med Research Group gave me an opportunity to meet many

inspiring people, in particular Giancarlo Guizzardi, Gerd Wagner and Roberto Poli. The ideas

of Giancarlo Guizzardi and Gerd Wagner of applying top-level ontologies to conceptual

modeling provoked my work on the development of the UML profile for functional modeling.

I also had a unique chance of having an inspiring cooperation within the Ontologies in

Biomedicine Group. The sound feedback from the members of the group, in particular from

Janet Kelso, Johann Visagie and Michael Lachmann helped me to verify my account of

functions as well as gave me a better understanding of biological ontologies and the biological

understanding of functions.

I am also thankful to the members of the Graduiertenkolleg Wissensrepräsentation, a

doctoral programme in Knowledge Representation at the University of Leipzig. I would like to

thank Hesham Khalil, Sören Auer and Rafał Graboś with whom I had not only an honor to

work but also an exciting social life. Hesham stimulated my work and was always eager to

share his rich scientific experience with me. Sören was my guide not only to the Semantic Web

viii

but also to the social life of Leipzig and to the countryside of Saxony. Rafał was my roommate

for three years and a true companion in many long lasting discussions on ontologies and

artificial intelligence. Additionally, I feel indebted to Jerzy Warakomski for his help in the

editorial work on this thesis.

Last but not least, I would like to thank to Deutsche Forschungsgemeinschaft and

Professor Markus Löffler for the financial support, without which this work, as well as my stay

in Leipzig, would not have been possible.

Leipzig, Patryk Burek

July, 2006

ix

Contents

List of Figures xiv

List of Tables xv

1 Introduction 1

1.1 Functions and Functional Knowledge... 1

1.2 Ontologies ... 5

1.2.1 Definition and Classification ... 5

1.2.2 Top-level Ontologies ... 7

1.2.3 Representation Formalisms ... 14

1.2.4 Applications... 15

1.3 Objectives ... 17

1.4 Structure.. 21

2 Related Works 22

2.1 Functional Device Representations... 22

2.1.1 Functions as Input-Output Pairs .. 23

2.1.2 Function and Behavior .. 24

2.1.3 Functions as Intended Roles .. 33

2.1.4 Functions as Effects... 35

2.1.5 Conclusions ... 37

2.2 Software Engineering and Business Modeling ... 39

2.2.1 Structured Methods ... 39

2.2.2 Object-Oriented Modeling and UML .. 41

2.2.3 Object-Process Methodology .. 45

2.2.4 Conclusions ... 48

2.3 Functions in Philosophy.. 48

2.3.1 Functions as Dispositions .. 49

2.3.2 Etiological Theories... 50

2.3.3 Ontological Status of Functions .. 53

2.3.4 Conclusions ... 54

2.4 Requirements for an Ontology of Functions ... 54

x

3 Structure of Functions 57

3.1 Introduction ...57

3.2 Label..57

3.3 Goal ...59

3.3.1 Affected by the Function..61

3.3.2 Agent..62

3.3.3 Established by an Agent...63

3.3.4 Kinds of Establishing Goals...64

3.3.5 Priority of Goals and Functions ...66

3.3.6 Arbitrary Chunk of Reality ..67

3.3.7 Final State ..68

3.3.8 Complexity of Functions..69

3.3.9 Restrictions on Functions...71

3.4 Requirements...72

3.5 Temporal Extensions of Functions ..75

3.6 Functional Item..79

3.6.1 Role..81

3.6.2 Functional Item as a Role...82

3.6.3 Discussion..84

3.7 Side Effects..85

3.8 Summary ...86

4 Relations between Functions 88

4.1 Introduction ...88

4.2 Instantiation ...88

4.2.1 Individual, Universal Functions and Instantiation ...90

4.3 Taxonomic Relations...94

4.3.1 Introduction..94

4.3.2 Subsumption, Specialization and Individualization ...96

4.4 Part-Whole Relation ..98

4.4.1 Introduction..98

4.4.2 Function-Part ...99

4.4.3 Sequence-Part ..100

4.5 Additional Relations between Functions ...101

4.5.1 Support, Enable and Prevent ..102

4.6 Summary ...103

xi

5 Realization 106

5.1 Introduction... 106

5.2 Individual Actual Realization ... 108

5.2.1 Actual Culminative Realization... 109

5.2.2 Actual Non-culminative Realization ... 112

5.2.3 Actual Situational Realization ... 113

5.3 Minimal Actual Realization and its Components.. 115

5.3.1 Minimal Actual Realization... 115

5.3.2 Means of Realization... 116

5.3.3 Actual Realizer .. 117

5.3.4 Dynamic and Passive Realizer .. 119

5.4 Universal Realization and Realizer ... 120

5.4.1 Universal Minimal Realization.. 120

5.4.2 Universal Realizer ... 122

5.5 Dispositional Realizer and Realization ... 122

5.5.1 Dispositional Realizer ... 122

5.5.2 Dispositional Realization... 124

5.5.3 Strong Dispositional Realizers .. 125

5.6 Functional Realization .. 126

5.7 Realization-dependent Relations between Functions.. 127

5.7.1 Trigger ... 128

5.7.2 Improve ... 128

5.8 Summary... 129

6 Ascription of Functions 132

6.1 Introduction... 132

6.2 Actual and Dispositional Function.. 134

6.3 Intended Function ... 135

6.3.1 Inherited Intended Function... 141

6.4 Universal Has-Function .. 141

6.5 Function Bearers ... 143

6.6 Functionality and Multiple Function Ascriptions ... 144

6.7 Malfunctions ... 145

6.7.1 Malfunction with respect to Intended Function... 146

6.7.2 Malfunctions with respect to History .. 147

6.7.3 Malfunction in Comparison... 148

6.7.4 Priorities of Malfunctions.. 149

6.7.5 Side-Effect Malfunction .. 150

6.8 Summary... 151

xii

7 Ontological Status of Functions, Classifications and Architecture 152

7.1 Introduction ...152

7.2 Characteristics of Functions ..152

7.2.1 Context and Subjectivity..152

7.2.2 Teleology and Goal-Orientedness..154

7.3 Candidates for Functions ...155

7.3.1 Functions as Processes ...155

7.3.2 Functions as Goals ...156

7.3.3 Functions as Intentional Entities ..157

7.4 Classifications of Functions ..158

7.4.1 Intrinsic Classifications..159

7.4.2 Extrinsic Classifications...161

7.4.3 Reconstruction of the Current Classifications..163

7.5 Architecture ...166

7.5.1 Non-functional Layer...167

7.5.2 Pure Functional Layer..167

7.5.3 Realization Layer ...168

7.5.4 Impure Functional Layer..169

7.6 Summary ...171

8 A UML Profile for Functional Modeling founded on OF 172

8.1 Introduction ...172

8.2 UML and Ontology Engineering...172

8.3 Objectives..174

8.4 Method ..175

8.5 Overview of the Architecture ..175

8.5.1 Ontology Profile ..177

8.5.2 Functions Package ...178

8.5.3 Functional Relations Package ..183

8.5.4 Function Ascriptions Package..188

8.5.5 Malfunctions Package ..194

8.5.6 Impure Function Structures Package ...197

8.5.7 Impure Functional Relations Package..198

8.6 Discussion and Conclusions ..200

9 Conclusions 203

9.1 Problem ...203

9.2 Solution ...203

9.3 Advantages ..203

9.4 Applications...206

xiii

9.4.1 Conceptual Modeling .. 206

9.4.2 Biological Ontologies.. 207

9.5 Future Work.. 211

Appendix A: GFO Terms and Definitions 213

References 220

Index of Symbols 238

xiv

List of Figures

Figure 1. Categorization of Ontologies..6

Figure 2. Taxonomy of SUMO topmost level categories. ...9

Figure 3. Taxonomy of DOLCE topmost level categories ..11

Figure 4. Taxonomy of GFO topmost level categories..13

Figure 5. Three architectures of functional ontologies ..20

Figure 6. Part of the hierarchy of functional knowledge. ..24

Figure 7. CFRL definition of function...28

Figure 8. Types of plant decomposition used in MFM..34

Figure 9. Hierarchy of functions in the CASE*Method. ...40

Figure 10. Use Case diagram...42

Figure 11. Business Goal Allocation Pattern...44

Figure 12. Functions in OPM ..47

Figure 13. Time-extents of Functions..77

Figure 14. Business Actor-Role Pattern ..82

Figure 15. Function Decomposition ..105

Figure 16. Realization of Function ..109

Figure 17. Functional Item and Realizer ...123

Figure 18. Universal Minimal Realization and Individual Realization ...125

Figure 19. Architecture of OF..167

Figure 20. Universal Functional Item, Individual Functional Item and Realizer170

Figure 21. Dependencies between Profiles..175

Figure 22. Dependencies within the Function Ontology Profile ...176

Figure 23. Dependencies within the Functions Package ...176

Figure 24. Class diagram of the Functions Package ..178

Figure 25. Class diagram of the Functional Relations Package...183

Figure 26. Class diagrams of the Function Ascriptions Package..188

Figure 27. Class diagram of the Has-Functions Package ..192

Figure 28. Class diagram of the Malfunctions Package ..194

Figure 29. Class diagram of the Impure Function Structures Package ..197

Figure 30. Class diagram of the Impure Relations Package ..198

Figure 31. Exemplary Biological Functions employing OF..208

xv

List of Tables

Table 1. Examples of GFO entities.. 14

Table 2. List of the requirements for a top-level ontology of functions. 56

Table 3. GFO categories as function goals. ... 68

Table 4. Exemplary function bearers ... 143

Table 5. Categories of OF belonging to the Pure Functional Layer. ... 168

Table 6. Categories of OF belonging to the Realization Layer.. 169

Table 7. Categories of OF belonging to the Impure Functional Layer. 170

Table 8. Reference list of GFO terms and definitions. .. 219

1

1 Introduction

This work is concerned with the representation of functions and functional knowledge in

ontologies, in particular in top-level ontologies. In the current section we give the

preliminaries, motivations and objectives of our work. In section 1.1 we introduce our

understanding of the notions of function and functional knowledge, and demonstrate their

relevance across various domains. Section 1.2 briefly refers the issue of ontologies and in

particular top-level ontologies. In section 1.3 the motivations and objectives of the work are

discussed. Finally, section 1.4 provides an overview of the structure of this work.

1.1 Functions and Functional Knowledge

The current work is concerned primarily with the notion of function. However, our interests do

not concern the mathematical understanding of function as the binary relation, such that for

every element x the element y is uniquely determined. Rather we are interested in the common-

sense usage of the term.

To illustrate our understanding of the notions of functions and functional knowledge we

will consider the example of a house. Different views of a house can be taken. One could

consider a house from the perspective of its history asking about the origins of the house, the

circumstances of its construction, the history of people living in it etc. In another view of a

house one could focus on the physical features like height, shape or the color of elevation.

Additionally, a house could be decomposed to components like foundations, walls and roof.

The interior of a house can be partitioned into a cellar, staircases and rooms, which in turn can

be specified as dining rooms, bedrooms etc. Finally, a house can be decomposed into its

subsystems e.g. a ventilation system or a heating system. The view of the house in which we

are here interested is a functional one. Roughly speaking, the functional view of some item is

oriented at representing functions, taken as purposes or goals associated with this item, instead

of representing other aspects of the item, such as the physical structure or history.

An item as a whole may be interpreted in functional terms, i.e. a house may be

understood as a physical object that has the function of providing shelter against precipitation,

wind, heat, cold and intruding humans and animals. But also parts of an item may be explained

functionally, e.g. a staircase may be defined as an indoor space having the function of enabling

Introduction

2

transportation between floors, a sleeping room as a room to sleep in. In fact, items are often

decomposed into parts due to the function those parts play. Whereas a staircase and a sleeping

room are distinguished due to their function and their physical composition (both are kinds of

indoor space) some parts are distinguished exclusively on the basis of their function. Such

parts are often called systems and subsystems. For example, the reason for perceiving a net of

devices generating fresh air, ventilators, tunnels, windows and doors as a whole (as a

ventilation system), is the function to which all those entities contribute, namely the function

of the maintenance of the acceptable indoor air quality.

It is not only the parts of an item that may be functionally described and explained, but

also its properties and the properties of its parts, e.g. the thickness and the material of the

external walls is chosen, among other things, in order to avoid the waste of heat.

The knowledge referring to functions, rather than to other aspects like physical features,

structure or behavior, is called the functional knowledge. It is clearly observable that

functional knowledge is present in all domains of our life. In the first, place all artifacts are

described in functional terms. It is common to understand both simple and complex technical

artifacts not in terms of their physical properties, like structure or behavior, but in terms of the

functions they have. Functional knowledge has been recognized as useful at least at three

stages of the process of design and redesign of artifacts [Shimomura et al., 1995]:

1. Requirements specification. A part of device requirements is specified in terms of

functional concepts. In fact, functional requirements at the initial state of design play a

crucial role, since at that stage non-functional requirements are often not taken into

consideration yet.

2. Designed object representation. Functional knowledge provides an alternative to the

physical description of a device. An association of a physical description with a functional

description helps in understanding the former. Functional models explain the structure and

the behavior of an object: they record and communicate the designer’s intentions ([Stone,

Wood, 2000], p. 359) and bridge them with the physical structure and the behavior of the

object [Umeda, Tomiyama, 1995], p. 71). Explicitly stated functions help to understand

the modularization of the structure of a device, since it is often driven by the functional

decomposition ([Stone, Wood, 2000] p. 359).

3. Evaluation. The design of an artifact is evaluated from the functional point of view and

thus verification of an artifact against the intended functions is the foundation of the

evaluation. In simulation and diagnosis an explicit functional knowledge permits to check

whether the objectives are achieved. Moreover, the comparison of artifacts is commonly

based on the comparison of functionality ([Stone, Wood, 2000] p. 359).

Functions and Functional Knowledge

3

As [Rosenman, Gero, 1999] observe, the importance of functions increases even more in the

multidisciplinary design. If many domains are involved in the design, it may be difficult or

even impossible to grasp the whole design in its technical complexity, but often it is enough to

understand the intuitions about the functions of an artifact and its components.

Although the above benefits of functions and of the functional knowledge have been

discussed primary in the area of technical artifact modeling, they concern all types of artifacts.

Let us consider here two additional cases: business system design and software engineering.

In business modeling it is commonly agreed to distinguish between an enterprise’s

business function (i.e. what it does in order to achieve its objective) and business process (i.e.

the activities performed by an enterprise in order to realize its business functions). In business

system design business functions play an analogous role to the functions in technical design.

They provide the means to specify requirements and play a crucial role in the first phases of

system design. The modeling of functions is also of use in software engineering, in particular

in structured system analysis, where functional decompositions and functional dependencies

are modeled.

In fact, functional knowledge is not only of importance in the context of artifact design.

Also natural and social science use functions to describe the phenomena in their domains of

interest. A well known example of functional explanation in the field of biology is that given

by the British ecologist H. B. D. Kettlewell concerning the peppered moth living on the trees

in the area of Liverpool. During the industrial revolution the pollution darkened the naturally

light bark of the trees. The color of the peppered moth that populated the trees darkened as

well. When the pollution was reduced and the bark of the trees lightened again, the peppered

moth went back to its previous color as well. An intuitive explanation of that phenomenon,

followed by many evolutionary biologists, is that the color of the peppered moth serves as a

camouflage against predators. In this sense the explanation of the change of color is given in

functional terms, i.e. by the reference to the function it should realize – the protection from

predators1.

Reference to function can often also explain the presence of an organ or a trait. For

instance the presence of the hemoglobin in blood or the presence of the heart in mammal

organisms can be justified by their functions, that is transporting oxygen from the lungs to

other parts of the body and pumping blood, respectively. Both functions are essential for the

survival of an organism, and thus the presence of the organs and substances realizing them is

justified.

1 Functional explanation in biology is not free from difficulties. The functional explanation concerning

the peppered moth given by Kettlewell is subject to some criticism, e.g. in [Majerus, 1998].

Introduction

4

Functional explanation is present also in biochemistry, e.g.t he actions of

macromolecules are described functionally and intentionally - macromolecules build, repair,

recognize, and make errors: all these characteristics have functional and even intentional

nature.

Last not least, functions play an important role not only in engineering and natural

science but also in common sense knowledge. The structure of common sense knowledge and

the principles of human categorizations have been the subject of cognitive science and

experimental psychology for decades. A significant role of functions in human categorization

has been found especially in the context of psychological essentialism. Psychological

essentialism is the result of a series of experiments (including [Keil, 1989; Gelman, Wellman,

1991]) which have shown that human concepts are not mere composites of necessary and

sufficient characteristics but instead posses a particular structure. According to this approach

people act as if concepts have some “essential” properties that are both criterial for category

membership and responsible for other “surface” features of concepts [Medin, Ortony, 1989].

According to psychological essentialism essential features drive human categorization and are

believed to determine the rest of the features. Among the candidates for essential features,

especially in the context of the categorization of artifacts, are functional features. A number of

experiments (e.g. [Barton, Komatsu, 1989; [Gelman, Bloom, 2000; Matan, Carey, 2001;

Keleman, 1999]) seem to provide the evidence that what guides people’s intuitions about

artifact category membership is intended function, which is thus the essence of artifact

concepts. It is claimed that people categorize artifacts with respect to their function. For

example, [Barton, Komatsu, 1989] as a result of their experiments found out that the objects

which are not able to perform their functions are not considered by people to continue being

the same kind of artifact. For example a mirror that did not reflect an image was not

considered by the subjects of the experiments as a mirror. In addition, the experiments of

Barton and Komatsu have shown that function is a sufficient condition for the categorization

of objects as kinds of the same artifact. The object which was neither hard nor made of glass

but did reflect an image was considered as a mirror.

Function not only determines the kind of an artifact, but also its properties, its actual

usage and the classification of artifacts. For example, the function of a knife, to cut, dictates

both the shape and the actual usage of knifes. Moreover, variation of the functions of a knife

results in different kinds of knifes, e.g. bread knife, hunting knife or scalpel.

Ontologies

5

Although functionally interpreted essence is not free from difficulties2 it nevertheless

provides a strong evidence for the significance of the notion of function in human

categorization, as well as in folk theories.

In conclusion we can see that functions and functional knowledge are present across a

vast spectrum of our knowledge, starting with design of artifacts, through natural science, and

ending with folk theories and common sense knowledge. Functional knowledge not only

provides an answer to the question of what purpose a given entity serves; in addition, function

often explains the presence of an entity, its structure and behavior.

1.2 Ontologies

After demonstrating briefly our understanding of functions and their relevance across domains

now we are about to give a short introduction to ontologies, particularly to top-level

ontologies.

1.2.1 Definition and Classification

Although the term ontology, with its origins in philosophy, is hardly new, in computer science

it has gained a widespread popularity over about the last two decades. One of the first attempts

to define the term came from [Neches et al., 1991; Gruber, 1993]. Although until today there is

no universally accepted definition (for discussion see [Guarino, Giaretta, 1995; Guarino,

1997a]), a popularly cited definition is Gruber’s: “an otology is an explicit specification of a

conceptualization” [Gruber, 1993]. Here conceptualization, according to [Studer et al., 1998],

should be understood as an abstract model of some phenomenon, which provides the relevant

concepts. [Guarino, 1998] argues against understanding conceptualization in purely

extensional terms and stresses its intensional character. The term explicit refers to the fact that

the concepts used in the ontology are explicitly defined.

Ontologies are also considered to have the properties of being formal and shared (e.g.

[Gruber, 1994; Borst, 1997]). The former refers to the fact that ontologies are represented by

means of some formal language which makes them machine-readable. The latter refers to the

fact that ontologies are not private but they are the result of an agreement or some common

understanding of the phenomena.

2 See section 2.3.2 for Keil’s [Keil, 2003] argumentation against essence considered as an intended

function.

Introduction

6

The term ontology gained an increasing popularity, which resulted in applying it to

various information systems ranging from simple catalogs, through glossaries, thesauruses,

taxonomies and collections of frames to formal logical theories [Smith, Welty, 2000]. This

mishmash called for a systematization, and the introduction of various flavors of ontologies.

A number of such systematizations have been proposed (for an overview see [Gomez

Perez et al. 2004]). Particularly two criteria for systematizing ontologies are taken into

consideration by [Gomez Perez et al., 2004]: (1) the richness of the internal structure of the

ontology (2) the subject of conceptualization. The first criterion introduced by [Lassila,

McGuinness, 2001] systematizes the wide range of systems discussed by [Smith, Welty, 2000]

(see figure 1) and shows that nowadays the degree of formality varies significantly across

different ontology types. Most informal ontologies are the controlled vocabularies which are

mere catalogs of terms, and glossaries which additionally provide natural language

specifications of terms. To be the most formal are considered ontologies which permit to

specify first-order logic constraints such as disjointness or inverse. The second criterion

permits to distinguish among others [Guarino, 1997b]:

− Top-level ontologies describing the most general concepts present across domains

under which the more specific concepts can be underpinned. Typical concepts of a

top-level ontology are process, object, or role.

− Domain ontologies specifying the conceptualization of particular domains (e.g.

enterprise, service, chemistry, etc). The concepts of domain ontologies are the

specializations of the concepts of top-level ontologies (e.g. employee is a

specialization of role)

− Task ontologies specify the conceptualization related to a given task or activity (e.g.

diagnosing, selling, etc.).

− Application ontologies are application dependent specializations of task and domain

ontologies.

Figure 1. Categorization of ontologies (from [Lassila, McGuinness, 2001]).

In the present work we are concerned with ontologies which are considered by Lassila,

McGuinness, 2001 to be the most formal namely the ontologies having the form of logical

theories permitting to express general logical constraints and providing specifications of most

general concepts. A formal ontology we understand as follows:

Ontologies

7

“it (formal ontology) consists of a structured vocabulary V(Ont), called ontological signature,

and a set of axioms Ax(Ont) about V(Ont) which are formulated in a formal language L(Ont).

Hence, an ontology (understood as a formal object) is then a system Ont = (L,V,Ax); the

symbols of V denote categories and relations between categories or between their instances. L

can be understood as an operator which associates to a vocabulary V a set L(V) of expressions

which are usually declarative formulas.”([Heller et al., 2005], p. 8)

In accordance with the above we understand an ontology as the computer-based artifact, i.e. a

formal model or a theory applicable in computer systems all of whose elements are artifacts

referring to the objects of the real world and/or conceptualizations of those objects shared by a

group of people. It is important to note that all ontological categories and individuals (later

referred to as entities) are not considered here as the entities of the world, but as artifacts

(elements of an ontological model) which describe/refer to the world. This understanding of

an ontology is far from the philosophical sense of the term in which Ontology is considered as

the discipline studying existence and being.

Defining ontologies in terms of formal models referring to some conceptualization

makes them similar to database schemas, which can be understood as particular models of

conceptualizations of some domain of interest. However, some authors find ontologies to be

different from database schemas. For instance, [Spyns et al., 2002] observe that ontologies are

domain-oriented while the database schemas are application-oriented. In this sense, ontologies

ought to be reusable across different application in a given domain, whereas database schemas

are not necessarily so. Following that line we could delimit ontologies from database schemas

as the models oriented more on the actual organization of things in the world or the currently

accepted conceptualizations, rather than on the temporary application needs.

1.2.2 Top-level Ontologies

In the current work we are interested in particular in top-level ontologies, also called

foundational or upper-level ontologies (ULO). Top-level ontologies are not concerned with

providing a complete description of everything, which is a doomed enterprise. As mentioned

above they are concerned with the formal specification of most generic categories such as

process, object, time or space, which provide the backbone of specific domain ontologies and

are reusable across a broad range of domains. The generic character of the categories defined

in ULO makes the development of those ontologies a cross domain effort of engineers,

computer scientists, philosophers, library scientists and linguists. ULOs do not contain

concepts specific to particular domains but instead provide a foundation, upon which domain

Introduction

8

ontologies can be constructed. For instance on the basis of the general concept of process the

domains dependent notions of business process or biological process may be introduced.

Several top-level ontologies have been developed in recent years. Some of them are

developed as stand-alone ontologies, e.g. that of J.F. Sowa [Sowa, 2000], or the upper

ontology of Russell and Norvig [Russell, Norvig, 1995]. Some are modules of bigger projects

and are often aligned with domain ontologies, e.g. Suggested Upper Merged Ontology

(SUMO) [Niles, Pease, 2001; Pease, Niles, 2002] developed by the Standard Upper Ontology

Working Group at IEEE [SUO, 2005], Descriptive Ontology for Linguistic and Cognitive

Engineering (DOLCE) [Masolo et al., 2003; Masolo et al., 2003] being a module of the

WonderWeb Foundational Ontologies Library (WFOL) [WonderWeb, 2005], upper-ontology

developed within the Smartkom Project [Smartkom Project, 2005], General Formal Ontology

(GFO), being a component of the Integrated System of Foundational Ontologies (ISFO), which

in turn is a part of the Integrated Framework for the Development and Application of

Ontologies (IFDAO), the upper-level part of the ontology used in the MultiNet semantic

network [Helbig, 2001], or the upper-level of the Cyc Project ontology [Cyc Project, 2005].

Below we give a short informal overview of the selection of the above ontologies,

namely of Sowa’s ontology, SUMO, DOLCE and in particular GFO, which the present work

refers to. We present the most top-level categories and track the most significant ontological

choices done in those ontologies.

Sowa’s Ontology

Sowa’s upper-level ontology was strongly influenced by the philosophical works of Peirce,

Plato and Whitehead. The lattice of categories was developed pursuing a combinatorial

approach based on three orthogonal distinctions: (1) physical vs. abstract, (2) firstness,

secondness, thirdness, (3) continuant vs. occurrent.

Concerning the first distinction Sowa understands abstract entities, in the spirit of Plato

and Whitehead, as eternal, mathematical objects, which do not have a location in space or in

time. In contrast to this, physical entities are located in space and time. The relation that holds

between physical and abstract entities is that of characterization/ representation. An abstract

entity characterizes, and is represented, in zero or more physical entities.

Concerning the second distinction Sowa’s ontology is founded on Peircean notions of

firstness, secondness and thirdness. Firstness is an Independent category which is represented

in logic by a monadic predicate P(x), “which describes an entity x by its inherent qualities,

independent of anything external to x” ([Sowa, 2000], p. 61). Secondness is a Relative

category, which can be represented as a dyadic predicate. The Relative grasps the external

Ontologies

9

relationship to some other entity. Thirdness is a mediating category that can be represented by

means of a triadic predicate. The Mediating binds together the Independent and the Relative.

Finally, continuants are contrasted to occurrent on the basis of their relation to time. “A

continuant has stable attributes or characteristics that enable its various appearances at

different times to be recognized as the same individual. An occurrent is in a state of flux that

prevents it from being recognized by a stable set of attributes. Instead, it can only be identified

by its location in some region of space-time.” ([Sowa, 2000], p. 71)

The application of those three orthogonal distinctions results in 27 basic categories,

which in turn are specialized further into more specific categories. Sowa provides a textual and

a semi-formal specification of all of the categories of his ontology. Moreover he provides a

pictorial language called Conceptual Graphs (CG) for representing ontologies, which is a

system of logic based on the existential graphs of Charles Sanders Peirce and the semantic

networks of artificial intelligence. CG are intended to merge logical precision and human

readable form.

SUMO

Suggested Upper Merged Ontology (SUMO) [Niles, Pease, 2001; Pease, Niles, 2002], created

at the Teknowledge Corporation, was intended to merge upper-level ontologies of Sowa,

Russel and Norvig, Allen’s temporal axioms [Allen, 1984], the theory of holes by Casati and

Varzi [Casati, Varzi, 1995], Smith’s ontology of boundaries [Smith, 1996; Smith, 1994],

formal mereotopology developed in [Borgo et al., 1996; Borgo et al., 1997], and several

representations of plans and processes, including Core Plan Representation [Pease, Carrico,

1997] and Process Specification Language [Schlenoff et al., 2000]. SUMO is developed in a

variant of KIF called SUO-KIF and has been translated into various representation formalisms,

including OWL and LOOM.

Figure 2. Taxonomy of SUMO most top level categories.

Introduction

10

Categories of SUMO are organized into a taxonomy (figure 2), where the root category entity

is subsumed by abstract and physical entities, just as it is the case in Sowa’s ontology.

Physical entities are divided into processes and objects, which is an adoption of the 3D view3

and resembles Sowa’s distinction between continuant and occurrent. Abstract entities are in

turn divided into (1) a class understood as a set together with its intensional condition of

membership, (2) a proposition, which represents the notion of semantic or informational

content, (3) an attribute covering all qualities, properties which are not reified as objects, and

(4) a quantity covering physical quantities and numbers.

DOLCE

Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE) is introduced as a

first module of the WonderWeb foundational ontologies library developed within the

WonderWeb Project. The aim of that ontology, as the authors admit in ([Masolo et al. 2002],

p.8) is not to develop a universal standard ontology but rather give a starting point for

comparison and making explicit the assumptions of other modules of WFOL. The

axiomatization is given in modal first order logic and was translated into KIF, DAML+OIL,

RDFS and OWL. DOLCE was integrated with methodologies for ontology building e.g.

OntoSpec [Kassel, 2005] and was applied in the development and alignment of a number of

ontologies and glossaries, e.g. WordNet [Gangemi et al., 2003].

The basic distinction of ontological categories in DOLCE is made between endurants,

perdurants, qualities, and abstract entities. The distinction between endurants and perdurants

is the adoption of the 3D view and, similarly to Sowa’s ontology, refers to the behavior of an

entity in time: (1) endurants are entirely present at any time of their existence, perdurants are

only partially present at any time of their existence; (2) endurants are in time, whereas

perdurants happen in time, (3) endurants can genuinely change in time, perdurants cannot

undergo a change. The relation that holds between endurants and perdurants is the relation of

participation - endurants participate in perdurants.

3
 The 3D view postulates a basic ontological distinction between entities that are completely present at

any moment of their existence, called objects or endurants, and entities that are not, called processes.

The 3D view is contrasted to the 4D view regarding both objects and processes as four dimensional

entities extended in time and space.

Ontologies

11

Figure 3. Taxonomy of DOLCE topmost level categories (from [Masolo et al., 2003], p. 14)

Qualities are the entities that we can perceive and measure. They are inherited to the

entities they describe: every entity has some qualities with which it comes. Qualities are

related to so-called quality spaces which correspond to qualitative sensorial experiences of

humans [Gärdenfors, P. 2000]. Abstract entities are contrasted to perdurants and endurants as

the entities located neither in space nor in time.

Perdurants, endurants, qualities and abstract entities are further decomposed by means

of subsumption to more detailed categories (figure 3).

GFO

In the current section we give the overview of the General Formal Ontology (GFO), which the

current work is built upon. GFO is the first ontology of the Integrated System of

Foundational Ontologies (ISFO) being developed at the University of Leipzig by the research

group Onto-Med [OntoMed, 2006]. ISFO is a part of an Integrated Framework for the

Development and Application of Ontologies (IFDAO) whose predecessor was the GOL project

[Degen et al., 2001; Heller, Herre, 2004; Heller et al., 2005] launched in 1999 as a

collaborative research effort of the Institute for Medical Informatics, Statistics and

Epidemiology (IMISE) and the Institute for Informatics (IfI) at the University of Leipzig.

IFDAO covers not only the area of foundational ontologies but also the meta-ontological

analysis. In particular, the topics of conceptual structures and principles of category building

are discussed in [Herre, Loebe, 2005; Burek, 2004; Burek, 2005; Burek, Grabos, 2005].

GFO provides a taxonomy of entities, a taxonomy of relations, and the set of axioms

describing them in FOL. Entities of GFO are organized into three levels of the description of

Introduction

12

reality, namely material, mental and social level, in such a way that every entity of GFO

participates in at least one of those levels (for further discussion of levels of reality see [Poli,

2001; Poli, 2002]). The material level comprises the perspective taken in biology, chemistry or

physics. The mental level is organized around the representation of the psychological

phenomenon and comprises most of what is studied in cognitive science. The social level, in

turn, groups all entities referring to the social phenomenon, such as agent, organization, or

society.

The root element in the GFO taxonomy is entity
4 (figure 4) Entities are the basic

elements of the ontology which refer to the items of reality. Three general kinds of entities are

considered in GFO, namely sets, categories, and individuals.

Categories, also called universals, are intensional counterparts of classes. They are such

entities that may be predicated of other entities and may be expressed and represented in terms

of language. Moreover, they may be instantiated by other categories or by individuals.

Individuals instantiate categories but cannot be instantiated themselves. The distinction

between individuals and universals can be seen by the analysis of the number of items of the

real world they refer to. Universals may refer to more than one item of the world, whereas

individuals refer to exactly one item of the world. Thus, the ontological distinction between

universals and individuals should not be identified with the distinction between objects and

classes of object-oriented paradigms, since not every object must refer to exactly one item of

reality, e.g. ape:species, refers to all apes.

The main branch of the GFO taxonomy concerns individuals, but one should notice that

primitive categories can be organized in the isomorphic taxonomy by means of individuals

instantiating them. Individuals are organized into entities of space and time (time entities and

space entities), abstract and concrete individuals.

GFO provides a build-in representation of time and space. Both time and space are

organized into regions with explicit boundaries, called spatial regions (specialized to topoids),

and time regions (specialized to chronoids) respectively. Temporal relations of before, after

etc. are represented by the relations between the boundaries of time regions occupied by

entities.

4 Table 1 provides the list of examples of GFO entities and appendix A - the list of all GFO constructs

used in the current work, their definitions and corresponding axioms. The account of the GFO entities

given here slightly differs, mostly terminologically (although see footnote 5) from the most current

specification of GFO [Heller et al., 2006], which was under construction during the time of writing of

the present work. Moreover, due to the topic of the present study, which does not require an introduction

of GFO in all its complexity, some of the notions of GFO are simplified here.

Ontologies

13

Figure 4. Taxonomy of GFO topmost-level categories. This tree is a simplified and modified

variant of ([Heller et al., 2005], p. 145-147).

Concrete individuals, in contrast to abstract individuals, are the individuals located in

time and space. The main distinction is made between occurrents and presentials. The former

include processes being entities that are extended in time and resemble processes in SUMO

and Sowa’s ontology, or occurrences in DOLCE, whereas the latter are not extended in time,

and in contrast to endurants, they do not persist through time but are time-flat. They can be

considered as time slices of processes. Persistence is accounted in GFO by means of

persistants, which are entities extended in time but distinct from processes. A persistant can be

seen as a construct which binds presentials having the same identity, though located at

different time boundaries5, into one entity persisting through time.

GFO construct Example

Universal Human being

Individual John

Chronoid Time of duration of a soccer match

Chronoid boundary Time of the end of the match

Topoid 3D location occupied by John

5 It should be mentioned that the presented account of persistants is a simplified variant of GFO [Heller

et al., 2006]. Originally, persistants are not individuals but universals instantiated by ontically connected

individual presentials, and are introduced to GFO as a response to the problems yielded by the typical

understanding of endurants as the entities enduring in time and wholly present at every moment of their

existence. For further discussion see ([Heller et al., 2006], p. 25).

Introduction

14

Process Movement of the ball

Presential The ball at the beginning of the match

Persistant The ball

Property The color of the ball

Property value White

Role John as an attacker in the soccer match

Fact John hitting the ball

Situoid Soccer match

Table 1. Examples of GFO entities.

More complex entities composed of collections of presentials and their interrelations are

handled by the notions of facts, configurations and situations. The time-extended counterparts

of the latter two are called configuroids and situoids, respectively6.

Individuals of all kinds may have assigned properties and property values which are

considered to be dependent on their bearers. Similarly roles are considered to be entities

dependent on their role fillers and the context in which they are played by the role fillers7.

Entities of GFO are related by a net of ontological relations, including instantiation,

has-quality, part-of, occupation, and others. Several other relations, including causality, are

still under development [Michalek, 2005; Michalek, 2006].

1.2.3 Representation Formalisms

Various types of logics have commonly been used for representing ontologies, e.g. FOL in the

case of GFO and Sowa’s ontology or modal logic [Hughes, Cresswell, 1996] in DOLE.

However, representing ontologies in a purely logical manner is not a straight task, especially

for untrained domain experts, who are often involved in ontology development process. To

simplify ontology design a number of ontology specification languages have been developed,

merging familiar frame-oriented and object-oriented paradigms with logic, for example F-

Logic [Kifer, 1995], OCML [Domingue et al., 1999], or LOOM [Loom, 1995].

Those languages are sometimes referred to as traditional ontology representation

languages, and are contrasted with web based languages, which are dedicated to ontology

6 Complex entites are discussed in more detail in section 3.3.7.

7 Roles are discussed in more detail in section 3.6.1.

Ontologies

15

representation in the context of the Semantic Web [Corcho, 2001; Corcho, Gomez-Perez,

2000]. Web-based ontology languages are intended to provide machine-readable semantics of

the content on the web. Those languages are either HTML- based, e.g. SHOE, or XML-, RDF-

and RDF(S)- based, e.g. OIL, DAML +OIL or OWL. The current World Wide Web

Consortium [W3C, 2006] recommendation for an ontology specification language on the Web

is the Web Ontology Language (OWL) [OWL, 2004], which comes in three increasingly-

expressive sublanguages: OWL Lite, OWL DL, and OWL Full. The first two sublanguages

have the formal semantics of SHIF(D) and SHOIN(D) description logics, respectively. OWL

Full uses all OWL language primitives and permits arbitrary combination of those with RDF

and RDF(S). However, the high expressivity of OWL Full is achieved at the cost of its

computational intractability, which is a serious shortcoming especially in the light of the aim

of the Semantic Web.

Yet another group of the languages for representing ontologies are the languages

constructed for the development of (and based on) particular ontologies, e.g. CycL developed

in the context of the Cyc project. Those languages often have some build in ontology.

Finally, there are also proposals to use as ontology specification languages the graphical

modeling languages from outside of the ontology community. For example, it is suggested in

e.g. [Baclawski et al., 2001; Kogut et al., 2002] to apply the Unified Modeling Language

(UML) [Rumbaugh et al., 1999], developed and successfully applied in the software

engineering area, into ontological engineering. The issue of combining ontologies with

conceptual modeling languages, in particular with UML, is discussed in chapter 8. Moreover,

chapter 8 contains a specification of the UML profile constructed by means of the developed

ontology applicable to functional modeling.

1.2.4 Applications

The list of application areas of ontologies has increased in recent years. [Guarino, 1998;

Corcho et al., 2001] report a few of them, including: knowledge engineering, knowledge

management and knowledge representation, qualitative modeling, language engineering,

database design, e-commerce and e-services, information modeling and integration, database

design, natural language processing, knowledge reuse and of special impact today the

Semantic Web. The upper-level ontologies in turn bring profit in particular to integration of

information, reuse of knowledge, domain ontology engineering, and conceptual modeling.

Concerning the first, since ULOs provide the specification of the most common

categories their application is not limited to particular applications, tasks or domains but can be

used and shared in various different information systems. This permits to apply ULOs for

Introduction

16

information integration, providing a commonly used set of the most basic notions. Domain

ontologies may be merged and integrated by virtue of commonly shared top-level concepts.

Secondly, top-level ontologies reduce the time and effort of the domain ontology design

and alignment. Instead of developing a structure of most top-level categories and relations

individually for each domain ontology one may use an available top-level ontology. In this

sense, a top-level ontology can be used as a framework for developing domain ontologies.

Moreover, ULOs applied as the foundations of domain ontologies improve their quality and

help in their formalization. As reported in [Borgo, Leitão, 2004] domain ontologies developed

in frames of ULOs gain the benefit of strong formal and semantic foundations. We see

therefore that the use of ULOs not only precipitates and simplifies the process of the creation

(and the maintenance) of domain ontologies but also leads to fewer errors and a better

understanding of the domain concepts.

Thirdly, and particularly importantly for our work, ontologies have been recognized to

be adequate for providing sound foundations for conceptual modeling. Conceptual modeling is

concerned with the construction of computer-based semi-formal or formal abstractions of part

of the world. In particular, conceptual modeling is used in software engineering for the

purpose of depicting both the domain of interest - the information structure on which the

system under development is intended to operate, i.e. the data model, and the components of

the system itself. In software engineering conceptual models are developed by means of so-

called conceptual modeling languages which are typically formal or semi-formal diagrammatic

languages or notations, such as Unified Modeling Language [OMG, 2005], Entity

Relationship diagrams [Chen, 1976], or Object Role Modeling notation [Halpin, 1997].

Usually those languages are based on a limited number of constructs, which are sometimes

defined in the form of a meta-language, e.g. UML.

Many conceptual languages, although successfully used in common-day practice of

software engineering, lack a rigorous definition of used constructs, and often their ontological

correctness is doubted (see e.g.[Wand, 1999; Guizzardi et al., 2002a; Guizzardi et al., 2002b;

Guizzardi et al., 2004]). Those limitations may result in the ambiguities and even incorrectness

of the conceptual models developed by means of such languages. It seems that top-level

ontologies, which are formal axiomatic theories can provide sound foundations for conceptual

modeling languages. ULOs provide both formally defined and semantically justified

categories, which can serve as the foundation for the definitions of conceptual modeling

languages constructs.

In addition, one could observe that ULOs resemble conceptual modeling languages

when comparing the categories of the former with the constructs of the latter. For example, the

common ontological categories shared by many ULOs (see section 1.2.2) such as object,

Objectives

17

process, time, activity, role are the constructs of conceptual modeling languages, e.g. UML or

Object Process Methodology (OPM) [Dori, 2002]. In this sense ULOs could not only be

applied as the foundations of the conceptual modeling languages, but they can themselves be

directly applied as conceptual modeling languages of high formal and ontological precision.

Today’s obstacle in applying top-level ontologies directly as conceptual modeling

languages is the lack of an appropriate representation. Conceptual modeling languages are

mostly pictorial representations, which are intuitive not only for modelers but also for domain

experts involved in the process of conceptual modeling. Top-level ontologies, on the other

hand, are formal logical theories, not easily comprehensible for untrained users, i.e. for domain

experts involved in the process of conceptual modeling. Thus, it seems profitable to develop

pictorial (and simple) representations of top-level ontologies which may be used as the tools

for conceptual modeling. For that purpose one could for instance extend the current modeling

languages by means of build-in extension mechanisms, such as UML Profiles [OMG, 2004].

This technique was applied in [Guizzardi et. al., 2002; Guizzardi, 2005] where GFO and UFO

were used for the extension of the UML structural meta-model. Extending UML with a top-

level ontology gains the twofold benefit of providing a pictorial representation of top-level

categories based on the well known syntax of UML, and secondly of bringing formal and

ontological sound foundations for UML.

Note that the idea of developing a UML profile for a top-level ontology should not be

confused with the initiative of developing a UML profile for ontology development, as it is

proposed in example in [Kogut et al., 2002]. In the latter UML is intended to be used as a

language for modeling ontologies, whereas the former is aimed to extend UML with (top-

level) ontologies.

1.3 Objectives

Now, after the preliminary remarks concerning our understanding of function and the outline

of top-level ontologies we are ready to introduce the problem and the objectives of the current

work.

Problem: Function is an important cross-domain notion and there is a lack of a domain

independent framework for representing and modeling functions.

The examples presented at the beginning of this chapter show that the notion of function is of

importance in various domains. However, as we will demonstrate in the next chapter, most of

the research done in AI and computer science in recent years seems to be concerned with the

Introduction

18

representation of functions in the context of the design of technical devices and computer

systems only.

There has been a recognized need to provide a general framework for representing

functions especially in the context of a multidisciplinary design [Chandrasekaran, Josephson,

2000; Rosenman, Gero, 1999]. As Chandrasekaran and Josephson point out, the lack of such a

framework causes that “the representation of function in one domain, say chemical

engineering, may not be compatible with the definition, say, in electrical

engineering”([Chandrasekaran, Josephson, 2000], p. 1).

We follow the idea of a generally applicable notion of function, but we extend it beyond

the technical device design. We think that the notion of function can be extended in such a way

that it coherently covers not only the design of non-technical artifacts, i.e. in the field of

business modeling, but moreover it is applicable to describing non-artifacts, e.g. biological

organisms or social entities. In our opinion such a general approach would permit a true

multidisciplinary functional knowledge representation. For example, if by means of the same

formalism one can represent the functionality of the human organism and the functionality of

technical artifacts, then the multidisciplinary design of implants could be simplified. In the

same way, one common representation of the functions of software, technical artifacts and the

business systems composed of them would simplify the business modeling and the integration

of all three. The current work is aimed at solving the defined problem by reaching two

objectives:

Objective 1. To develop a formal top level ontology of functions applicable across various

domains.

In the current work we propose to consider the notion of function not as a domain notion of

technical artifact design, but instead as a top-level category analogous as time, space, process,

object etc. Thus, in our understanding the ontology of function is not considered as a kind of

mediating ontology between top-level and domain level, as is proposed for example in

[Kitamura, Mizoguchi, 2004]. Nor is it considered as a domain ontology for technical

engineering as in [Chandrasekaran, Josephson, 2000], but it is understood as a top-level

ontology instead (see figure 5 for comparison).

However, the current top-level ontologies do not include the notion of function, or treat

it cursorily. For example DOLCE, GFO and Sowa’s ontology lack the notion of function or

any correlated notion. SUMO introduces the hasPurpose relation, which has the meaning that

a physical thing has a desired or expected purpose. The notion of a purpose is distinguished

from the notion of an outcome, which does not need to be expected or desired. The intended

purpose in SUMO could be interpreted as a function of an entity. However, purposes in SUMO

Objectives

19

are assigned to physical objects only, whereas it seems that non-physical entities may have

functions ascribed as well. In Sowa’s ontology the concept of purpose is also present, however

it is not considered as a function but as the relation gluing an agent, his act and his intention

concerning that act.

Concluding, we see that the need for supporting functions and functional modeling by

the currently developed top-level ontologies is not satisfied. Thus, the aim of this work is to

provide the domain-independent, top-level ontological framework for function representation.

Such a framework in our opinion is not limited to providing the standalone category of

functions but is rather concerned with the exploration of the conceptual structure of functions,

which includes the web of categories and their interrelations.

However, our aim should not be seen as the replacement of the domain-specific notions

of functions but rather as an attempt to develop a general notion covering the greatest number

of specific cases. A list of detailed requirements of the function ontology is composed on the

basis of an analysis of the current state of the art and is presented in section 2.4.

Objective 2. To incorporate the top level ontology of functions into a wider ontological

framework.

A functional knowledge seldom stands in isolation, but mostly it is combined with a non-

functional knowledge. Thus we find it important not to develop the isolated representation of

functions, but to embody it in a wider ontological framework. Hence, the functional ontology

is designed as a module of GFO and is formalized in formalized in first-order logic, in

conformance with the existing axiomatization of GFO presented in [Heller et al., 2005].

Additionally we think that the ontology of functions can provide sound foundations for

conceptual languages for function modeling. Therefore we recognize an additional objective

which is considered rather as a by-product of the developed ontology:

Objective 3: To provide a ready-to-use modeling formalism permitting the ontologically-

driven conceptual modeling of functional knowledge.

Introduction

20

m
o
d
u
le
 o
f

Figure 5. Three architectures of the functional ontology. The top left part of the figure

represents the architecture underlying the approach of [Chandrasekaran, Josephson,

2000], where the ontology of functions is considered as (a module of) a domain ontology

for technical engineering. The top right of the figure represents the architecture

underlying the approach of [Kitamura, Mizoguchi, 2004]. The functional concepts are

defined in the Extended Device Ontology, which is a specialization of Top-level

Ontology from the device-centered view, and the Functional Concept Ontology specifies

functional concepts as an instance of the concept of “function” defined in the Device

Ontology [Kitamura, Mizoguchi, 2004]. The above diagram is the interpretation of the

architecture, the original diagram of this architecture is depicted in figure 6 of the current

work. The bottom part of the figure presents the architecture underlying our approach.

Here, in contrast to the two previous architectures the ontology of functions (OF) is

neither considered as the domain ontology nor as the fundamental (but nevertheless

domain) ontology of devices. Instead it is a top-level ontology, being a module of a wider

ontological framework. Domain function ontologies are considered as specializations of

OF.

In our opinion the current formal top-level ontologies could be used for the purpose of

conceptual modeling as formal, precise and well-founded modeling languages. However, they

lack an appropriate graphical representation which is a typical part of conceptual modeling

languages nowadays. We aim to provide the graphical representation of the developed

ontology of functions. In particular, on the basis of the developed ontology we construct a

UML profile for function modeling. Using a UML profile which is an extension mechanism of

UML not only serves this purpose but it also makes the developed representation compatible

with the current de facto standard for conceptual modeling.

Structure

21

1.4 Structure

The remaining part of the current work is structured into eight chapters. In chapter 2 we

analyze the notion of function across domains and formalisms. In particular we investigate AI

approaches from the field of functional device modeling, as well as the conceptual modeling

paradigms. In addition we briefly outline the discussion concerning functions in the field of

philosophy, especially in the context of the philosophy of biology. The results of those

analyses are used to shape the list of the issues which the ontology of functions in our opinion

should address.

Chapters 3 to 7 present the Ontology of Functions. Chapter 3 specifies the structure of

function, lists function determinants and introduces most fundamental kinds of functions. In

addition, it addresses the issues of a function’s side effects and restrictions on functions. In

chapter 4 several relations by which functions can be glued into functional models are defined.

Some of those relations are typical ontological relations such as subsumption, or partonomy,

adopted for functions; some others are specific for functions relations. The issue of function

realization is discussed in chapter 5. It contains the specification of different modes or

realizations, which exceeds most typical cases of processual realization. The results of chapter

5 serve as the basis for the distinction of various types of function ascription addressed in

chapter 6. Moreover, chapter 6 introduces the notion of malfunction, crucial in the context of

artifact evaluation. Chapter 7 contains a discussion on the ontological status of functions, in

which the characteristics of functions as well as some of the candidates for function definition

are considered. In addition, it provides the most top-level categorization of functions

constructed on the basis of the developed framework. Finally, it specifies a modularization of

the developed ontology.

Chapter 8 provides a specification of the UML profile constructed on the basis of the

developed ontology and suited for functional modeling.

The study ends with conclusions containing the identification of the advantages of the

developed framework, its applications in domain ontologies and conceptual modeling as well

as suggestions for future work. In turn, definitions and symbols of the GFO notions used in the

text are provided in appendix A.

22

2 Related Works

The purpose of the current chapter is double. On the one hand we give an overview of the

notion of function across domains. In particular in section 2.1 we investigate functions in areas

of computer science such as device representations and design, in section 2.2 software

engineering and business modeling. In addition, in section 2.3 we briefly survey philosophical

discussion over functions. On the other hand, on the basis of the state of the art discussed we

provide in section 2.4 a list of requirements which in our opinion a top-level ontology of

functions should meet.

2.1 Functional Device Representations

In AI there is a vast area of research concerned with the functional representation in the

context of technical artifact design. The design is concerned not only with the problems of

structural and behavioral organization of artifacts, but with the intentions of designers

concerning the functionality of artifacts, i.e. those concerning the problems of ‘why a given

component is here, and why the artifact behaves in a certain way?’. [Iwasaki, Chandrasekaran,

1992] distinguish a function-oriented and a behavior-oriented approach to modeling. The

former is focused on the question of what a device is supposed to do, i.e. its function, whereas

the latter is concerned with the expected behavior of a device and deals with the question of

how a device is supposed to achieve an intended function.

There are a number of approaches in artifact modeling that handle functional

knowledge. They differ from one another not only due to their interpretation of the notion of

function, for which a universally accepted definition has not been developed so far, but also in

their underlying purposes, ranging from design verification, e.g. [Iwasaki, Chandrasekaran,

1992] to automatic functionality identification [Kitamura et al., 2002]. Despite those

differences in the current work we will consider them all under one common notion of the

functional device representations (FDR). A typical feature of FDR approaches is that functions

are considered in the context of devices and are contrasted with the behavior and structure of a

device.

In the coming sections we will review the main interpretations of the notion of function

introduced in the field of FDR. These are:

− Function as the input-output pair.

Functional Device Representations

23

− Function in the context of behavior.

− Function as the intended role.

− Function as the effect.

Although the list of references is not exhaustive, yet to our knowledge most of the approaches

in the FDR field can be classified under at least one of the above interpretations.

2.1.1 Functions as Input-Output Pairs

In design research and in functional device representations the input-output approaches have a

long tradition, see e.g. [Rodenacker, 1971]. As reported in [Britton et al., 2000] the input-

output approaches define functions by means of rigorous mathematical description e.g.

[Schmekel, 1989; Welch, Dixon, 1992]. Here, however, we are more interested in the

underlying conceptual model. Let us consider two examples: [Rodenacker, 1971] defines a

function as a relationship between input and output of energy, material and information, while

in [Wirth, O’Rorke, 1993] function is defined by the input flux, the output flux, the source

component, the destination component and the function carrier. For example, the function of a

hot-cold water faucet can be understood in those terms as follows: the input fluxes are hot and

cold water, while the mixture of both is the output flux. The person controlling the water flow

is the source component. The destination component reflects the purpose for which the output

flux serves. In case the output flux is used for washing hands, the hands are the destination

component. The faucet is the function carrier8.

Among the limitations of the input-output approaches, according to [Britton et al. 2000],

is the fact that mostly they focus only on useful outcomes and ignore negative side effects. In

turn, [Rosenman, Gero, 1998] admit the applicability of that solution for the purpose of

mechanistic aspects of functions, however they argue that it does not fit well with the social

view of functions. The authors write: “there is confusion when function is used at one time to

describe ‘telling the time’ and ‘transforming an analog signal into digital signal’” ([Rosenman,

Gero, 1998], p. 170). Moreover, it is questionable whether for all functions such a mechanical

transformation can be found, e.g. it is hard to find mechanical transformation between the

input and the output in the function of a bolt and a nut which is to fix parts [Umeda et al.,

1990].

8 The example cited after [Qian, Gero, 1996].

Related Works

24

2.1.2 Function and Behavior

In FDR functions are often considered in reference to behavior. Here, we overview several

approaches which consider functions in the context of behavior, namely: Functional Concept

Ontology [Kitamura et al., 2002] (called also a Functional Ontology [Kitamura, Mizoguchi,

1998]), Functional Representation [Sembugamoorthy, Chandrasekaran, 1986; Chandrasekaran

et al., 1993; Chandrasekaran, 1994a; Chandrasekaran, 1994b], Causal Functional

Representational Language [Iwasaki et al., 1995], Function Behavior State [Umeda et al.,

1990; Umeda, Tomiyama, 1995], and finally Bonnet’s [Bonnet, 1992] and Salustri’s

approaches [Salustri, 1998; Bo, Salustri, 1999]. We give a short overview of those approaches

with a special emphasis of the understanding of the notion of a function.

Functional Concept Ontology

Kitamura et al. developed a framework for modeling functional knowledge comprising the

hierarchy of functional knowledge [Kitamura, Mizoguchi, 2004] and the language for

modeling functions and behaviors of a device called the Function and Behavior Representation

Language (FBRL) [Sasajima et al., 1995]. For our interests, crucial in this hierarchy are the

Top-level Ontology, the Functional Concept Ontology and the Extended Device Ontology

(figure 6).

Figure 6. Part of the hierarchy of functional knowledge (from [Kitamura, Mizoguchi,

2004]).

The Top-level Ontology, which is currently under development, is intended to provide the

fundamental vocabulary, which in turn is specialized to Extended Device Ontology. Extended

Functional Device Representations

25

Device Ontology provides a common device-centric viewpoint for representing artifacts, it

also defines the concept of function. The Functional Concept Ontology specifies functional

concepts and depends on the Extended Device Ontology. Thus, already the architecture of the

hierarchy shows that the notion of function is not a top-level concept but is dependent on (and

restricted to) the notion of a device. The knowledge about a device is organized in three levels

([Kitamura et al., 2002] p. 146-8):

1. Behavioral layer

2. Base-function layer

3. Meta-function layer

The behavioral layer is provided by the Device Ontology and provides the objective

description of the structure and behavior of a device. The functional levels (base-function layer

and meta-function layer) provided by the Functional Concept Ontology are founded on the

notion of behavior.

A base-function is defined as a teleological interpretation of B1 behavior, whereas B1

behavior is considered as a change of an attribute value of an operand from that at the input

port of a device to that at the output port of the device [Sasajima et al., 1995]. We see that on

the one hand a function is distinguished from the structure and behavior of a device, but on the

other hand it is restricted to a particular behavior, namely B1 behavior, and is secondary to it.

A base-function is associated with the behavior realizing it by the mapping primitives

called the Functional Toppings. Four kinds of functional toppings are distinguished: Obj-

Focus, O-Focus, P-Focus, and Necessity. They represent respectively the object, its attributes

and its ports, on which a function focuses. In this sense a function is the change of the value of

a focused attribute in given input and output ports of a given object. The Necessity specifies

whether a focused object is used in another component of a device.

Functional toppings show that the specification of a function is grounded both on the

behavior and the structure and the environment of a device.

Base-functions are glued by several kinds of relation, among them is-a and part-of. The

is-a relation is considered in terms of the intensional subsumption, e.g. the function to

remove is defined as the function to take plus the condition heat is unnecessary

([Kitamura et al., 2002], p. 149) and thus it is a specialization of to take. The criteria for

delimiting the sub-function are explicit and are given by the functional toppings.

The second kind of relation introduced into FCO is called a method of function

achievement and is understood as a part-of relation between functions. One function, called a

macro-function, is said to be achieved by its micro-functions. Micro-functions are considered

to be parts of macro-functions, in this sense a method of function achievement corresponds to

Related Works

26

the functional decomposition [Pahl, Beitz, 1988], the degree of complexity in [Hubka, Eder,

1998], and the part-whole relation in Multilevel Flow Modeling [Lind, 1994].

The third kind of relation involving functions in FCO is called the is-achieved-by

relation (or the way of function achievement) and relates a base-function with the essential

property of a structure and a behavior that achieves that function. Thus the is-achieved-by

relation mediates, just as functional toppings the behavioral with the functional layer.

Apart from base-functions FCO introduces meta-functions representing a role of base-

function, called an agent-function, for another base-function, called a target function

([Kitamura et al., 2002], p. 149). Meta-functions are organized on the third layer of

functional knowledge.

The FCO framework has a wide scope of applications in the context of device modeling

ranging from the explanation generation to the automatic identification of functionality of a

device. However, we find several limitations of the framework when applied in a wider

context.

Firstly, it does not support functions concerned with non physical entities. Since this

approach is a domain approach for technical artifacts design, it does not consider functions not

related to physical entities, such as cognitive or social functions.

Secondly, it does not support the functions of all types of physical objects but is

restricted to technical devices only. Functional Concept Ontology specifying functional

knowledge is not a top-level ontology but is dependent on the domain ontology of technical

devices (see figure 6). That architecture itself imposes the domain restricted character of the

notion of function in FCO.

Thirdly, even in the case of functions operating on physical objects it seems that not all

function types are supported, in particular such that do not involve change. The notion of

function in FCO is restricted to dynamic functions involving a change of physical attributes

only. For example, if the function of a warehouse to store goods is considered, one

would see that there is no B1 behavior involved in this function, since there is no change of the

attributes of goods kept in the warehouse. In this sense a function of a warehouse cannot be

represented as a teleological interpretation of behavior involving a change of an entity on

which it operates. Thus we see that the framework is rather domain-oriented – it supports

modeling only of dynamic functions involving changes of physical operands.

Fourthly, it seems that the distinction between base- and meta-functions is also dictated

by the domain of application. The framework as it is presented by the authors enables the

representation of functionality of devices; but it is not a framework for representing functions

in general. Therefore of primary relevance are the functions assigned to devices or their

components, whereas functions assigned to base-functions are considered on the meta-level.

Functional Device Representations

27

FR and CFRL

In [Sembugamoorthy, Chandrasekaran, 1986] authors introduced the Functional

Representation framework (FR) which was elaborated in a number of papers [Chandrasekaran

et al., 1993; Chandrasekaran, 1994a; Chandrasekaran, 1994b] and was extended in [Iwasaki et

al., 1995] to the Causal Functional Representational Language (CFRL). Both formalisms have

been applied to a number of tasks, which is reported in [Chandrasekaran, 1994a], including

device design [Chandrasekaran et al., 1993], design and redesign verification [Iwasaki,

Chandrasekaran, 1992], diagnostic reasoning, computer program debugging [Allemang, 1991;

Allemang, Chandrasekaran, 1991] and simulation [Pegah et al., 1993].

In FR a function is defined as a quintuple {TypeF, PF, DevF, CF, GF}, where:

− TypeF is one of the function types introduced in [Keuneke, 1991]: ToMake,

ToMaintain, ToPrevent, ToControl.

− PF is the functional goal.

− DevF is the device that the function is a function of.

− CF are the conditions which specify when the function must be achieved;

− GF is the set of Causal Process Descriptions (CPD) describing the causal mechanism

achieving a function ([Iwasaki, Chandrasekaran, 1992], p. 6).

This definition evolved in CFRL where a function F is defined as a quadruple {EF, DF, CF, GF}

where:

− EF is the name of the function which F elaborates.

− DF is the description of the device of which F is a function

− CF is the description of the context in which the device is to function.

− GF is the description of the functional goal to be achieved ([Iwasaki et al., 1995], p.12).

The functional goal GF of the latter definition is the combination of the functional goal PF

together with the set of Causal Process Descriptions GF from the former definition. Thus, both

definitions represent the function by references to the Causal Process Description (CPD). CPD

is a directed graph with two distinguished node types, Ninit and Nfin [Chandrasekaran, 1994b].

Each node of the graph represents a partial state of a device. Ninit corresponds to the partial

state of the device when the conditions of the function are satisfied. Nfin corresponds to the

state, in which the goal of the function is achieved. The edges of the graph represent causal or

temporal connections between the states.

CPD is an abstract description of a device’s expected behavior in terms of a sequence of

events. For example the CFRL definition of the function of an electrical power system in an

Related Works

28

Earth orbiting satellite contains a very simple CPD (figure 7), composed of three nodes related

by causal links. If the voltage exceeds 33.8, the relay is opened by the controller which causes

a decrease of the battery’s stored charge. In addition, qualifiers and annotations attached to the

edges indicate the conditions under which the transition takes place as well as the type of the

causal explanation of the transition. Here, the transition from n1 to n2 is causal and is

achieved by the function of the controller component.

D
F
: ?eps: Electrical-power-system

C
F
: Object-set: ?sun Sun, Condition: T

G
F
: (ALWAYS

 (IF(AND(>(Electromotive-force

 (Battery-component ?eps))

 33.8)

 (Closed-p (Relay-component ?eps)))

 THEN CPD3))

CPD3:

n2: (Open-p (Relay-component ?eps))

causal,< (by-function-of (Controller-component ?eps))

n1: (>(Electromotive-force (Battery-component ?eps)) 33.8)

n3: (<(d(Stored-charge (Battery-component ?eps))/dt)0)

causal,<

Figure 7. CFRL definition of function of an electrical power system ‘to prevent the

battery from overcharging’(from [Iwasaki et al., 1993]). DF specifies the device - the

electrical power system, CF - the context of the device, i.e. the Sun and Conditions, GF -

the goal to be achieved, which is a conditional statement here saying that if the battery

voltage exceeds 33.8 and the relay is closed then CPD3 should be executed. Finally

CPD3 provides the chain of causal processes realizing the function.

The definitions of function both in FR and in CFRL involve the causal description of the

behavior of a device, which is a mechanism of the function’s realization. Umeda in ([Umeda,

Tomiyama, 1997], p. 44) observed that in fact CFRL (and so FR) does not involve the explicit

specification of what the system is intended to do, but instead it specifies only how it realizes

its function, i.e. the intended function of the electrical power system to prevent the

battery from overcharging is not included in the functional specification.

Moreover, since FR and CFRL relate function to behavior, it makes it problematic, just

as in the case of FCO, to represent by their means functions not involving a behavior. Not all

functions are explained in terms of behavior, e.g. the function of the external wall of the

building to support roof is not considered in terms of its behavior, i.e. by the

description of the state changes the wall is involved in. Instead, the wall’s function is typically

Functional Device Representations

29

explained by the structure of the wall. Functions of that kind are not a result of behavioral

features, but rather follow directly from the structural properties. They are called “passive” in

contrast to the behavioral, “active” functions [Keuneke, 1989] 9.

Finally, FR and CFRL, just as FCO, define functions by means of devices. It restricts

the definition of function to the definition of the function of a particular device and does not

permit to model functions independently of the realizing them entities.

Bonnet’s Approach

Bonnet in [Bonnet, 1992] proposes to define functions as intended activities. He defines

function in the following way:

“’According to person P (designer or user) the function of device D in system ST is to do A’ is

interpreted as:

− P has a goal G

− P believes that:

b1: D will perform activity A in the future

b2: A⇒TG, which reads: activity A causally entails the attainment of G according to

theory T.”([Bonnet, 1992], p. 2)

According to Bonnet a function of device D is a subjective notion of some person P, who is the

designer or the user of device D. Moreover a function of D is relativized to the system in the

context of which D is viewed. It resembles Mode of Deployment (MoD) in [Chandrasekaran,

Josephson, 1997], which is discussed in section 2.1.4 and correspond to the approach of

Cummins discussed in section 2.3.1.

A function is represented by the form to do A where A is an activity contributing to the

achievement of an intended goal. In this sense a function is identified with an activity

(behavior). This approach is thus even more radical in identifying function with behavior than

that of Kitamura, who considered a function to be an abstraction of behavior.

The reduction of a function to an activity, or to a certain belief about an activity, makes

it impossible to represent passive functions, just as in the previously discussed approaches.

The inclusion of a person’s beliefs stresses the subjective and intentional character of a

function. On the other hand it raises two questions:

9 Chandrasekaran in [Chandrasekaran, 1994b] does admit that passive function can have a behavioral

descriptions but points out that they are normally not explained that way but by reference to their

structure.

Related Works

30

1. Should only the intentions of a designer or a user be considered? It seems that not only

those two persons influence the function of an artifact, but also e.g. stakeholders

dictating requirements or researchers exploring the artifacts could also be taken into

account.

2. If a function is understood in terms of designer/user intentions it raises problems in

understanding functions of non-artifacts, which lack a designer and often also a user.

A similar problem concerns the ontology of Chandrasekaran and Josephson

[Chandrasekaran, Josephson, 1997] discussed below (see section 2.1.4).

Function Behavior State

Umeda and colleagues [Umeda et al., 1990; Umeda, Tomiyama, 1995] developed a framework

for representing functions called Function Behavior State modeling (FBSstate
10). FBSstate was

implemented in a tool called FBS Modeler, which is reported to be successfully applied in the

practice of device design [Umeda, Tomiyama, 1997].

In FBSstate a function is defined as “a description of behavior recognized by a human

through abstraction in order to utilize it” ([Umeda, Tomiyama, 1995], p. 271). This resembles

the definition of function adopted in FCO. However, the representation of function in FBSstate

is different then in FCO. Here, a function is represented as a tuple (fsymbol,b) where fsymbol

denotes a functional symbol in the form of the natural language expression “to do something”

and b denotes behavior that realizes that function.

The representation of function in the form “to do something” is a common practice in

Value Engineering, which however, does not permit to give a clear semantics of functions.

That in FBSstate is given by behavior b. Behavior in FBSstate is defined by sequential changes

of states over time and is always considered in some context (called aspect), which comprises

entities, attributes, relations, physical phenomena and time of the current interest.

Although FBSstate is intended to represent functions independently of behavior the

semantics of functions is given by the description of behavior. A function is defined as a

relation between a functional symbol (a function) and a behavior realizing it. For example, the

relation of functional decomposition of a given function f0 as introduced in ([Umeda,

Tomiyama, 1995], p. 275) involves not only the functional symbol of f0 but also the

corresponding behavior b0. Thus the function f0 is decomposed into subfunctions f1, f2,…,fn and

10 The Function Behavior State framework has the same abbreviation as the Function Behavior Structure

framework discussed later. In order not to confuse the reader in the current work we abbreviate the

former to FBSstate while the latter to FBSstructure.

Functional Device Representations

31

embedding them behaviors b1, b2,…, bn. In this sense functions in FBSstate are inseparable from

behaviors realizing them.

Since a function is represented as a relation between the functional symbol f and

behavior b, it raises the question about the nature of the functional symbol: what does the

functional symbol represent if not a function? On the other hand when considering the isolated

functional symbol as a representation of function (which however violates the above definition

of function) then a function is reduced to the natural language expression form and does not

give any insight into its nature. It seems that FBSstate relates intensionally considered functions

represented by their functional symbols to behavior, rather then representing the structure of

function as such.

Function Behavior State with Modifier

In [Takeda et al., 1996; Shimomura et al., 1995] FBSstate is extended to FBSstate/m (‘m’ stands

for a modifier). In FBSstate/m functions are not represented by a pair (fsymbol, b) but instead only

by the functional symbol, extended by three additional notions: function body, function

modifier and objective entity.

A function body is a symbol which carries the meaning of the function, typically it is a

verb. For example, in the function to attach firmly backpack to a bike, the

function body is to attach. An objective entity is an entity, which the function occurs on

or to. Typically it is represented by a noun, here these are device, backpack and bike. A

functional modifier is a symbol that restricts a function in order to match the functionality with

designer’s intentions. A typical functional modifier is an adverb, in our example these are

precisely and firmly. A function body has no degree of satisfaction - it can be either

satisfied or not. In contrast a functional modifier has degrees of satisfaction. For example,

attach firmly may be achieved to different extents. Functional modifiers characterize

how a function is achieved. Moreover, FBSstate/m introduces several relations between

functions, including the relation of function decomposition.

In FBSstate/m the function is represented only by the functional symbol without reference

to the behavior realizing. Thus, we see that the functional representation of FBSstate/m, in

contrast to FBSstate is realization-free, but on the other hand lacks any formal representation.

FBSstate/m provides an insight into the structure of function by the analysis of the natural

language form representing a function.

Related Works

32

Salustri’s Approach

The notion of function is introduced in the context of behavior also by Salustri in [Salustri,

1998]. Salustri, however, in contrast to the formalisms reported above, does not define a

function as a type or an abstraction of behavior, but instead he contrasts those two notions.

Interestingly, contrary to FR, he defines behavior as what a device does and the function as

how the behavior is achieved. He applies the analysis of why- and what-questions in order to

delimit function from behavior. Salustri argues that, although the above understanding of

function and behavior is at odds with the common intuitions in AI and software engineering

literature, it is however consistent with the intuitions of many typical electro-mechanical

designers. As an example he refers to the behavior of a mechanical part, which is commonly

considered as its outward, measurable response to e.g. mechanical loads ([Salustri, 1998], p.

339). In Salustri’s approach, as in FBSstate, functions are represented by means of verb object

pairs. On the other hand he observes that behavior is represented analogously. This, in his

opinion, is the reason for the frequent confusion of the two notions 11.

On the basis of the developed notion of function Bo and Salustri [Bo, Salustri, 1999]

introduce a set of primitive functions understood in terms of basic interactions between mass,

energy and information.

Conclusions

All the above-mentioned works show a strong correlation between the notions of function and

behavior. In FR, CFRL, FCO, FBSstate, and Bonnet’s approach the notion of function is

grounded in the notion of behavior which makes it impossible to speak about functions

independently of the behavior realizing it. Salustri, on the other hand, shows the contextuality

of both and contrasts them on the basis of the analysis of what- and how-questions.

In our opinion the notion of function defined in the context of behavior reduces its scope

to so-called dynamic functions, which involve actions and change the object on which they

operate. Moreover, it does not permit to speak about functions independently of their

behavioral realizations, which, however, is required in many situations, e.g. in the early phases

of the design. Finally, functions defined in terms of behavior impose a particular behavioral

realization, which make them realization-dependent and prevent from handling alternative

realizations.

11 We adopt the analysis of Salustri in chapter 5, where the relation of realization holding between

functions is introduced.

Functional Device Representations

33

In addition in FCO, FR, and CFRL functions are considered in the context of devices

only, thus functions of non-devices, e.g. functions of organisms or organs, are per definition

not handled. This cannot be considered a disadvantage of the device domain ontology but

clearly it becomes one if one would like to consider it as a top-level solution.

2.1.3 Functions as Intended Roles

Another notion, beside behavior, in the context of which the notion of function is defined, is

role. This viewpoint is represented, among the others, in Multilevel Flow Modeling (MFM)

developed by Lind [Lind, 1990; Lind, 1994; Lind, 1999].

Multilevel Flow Modeling

Multilevel Flow Modeling (MFM) is a modeling methodology developed for the purpose of

representation of structures, behaviors, goals and functions of complex plants. The

representation of plants in MFM is based on decomposition principles established on the

means-ends and whole-part relations (see figure 8). The distinction between means and ends

permits to represent a system in terms of its components (structure, behavior), functions and

goals. The structure and the behavior capture the causality of the system, whereas the function

and the goal capture the intentional character of a system. Functions are thus not defined in the

context of behavior or structure, but are purely intentional concepts that belong not to natural,

but to social science.

According to the definition given in ([Lind, 1994]) functions represent the roles the

designer intended a system to have in the achievement of the goals of the system(s) of which it

is a part. Several types of flow functions have been distinguished: mass and energy functions

specialized into source, sink, storage, balance, transport and barrier, and information and

action functions specialized into maintain, produce, destroy and suppress. The classification of

action functions is founded on the classification of basic actions by von Wright [VonWright,

1963].

Components and their behaviors realize functions, which in turn contribute to

achievement of goals. In this sense components are means and the goals are the ends of a

system. As Lind argues the ascription of function cannot be separated from the selection of

goals. Beside the achieve relation ascribing functions to goals, and the realization relations

between functions and the physical components realizing them, several other MFM relations

are introduced, e.g. condition, the goal-objective relation or the goal-subgoal relation.

Related Works

34

Figure 8. Types of plant decomposition used in

MFM (from [Lind, 1994]).

Concerning the definition of function we first see that intentions of only the designer are taken

into consideration, even though in the process of design not only designers are involved. For

example in the process of software engineering requirements seldom come from a designer,

but often from stakeholders or users. Therefore, as in the case of Bonnet’s approach, one could

perhaps think about other persons relevant for determining functions.

Secondly, in MFM the function of a system is always considered in the context of the

whole, of which the system is a part. However, there are standalone systems which seem to

have their functions independent of the whole they may be a part of. For example, the function

of a car to transport people seems to be independent of any whole of which a car can

be considered to be a part.

Thirdly, MFM stresses the difference between goals and functions. In the example given

in [Lind, 1994] the components of circulation system realize the following functions:

transport of water from supply to expansion tank, circulation of

water, transport of energy from boiler to radiator. Those functions

contribute to the following goals respectively: maintain water level within safe

limits, maintain condition for energy transport, and keep room

temperature within limits. In this sense a goal answers the question why a function

is performed. The goal, however, does not determine the function, i.e. the water level within

safe limits can be maintained also by other functions than transport of water from supply to

expansion tank, say by evaporation. Thus the function in MFM not only says what is done, but

also how the goal is achieved. In this sense a function in MFM involves a particular way of

realization and resembles the function described by CPD in FR and CFRL. Moreover, it seems

that the notions of goal and function are used convertibly in some cases, e.g. although

maintain is a function type, maintain water within safe limits is considered as

a goal, not as a function.

Functional Device Representations

35

2.1.4 Functions as Effects

Function is identified with the effect a device has in a given environment by a number of

researchers e.g. by Chandrasekaran and Josephson, Brown and Blessing or in the Function-

Behavior-Structure approach. This view is close to the view of the function as the role of an

object. Here, an effect of a device is often understood as the role an object has in a given

environment.

Ontological Framework of Chandrasekaran and Josephson

In [Chandrasekaran, Josephson, 1997; Chandrasekaran, Josephson, 2000] the authors sought

the smallest ontological framework sufficient for developing a notion of function. In those

works the intention of authors was not to legislate how the term ‘function’ should be used, but

to provide a descriptive theory of how functions are represented by people. This framework, in

contrast to previous works of Chandrasekaran discussed above avoids representing functions

by references to the behavior.

In the framework the object O is defined to have a role F in the world W iff O causes F

to be satisfied in W. If F is intended or desired by agent A, who is a designer or a user of O,

then it is said that O has or performs the function F in W for A.

An object is always considered in W in some context (view) called the mode of

deployment (MoD). Thus, a function is always relativized to some mode of deployment. For

example the function of a battery is to provide voltage is relativized to the MoD1:

battery is electrically connected to electrical terminals of a given object. The same battery has

a function to support paper under the MoD2: bottom surface of battery is on top of the

object paper.

In accordance to the above definition a function is contextual - depends on MoD,

intentional - depends on the intentions of a designer or a user, and is identified with the causal

effect of a device. Since a function is not ascribed to devices only, as it was the case in FR,

but is a role of an arbitrary object the framework is intended to be applied not only in the

context of artifacts, but also e.g. in functional biology. For that purpose however the

framework requires to interpret the evolution as the agentive designer, who intends the

biological functions. This, however, may be seen as a too strong simplification (for discussion

see section 6.3).

According to authors the approach, handles multiple function realizations, since the

function does not involve the specification of the mechanism of realization. Moreover, it

permits to handle passive functions, which do not involve behavior.

Related Works

36

Extension of Brown and Blessing

Brown and Blessing in [Brown, Blessing, 2005] extend the above model of function with the

notion of a goal. They observe that the key component of the definition of function is that a

function is a desired role. They argue in turn that for each function, there must be some reason

why it is desired. In other words there must be some goal that is intended by an agent, who

desires the function. A goal is defined as a desired state of the world, and the intention - as a

description of how to reach that goal. For all or a part of the intention there may be constructed

a plan, which is a sequence of operations corresponding to the intentions. The plan should

either reduce the complexity of the intention or reach the goal. In this sense intention and plan

resemble CPD’s describing the causal mechanism that realizes a function. Both, a plan in

Brown’s terms and CPD in FR, provide a mechanism of how the function is realized. Function

description in Brown’s meaning provides the answer for both questions concerning what is

intended (a goal) and how (what is the plan) it is intended to be achieved.

Additionally, Brown distinguishes the function from the affordance, which is a possible

action of an object, as well as the function intended by the designer, the function desired by a

user and the one actually provided by the device. He observes that those three kinds of

functions do not necessarily come together. It may happen that the user desires and uses a

device differently than it was intended by a designer, or the desired and intended functions

may be the same but due to the inappropriate construction the device does not deliver them.

Finally, the designed functions and the actual ones resulting from them may not be what a user

needs. This analysis is especially interesting in the context of malfunction.

Function-Behavior-Structure

Gero and colleagues [Gero, 1990; Qian, Gero, 1996] developed a framework called Function-

Behavior-Structure (FBSstructure), which was aimed to represent functional knowledge

supporting the multidisciplinary design by analogy. FBSstructure, just as a number of approaches

discussed above, is based on the distinction between the notions of an artifact’s structure,

behavior and function.

The structural description includes only the physical, topological and geometrical

properties of an object. Behavior is the description of an object’s actions or processes in given

circumstances. It is represented by qualitatively distinct states of an object connected by causal

dependencies. In this sense it resembles CPD describing the mechanism of function

realization. Function, in turn, is considered as the result of behavior, its effect or product. Thus,

a function is still closely related to a behavior, but is not identified with it. Moreover,

FBSstructure does not suffer from problems with representing functions which do not change

Functional Device Representations

37

anything, as was the case in FCO. FBSstructure does not only consider behaviors changing

something (B1 behaviors in terms of [Sasajima et al., 1995]) but also static behaviors, which

do not involve a change over time.

In recent works the FBSstructure framework is extended, e.g. in [Gero, Kannengiesser,

2004] by the notion of situatedness and in [Rosenman, Gero, 1998] by the notion of purpose,

which, similarly to MFM, is located on top of the function layer. Gero argues that artifacts

have ascribed purposes not only when considered in techno-physical but also in socio-cultural

environment, involving human concepts and intentions. Purposes represent the intentions

behind an artifact and are the reasons for which an artifact exists. Thus a purpose is considered

to be an intended function of an artifact.

In FBSstructure in contrast to FCO, FBSstate or Bonnet’s approach, functions are treated as

the objective effects of an object, and not as subjective and intentional ones. Moreover, since

all effects of an object’s behavior are considered to be functions, then e.g. the functions of cars

include such effects as space occupation, noise and pollution production. Those, however, do

not seem to be considered commonly as functions of a car. This distinguishes the FBS

approach from Chandrasekaran’s ontology, where not all effects of an object are considered to

be functions but only those, which are intended by a designer (thus only purposes in Gero’s

terminology). That, on the other hand, seems to be too restrictive, since there is a big group of

functions, which are not intended by a designer or user but follow from the actual capabilities

of objects.

2.1.5 Conclusions

Above we have presented and classified the selected AI approaches to functional

representation in area of technical device modeling. The list of the works presented cannot be

considered complete and a number of approaches have been omitted due to the rigor of space.

To our knowledge, however, they subsume the general views on functional representations

distinguished above.

Many of the approaches in this field come not only within theoretical investigation but

provide tools supporting device engineering, like e.g. FBS Modeler [Umeda et al.,1996] or

Schemabuilder [Bracewell, Sharpe, 1996].

The overview presented demonstrates the difficulties and problem areas that arise when

representing functional knowledge and defining the notion of function. Let us now summarize

them briefly:

Related Works

38

− The common problem is the distinction of function from behavior and structure on the one

hand and from purpose and goal on the other hand. The discussion involves the functional

explanation types related to the above notions:

1. Why an object exists?

2. What an object does?

3. Why an object is constructed in a given manner?

4. Why an object does what it does?

5. How an object does what it does?

In the ontology of Chandrasekaran and Josephson function is identified with the answer to

the first question. In MFM it is related to the second question, goal to the third and the

fourth and behavior to the fifth. In contrast, in FR, CFRL, and FBSstate function combines

the answers to both the second and the fifth. Finally, in Salustri’s approach function is

considered to answer the fifth and a behavior the second question.

− Function understood in terms of the answer to the what-question (the second question)

may have several flavors: in Gero’s approach a function is considered as everything an

object does, in Chandrasekaran and Josephson’s as only that which an object does and is

intended by a designer or user to do, whereas Brown differentiates designer from user

function and the actual capabilities of the device.

− The strong correlation of function and behavior raises problems with the representation of

passive functions, not related to dynamic behavior (the exception here is Gero’s approach).

− The representation of functions in the approaches discussed is heavily biased towards the

purpose and domain of the application. For instance, in FR function involves a mechanism

of realization since it important for diagnosis, where a causal process is analyzed in order

to see why the intended function is not being achieved.

− In most of the approaches (apart form the ontological framework of Chandrasekaran and

Josephson) functions are considered only in the context of (technical/mechanical) devices.

However, the direct application of the notion of function, acceptable in device

representation, to other domains seems to result in oversimplification (e.g. the ontological

framework of Chandrasekaran and Josephson).

− Functions are often contrasted to structure and behavior, as subjective and intentional.

− Several types of relations between functions are introduced; most commonly these are the

relations of subsumption and part-of.

− Functions result not only in intended effects but also in those unwanted and harmful.

Those effects should be included into functional model but they should not be mixed with

intended effects, as it is done e.g. in FBSstructure where next to intended effects also

unwanted effects are considered to be valid functions.

Software Engineering and Business Modeling

39

− In [Chandrasekaran, Josephson, 1997] authors have pointed out that not only objects but

also processes may have functions. For example, the process of boiling water may have the

function to produce steam. However, the approaches discussed consider only

functions of objects.

2.2 Software Engineering and Business Modeling

The notion of function is crucial not only in the context of the design of technical/mechanical

devices but also of other types of artifacts. In the current section we focus on two of them,

namely on software and business systems. We analyze the selected approaches in the areas of

software engineering and business modeling, starting from structured methods, through object-

oriented ones and ending with the heterogeneous methods.

2.2.1 Structured Methods

Structured methods date from the mid 1970s when they were invented as the solution for the

problems met in the development of large-scale business systems, such as inadequate

requirement elicitation, limited user involvement, ad hoc and ambiguous modeling and design

techniques. Many structured methodologies and techniques have been developed, including

Structured Systems Analysis and Design Methodology (SSADM) [Ashworth, Goodland,

1990], the Yourdon Systems Method [Yourdon, 1993], Gane and Sarson’s approach [Gane,

Sarson, 1979], MERISE [Quang, Chartier-Kastler, 1991], or the CASE*Method [Barker,

1990a; [Barker, 1990b; Barker, Longman, 1992].

Some of the structured methods involve an aspect of functional modeling, in particular

the technique of functional decomposition, which is introduced among others in Gane and

Sarson approach, the Yourdon Systems Method and the CASE*Method. In functional

decomposition the system’s most general functions are decomposed to the hierarchy of more

detailed functions.

We will investigate the functional modeling aspect of the structured methods on the

example of the CASE*Method (CM) developed by Barker, which underlies the Oracle

Designer CASE tool. The CM introduces an explicit distinction between behavior (business

process) and business function. The modeling of functions is the early phrase of a system’s

design, in which the analysis are concentrated on what an enterprise does, rather than on what

and how the output software should work.

Related Works

40

A function in CM represents what an enterprise does, independently of the mechanism

of its realization. It is depicted with a box containing a natural language expression of the form

“do something” (figure 9). Functions may be invoked by the events, called triggers and

represented as labeled arrows, and may generate the events. In this sense the notion of function

in CM resembles the input-output view, discussed in the previous section.

Figure 9. Hierarchy of functions in the CASE*Method.

In the function hierarchy diagrams functions are organized into hierarchy, in which all direct

subfunctions of a decomposed function F are all the functions necessary for the realization of

F (figure 9). In this sense the relation between the decomposed function and the set of its direct

subfunctions is the relation of realization – a superfunction is realized by the set (sequence) of

its direct subfunctions. Functions which are not decomposable are called leaf functions. In

addition to the functional hierarchy, functions in CM are organized into Function Dependency

diagrams, which represent causal dependencies between functions.

Processes in CM resemble functions, except that they do not provide the specification

of what an enterprise does in order to achieve its goals, but instead they specify what a system

should do. Moreover, processes include mechanisms of realizations. Thus, the distinction

between function and process in CM is twofold:

1. Functions are mechanism-free, whereas processes involve mechanisms.

2. Functions depict an enterprise, whereas processes – a software.

The second issue we find irrelevant for our purposes, whereas the first reveals the dichotomy

already discussed in the context of the AI approaches to device design: function answers the

“what is done?” question while process, answers both the “what is done?” and “how it is

done?” questions.

Software Engineering and Business Modeling

41

2.2.2 Object-Oriented Modeling and UML

Object-orientedness is nowadays a dominant paradigm in software engineering, although as

some researches observe, there still is no definite proof that it is better than structured methods

[Glass, 2002]. Object-orientedness started with Simula-67 developed in 1967 and got an

impact in the 80’s with the availability of Smalltalk and later by C, C++. The first object-

oriented analysis methods were released in the late 1980s and early 1990s e.g. [Shlaer, Mellor,

1988; Coad, Yourdon, 1991].

The current de facto standard of object-oriented analysis is the Unified Modeling

Language (UML) which initially was intended to unify the Booch [Booch, 1993] and the OMT

[Rumbaugh et al., 1991] methods. At present UML is developed and maintained by the Object

Management Group (OMG) [OMG, 2006]. Its current version is UML 2.0 [OMG, 2005].

UML 2.0 is founded on the explicit distinction of the static and the dynamic view of a

system; it introduces thirteen diagrams grouped into two sets: structural modeling diagrams

and behavioral modeling diagrams12.

Structure diagrams define the static architecture of a model. They model the 'things' that

make up a model and the dependencies and the relations between them. They handle both the

physical and the abstract components (classes, objects, interfaces) of the system. The class

diagram, which is the object-oriented successor of the entity relationships diagram introduced

by Chen [Chen, 1976] is the core of the static view. Behavioral modeling diagrams represent

the behavior of a system over time.

This architecture reminds of the distinction between structure and behavior adopted by

several approaches to device design discussed in the previous section, like FBSstructure or MFM.

But, in contrast to those, UML lacks the separate and independent representation layer for the

functional modeling. However, some elements of the functional modeling are present in UML

in the behavioral diagrams, in particular in use case diagrams.

The use case diagram is aimed to represent the overall functionality of a system, a

subsystem or a class perceived (and available) by the outside users, called actors. Each use

case represents a coherent unit of functionality. It represents what a system (or a subsystem, a

class or an interface) does in interaction with an external actor. A use case is depicted by an

oval labeled with a short active verb phrase (figure 10). A use case does not specify how the

system realizes a function. This is specified by corresponding sequences of events. They depict

12 Structural diagrams comprise package diagrams, class diagrams, object diagrams, composite structure

diagrams, component diagrams and deployment diagrams. Behavioral diagrams comprise activity

diagrams, state machine diagrams, communication diagrams, sequence diagrams, timing diagrams,

interaction overview diagrams and use case diagrams.

Related Works

42

“all the behavior use case entails – the mainline sequence, different variations on normal

behavior, together with desired response” ([Rumbaugh et al., 1999] p. 64). One use case may

have more than one sequence realizing it, each called a scenario. Scenarios are called primary

when defining a main sequence of use case realization or secondary when defining an

alternative sequence. In the later phases of the design the informal textual scenarios are

replaced with the behavioral diagrams e.g. activity diagrams.

Figure 10. Use Case diagram.

Use case diagrams represent several relation types in which use cases are involved. These are:

association of a use case to an actor, generalization of use cases, the include and the extend

relations, indicating the insertion of an additional use case into a given use case. The types of

relations introduced between use cases resemble the relations between functions introduced in

device modeling paradigms:

− The extend and include relations could be understood as a part-of relation, where in

the former case it is an optional part-of, meaning that a use case may optionally be a

part of base use case, whereas in the latter a use case is a mandatory part of a base use

case.

− Generalization resembles the is-a relation in FCO.

Considering the use case diagram as a formalism for functional modeling also raises several

issues. Firstly, a use case comprises both the behavior and the function of a classifier.

Although it is pointed out that the use case does specify what a system does and not how it is

realized, the explicit difference between the notion of function and behavior is not provided.

Those two notions are often used convertibly, i.e. the use case is understood on the one hand

side as a coherent unit of functionality ([Rumbaugh et al., 1999], p. 488) and on the other hand

as a descriptor of a potential behavior ([Rumbaugh et al., 1999], p. 489).

Secondly, use cases lack specification beyond natural language label. The only precise

definition of the use case is given by its behavior in scenario, which however does not specify

the use case but rather its realization. The use case resembles the function in FBSstate, where

Software Engineering and Business Modeling

43

functional symbol is a natural language expression, for which semantics is given in terms of

realizing its behavior.

Thirdly, as Fernandes in [Fernandes, 2003] observes, use cases are defined in terms of

interactions between one ore more actors and the system. However, some systems may include

a substantial percentage of their functionality that is not a reaction to an actor’s input

([Fernandes, 2003], p. 20). Use cases do not permit to represent those functionalities13.

Fourthly, since use case diagrams are behavioral diagrams we can see that UML does

not provide means to model functions beyond behavior. This results not only in the confusion

of the terms of function and behavior but in fact reduces the former to the later.

UML Business Patterns

The applications of UML exceed the area of software engineering. For example Eriksson and

Penker demonstrates in [Eriksson, Penker, 2000] how to model by means of UML business

systems. They have provided a set of UML patterns for the purpose of business modeling. Of

our interest here are especially Goal Patterns, which enable goal and functional modeling. Goal

Patterns support goal modeling, which is considered to be the critical issue in business

modeling. There are three Goal Patterns developed:

1. Business Goal Allocation Pattern, which is used for assigning goals to business

processes, resources and rules.

2. Business Goal Decomposition Pattern, which permits to break down goals into

hierarchies of subgoals.

3. Business Goal Problem Pattern used for the identification of problems that can hinder

the achievement of goals.

Of special interest in connection with functional modeling are the first two patterns. According

to the Business Goal Allocation Pattern every business process should have a goal assigned

(top part of figure 11). A goal is not considered as the output of a process, but it is introduced

in terms of a desired state. For example, the process of selling and delivery has the

output a delivered product, whereas the assigned goal is a high rate of

return (bottom part of figure11). A goal may be assigned not only to a process, but also to

other elements of the model. For example, the output of the business process can itself have a

13 This argument is however debatable. In principle actors represent external users of a classifier,

however “actors of lower-level subsystems may be other classes within the overall system”

([Rumbaugh, et al., 1999], p. 489).

Related Works

44

goal assigned, e.g. a delivered product, which, as the output of the delivery process,

could have the goal that a client is satisfied (bottom part of figure 11).

 <<process>>

Selling and delivery

<<goal>>

High rate of return : Goal

<<resource>>

Delivered product

<<resource>>

Demand

<<achieve>>

<<goal>>

Satisfied client

<<achieve>>

Figure 11. Business Goal Allocation Pattern (from [Eriksson, Penker, 2000], p. 278), together

with an example (extended version of [Eriksson, Penker, 2000], p. 277).

The notion of a goal as defined in the pattern does not permit to distinguish between the states

intended to be achieved by each individual instance of the processes/outputs and the general

goals not intended to be achieved by individual processes/outputs. For instance, both types of

goals are undifferentiated in the example of the sales process, provided by the authors

([Eriksson, Penker, 2000], p. 280). The goal of the sales process (to meet the annual

sales budget) is not a goal of an individual process but of a whole set of processes,

whereas in the same diagram the goal of the outcome of that process (satisfied

customer) is a goal of each individual process.

Moreover, the difference between an output and a goal of the process is not clear. One

could raise a question why a goal cannot be understood as the additional output of a process.

By definition, output objects are the objects produced of the process (its results), this however

holds also for goals. In the above example a satisfied customer, next to a

delivered product, could be considered as an additional output of the process of selling

and delivery. It seems of no help here to remark that the goal is an intended result, since

outputs are intended results as well.

Overall business goals can be decomposed to subgoals by means of the Business Goal

Decomposition Pattern, which is of particular help in the identification of business functions.

Software Engineering and Business Modeling

45

The decomposition of a goal is done by examining how a goal is achieved, whereas the super

goal provides the reasons for its subgoals and answers the why-question.

In the example provided ([Eriksson, Penker, 2000], p. 286) the overall goal of Internet

Business Inc. is to attract many customers. This goal is decomposed into three

subgoals referring to three different customer categories:

− Many internet visitors

− Many registered customers

− Many subscribing customers

Those goals are further decomposed, e.g. the third is decomposed to the following sub-goals:

− Communicate bonus service for subscribers

− Active pricing

− Provide good bonus service

The second decomposition does not rely on the categorization of subscribing customers, just as

it was done in the case of the decomposition of the most overall goal. Instead, it refers to the

different ways of achieving the goal. Therefore it seems that in the Business Goal

Decomposition Pattern two hierarchies are confused: subsumption of goals and the way-of-

realization (see FCO, section 2.1.2).

Some of the goals are represented as states in which processes result, e.g. many

internet visitors, whereas others are rather the processes that lead to achieving them,

e.g. provide good bonus service. Therefore, it seems that the notion of a goal covers

in Goals Pattern both the result and the process leading to it.

Concluding, we can say that the business pattern shows an important close relation

between the notions of a function and the notion of a goal, although the overall pattern is not

free of problems as discussed above. In this sense it reminds the AI approaches reported in the

previous section, which interpret function in terms of an effect.

2.2.3 Object-Process Methodology

Object-Process Methodology (OPM), developed by Dori [Dori, 2002], is a meta-model for

conceptual modeling and system engineering, which integrates function, structure and

behavior of a system. Intended application area of OPM exceeds software engineering and

covers both technical and natural systems modeling. OPM consists of the Object Process

Diagrams (OPD), which are the visual formalism that describes the structure and/or behavior

Related Works

46

of the system or its part ([Dori, 2002], p. 106) and the Object Process Language (OPL), which

is a semi-natural language for specifying OPD.

OPM, in contrast to UML or the CASE*Method, provides rich and precise formalism

for representing functional knowledge. The main components of the system in OPM are

processes and objects. Dori writes that whereas objects are what a system or product is,

“processes are what a system does”([Dori, 2002], foreword). Functions in OPM are

distinguished from processes and are defined in the following way:

“Function is an attribute of object that describes the rationale behind its existence, the intent

for which it was built, the purpose for which it exists, the goal it serves, or the set of

phenomena or behaviors it exhibits. “([Dori, 2002], p. 251)

This definition, according to Dori, emphasizes the what and the why aspects of function. In

contrast the dynamics (behavior) is concerned with the how question. Dori argues that function

and dynamics are often-confused synonyms, while in fact they are distinct concepts. A

function is about what a system does and why it does it, while dynamics (or a system’s

behavior) is about how the system acts or operates to attain its function.

Functions are ascribed to objects; each object having (caring) a significant function is

called in OPM a system. Not all functions are equally significant for a system. The

significance of a function depends on its contribution to the desired purpose.

Functions in OPM are represented by function names phrased in OPL as command

sentences, which are imperative verbal phrases of the form “do something”. Function names

are depicted inside dashed boxes called function boxes. A function box encloses at least one

object and one process. (figure 12). Functions in OPM are context-dependent and subjective;

they depend on the viewpoint of the beneficiary. Different structure-behavior combinations

can achieve the same function. For example the function of telling the time of day,

may be achieved by the sundial, or the mechanical clock architecture.

The only kind of relation between functions introduced in OPM is the functional

decomposition. Functional decomposition is the principle of building function hierarchies.

Intuitively it is the relation of enablement, where each lower function enables the upper one

and provides the answer how the upper function is achieved. It is represented by means of the

part-of relation between the objects in the functional boxes (figure 12). For example the

function generate circular motion is considered to be a subfunction of the function

enable transition, since the former is the function carried by the internal combustion

engine, which is a part of the a car whose function is enable translation (figure 12).

Software Engineering and Business Modeling

47

Figure 12. OPM function representation and function decomposition (from [Dori,

2002]).

The function hierarchy based on functional decomposition is in fact the hierarchy of function

realizations not of functions as such, where a function of object O is decomposed to the

functions of objects being parts of O. As long as functions are not assigned to objects, say in

the early stages of design, OPM does not permit to decompose them, in contrast to, for

example, the CASE*Method.

Function hierarchy in OPM thus resembles rather functional dependence between a part

and a whole as in [Vieu, Aurnague, 2005] than the part-of relation between functions. It should

be mentioned, however, that the function hierarchy can not be identified with every part-of

relation. For instance, although a car can have as its part a cd player, it makes no sense to

decompose enabling translation into playing cds. Moreover, relying on part-of

relation in function hierarchy does not permit to decompose functions achieved by the external

objects which are not parts of the system realizing the superordinate function.

The problem with OPM arises when it comes to functions of processes. In

[Chandrasekaran, Josephson, 1997] the authors have pointed out that not only objects but also

processes may have functions. This is especially important in the context of services, which

are often processes and clearly have functions. This, however, cannot be handled in OPM since

function is defined there as an attribute of an object, and objects are disjoint with processes.

Moreover, OPM suffers from problems with the notion of service itself. In OPM services are

considered as products (which are artifact systems) being processes ([Dori, 2002], p. 266).

However, it remains contradictory with the definition of a system, saying that a system is an

object caring a significant function ([Dori, 2002], p. 253). Since objects and processes in OPM

are disjoint, and since products are defined as artificial systems (and thus as peculiar objects),

they can not be processes.

Related Works

48

2.2.4 Conclusions

In the above section we have pursued the notion of function in the areas of software

engineering and business modeling, starting from structured methods, through object-oriented

methods and ending with heterogeneous methods.

The results of this pursuit have shown that, just as in AI approaches to functional

modeling, on the one hand there the distinction between function and behavior is stressed (e.g.

OPM) and on the other those notions are mixed or are left inseparable (e.g. UML). All the

approaches discussed come with means for representing interdependences between functions,

in particular the is-a and part-of relations. However, the understanding of those significantly

varies from formalism to formalism. Moreover, those relations are often realization-biased,

e.g. functional decomposing in OPM, or the underlying principles are not explicit, e.g. the

decomposition of goals in Eriksson and Penker’s UML profile.

2.3 Functions in Philosophy

The notion of function has recently been broadly discussed in philosophy, although the first

remarks come already from Aristotle, who among four causes distinguished the final cause,

and discussed it in the context of functional explanation as “the end (telos), that for the sake of

which a thing is done” [Cohen, 2002]. Roughly speaking, nowadays in philosophy two main

ways of understanding functions can be distinguished: one formulated by Cummins in the

1970s [Cummins, 1975], who discussed the notion of the function in the context of the notion

of disposition, and the second, called an etiological approach, founded in late 1980s and early

1990s by, among others, Millikan [Millikan, 1989a; Millikan, 1989b], Neander [Neander,

1991a; Neander, 1991b], Griffiths [Griffiths, 1993] and Godfrey-Smith [Godfrey-Smith,

1993].

In contrast to most of the approaches discussed so far (apart from OPM and the ontology

of Chandrasekaran and Josephson), philosophical approaches not only account for the

functions of artifacts but also deal with the functions of biological and social systems. Below

we present a short overview of two most dominant philosophical approaches. Moreover, we

will introduce the problem of the ontological status of function, discussed in the context of

social reality by Searle in [Searle, 1995].

Functions in Philosophy

49

2.3.1 Functions as Dispositions

The idea of tying the notion of function to the notion of disposition is already present in

Wright’s article [Wright, 1973]. He defines the expression “the function of x is z” as follows:

(i) x is there because it does z and (ii) z is a consequence (or result) of x’s being there. To cover

the cases of malfunction Wright relaxes the condition (i) and interprets it as follows: ”all that

seems to be required is that x be able to do z under appropriate conditions(..)”([Wright, 1973],

p. 158)14. In this sense x has a function z if, among others, x is able (has a disposition) to do z.

Function is explicitly related to disposition (also called capability) by [Cummins, 1975],

where he defines the has-function in the following way:

“x functions as a φ in s (or: the function of x in s is to φ) relative to an analytical account A of

s’s capacity to ψ just in case x is capable of φ-ing in s and A appropriately and adequately

accounts for s’s capacity to ψ by, in part, appealing to the capacity of x to φ in s.”([Cummins,

1975], p. 768)

Interestingly, according to this definition the function of x is relativized not only to the

capacity of some system s to which x is related (just as in Chandrasekaran and Josephson’s

ontological framework function is relativized to MoD), but it is relativized also to the

epistemological aspect, namely to the analytical account of this capacity. Thus, it is

appropriate to say that the function of a heart is to pump blood only when a heart is considered

in the context of a particular explanation of the circulatory system’s capacity to transport food,

oxygen and other substances.

Buller in [Buller, 1998] surveys several objections against Cummins’ theory that

Millikan raised in a number of papers. First in [Millikan 1989a] she argued that Cummins’

theory is too liberal in assigning functions. According to her, for a given entity one can find an

unlimited number of systems or subsystems in which the entity is involved. This, in turn,

makes the number of Cummins’ functions unlimited as well, e.g. if the Earth’s water-cycle is

seen as a system, then clouds by producing rain make vegetation grow, and in this sense

should have ascribed (in Cummins’ sense) the function of making the vegetation grow in this

system. However, as Millikan observes, to make vegetation grow is clearly not a purpose of

clouds. Thus, she observes that Cummins’ function has nothing to do with the purpose of the

thing in question, whereas in particular in biology having a function is a matter of having a

purpose. This objection seems to touch more the problem of finding the rules of delimiting the

14 Cited after [Kreos, 2001].

Related Works

50

containing system than the problem of function ascription itself. It seems perfectly appropriate

to say that clouds in the Earth’s water cycle have the function of making the vegetation grow,

although it sounds odd to say that they have a purpose in doing so.

The lack of references to purpose also disables Cummins from handling accidental

effects [Millikan, 2002]. In Cummins’ understanding of a function all effects that contribute to

the capacity of a containing system are functions, also those that are contributing to it by

accident. In this sense Cummins’ theory seems to confuse the function of with the function as.

Wright, who also relates to capacity in defining functions, distinguishes accidental benefits

from functions by (i) condition, which demands that a function is a reason of the object’s

existence.

Thirdly, Cummins’ theory has problems with ascribing functions to malfunctioning

objects. Cummins’ claims that “if the function of x in s is to φ, then x has a disposition to φ in

s”([Cummins, 1975], p. 758). Thus, an object that lacks a disposition to φ in s does not have a

function to φ in s either. For instance, the Cummins’ definition implies that a heart that lacks a

disposition to pump blood lacks that function as well. Millikan, however, argues that a

malformed heart is still considered to have the function of pumping blood. Thus she says that

function should not be defined by reference to what an object is capable of doing, but what it

is supposed to do.

Finally, it is argued that Cummins’ theory of function ascription does not explain the

presence (or existence) of the object having the ascribed function. For example, making the

vegetation grow does not explain the presence of clouds.

2.3.2 Etiological Theories

As an alternative to Cummins’ function the ethological theory of functions was introduced.

The primary area of the theory’s application was biology, however, there are also attempts to

interpret the artifact’s functions in terms of etiological theories (e.g. [Vermaas, Houkes,

2003]). In general, the etiological theory originates from Wright’s (i) condition cited above and

reveals the function of an item by reference to its kind’s (evolutionary) history, not to its

current capacities. The explanatory motivations behind the etiological theory are also different

than in Cummins’ approach. Cummins answers the question about how the capacity of a given

object contributes to the capacity of a system into which the object is involved, whereas the

explanatory theories explain why a given object (or a kind of objects) exists. In this sense the

question about the function in the context of the etiological theory is the teleological question

about the purpose (or reason) of existence.

Functions in Philosophy

51

Etiological theories have been quite popular and come in several flavors, here we refer

to two of the first developed, namely that of Neander and of Millikan. Neander defines the

proper function in the following way:

“It is the/a proper function of an item (X) of an organism (O) to do that which items of X’s

type did to contribute to the inclusive fitness of O’s ancestors, and which caused the genotype,

of which X is the phenotypic expression, to be selected by natural selection.” ([Neander

1991b], p. 174)

The proper function of a trait of an organism O is such an activity which contributed to the

fitness of O’s ancestors and for which the trait was selected by natural selection. For instance,

the function of a bird’s wings is to enable to fly since flying contributed to the fitness

of birds and it is the reason for which wings were selected by natural selection. Neander

considers a proper function of a trait as “whatever it was selected for”.

In contrast to Cummins’ function, the proper function is not relative to the context

(neither ontological nor epistemological) in which a given object is considered, but it refers

only to its history, and hence it may be considered to be objective.

Proper function does not suffer from being too liberal as Cummins’ function did,

because it does not treat every disposition contributing to some system as a function but only

one which has been selected for that purpose. Neither has it any difficulties in dealing with

accidental effects. Only those effects of an item which were selected are considered to be its

functions. Finally, it handles properly with the normative character of functions and

malfunctions. An item that lacks a disposition, and therefore lacks Cummins function, may

still have a proper function since proper function does not refer to an item’s current

dispositions but to its history. A malfunction with respect to function F may be predicated

when an item has a proper function to F but lacks a disposition to F.

Etiological Theories of Artifacts

The primary domain of the application of etiological theories is biology, whereas Cummins

functions seem to be better suited for explaining how artifacts function. However, Millikan

also tried to adopt her theory to artifacts. Although, the etiological theories presented above are

non-intentionalist, Millikan also introduces the intentionalist variant of her etiological theory15.

15 We use the notion of intentionalist etiological theory as it is introduced by Vermaas and Houkes in

[Vermaas, Houkes, 2003].They call an etiological theory of functions intentionalist iff it ascribes

Related Works

52

In [Millikan, 1984] it is proposed to treat as (derived) proper functions of artifacts the

functions intended for them by their makers. In this sense the history involving the intentions

of artifact’s designers delimits the artifact’s proper function. This corresponds with the

Kitcher’s approach, according to which “there is a direct link between function and intention:

the function of X is what X is designed to do, and the design stems from an explicit intention

that X do just that” ([Kitcher, 1993], p. 260).

The etiological intentionalist theory resembles the ontological framework of

Chandrasekaran and Josephson, in which the function of an object is also revealed by the

intentions of a designer. In contrast to Chandrasekaran and Josephson, the intentionalist

etiological theory is applied only to artifacts, whereas natural objects are explained by non-

intentionalist etiological theories.

Discussion

For an argument against interpreting functions in terms of the designer’s intentions one may

refer to the example given by [Keil, 2003]. As a psychologist, Keil is interested in the problem

of the so-called essence of human concepts. It is sometimes postulated (e.g. in [Bloom, 1996])

that people consider the intentions of a designer as essential for the categorization of artifacts.

Thus, some writers of psychological essentialism seem to agree with the intentionalist theory

of functions.

 Keil discusses the following counter-example: he considers a hypothetical Adam, who

wanders into a surgical suite and spots an array of surgical instruments lying on the table. He

picks up one labeled “re-seater”, takes it home and, being a skilled mechanist, duplicates it for

the purpose of selling it on the black market. Although his intention is to copy a surgical tool,

it turns out that the object he copied was a plumber’s tool left there accidentally by the

plumber, who removed some defect in the surgical suite. Keil argues that we do not think that

Adam’s tool is the surgical tool, although Adam’s intention was to manufacture one. It seems

that similar conclusions can be drawn for functions. Only on behalf of Adam’s intention would

we not ascribe any surgical function to the tool he manufactured. This particular problem can

be solved by the condition saying that a function not only must be intended by a designer but

moreover an item must be capable of realizing it. This, however, analogously as the Cummins’

approach would have problems of handling malfunctions.

It is not only the intentionalist version of the etiological theory that raises problems, but

the idea of relating the function of an object to its history, or the history of object’s species,

functions to items I on the basis of causal histories ch(I) that necessarily involve intentional behavior of

agents ([Vermaas, Houkes, 2003], p. 270).

Functions in Philosophy

53

itself is problematic. An object that has identical disposition as a given object o but has a

different history cannot have, according to etiological theory, the same function as o, which

however seems counterintuitive. Since having a function is reduced to having appropriate

history, the etiological theory implies that an accidental double that is molecularly identical

with an object having a proper function does not have this proper function since an accidental

double does not have the right history [Millikan 1989b].

Moreover, whilst the Cummins’ theory is argued to be too liberal in assigning functions

the etiological theory is found to be too strict. For example, Davies [Davies, 2000a] finds that

functions of organisms arise also as a consequence of non-selective forces such as e.g. drift.

Assigning functions in accordance with the etiological approach is very demanding in its

requirement of knowing the purposes behind natural selection. [Vieu, Aurnague, 2005] report

that although the etiological approach was originally intended to explain the phenomena of

biological functions, it has been criticized in biology “for impracticability to refer to the

evolutionary history of some organisms, especially fossils, while biologists still use a

functional talk in these cases” (p. 491).

In addition, Preston in [Preston, 1998] criticized the attempt of reducing all function

ascriptions to proper functions. She argued that apart from the proper functions, which are

normative and permanent, there is a vast group of temporary and non-normative functions,

called system functions, especially in the area of artifacts. System functions are either

unintended functions or the functions ascribed to the items used in a novel way, e.g. soft drink

bottles used as bird feeders. Those functions are not proper since they are ascribed

independently of the causal history of the items, but instead as results of an object having some

dispositions. System functions are not normative and are understood in terms of Cummins’

functions.

2.3.3 Ontological Status of Functions

Proper function is considered to be an objects’ objective feature, which is the result of a

particular (objective) causal history. In contrast, the Cummins’ function is highly relative; it

depends not only on the system in which a given item is contained but also on the way in

which the system is explained. This radical difference raises the problem of the ontological

status of functions. The question is then the following: of what ontological kind is function?

The ontological status of functions was discussed by Searle in [Searle, 1995]. He argues,

just as Cummins, that functions are not the objective features of reality - they “are never

intrinsic to physics of any phenomena but are assigned from outside by conscious observers

and users. Functions, in short, are never intrinsic but are always observer relative”(original

Related Works

54

emphasis, [Searle, 1995], p. 14). In this sense Searle’s approach is analogical to the approach

of Bonnet reported in the previous section, where the function was relativized to some person’s

belief. Bonnet is concerned with the beliefs of a designer or user, Searle generalizes it to an

observer. Thus, also a neutral observer, which is neither using nor designing an object may

assign a function to an object. Functions then, according to Searle, are ontologically subjective

- the functional features exist then relatively to some observer or user ([Searle, 1995], p. 10).

In contrast to the above approach functions are sometimes considered to be non-intentional

entities, especially when considered in terms of (an objective) behavior or capacity.

2.3.4 Conclusions

The discussion about functions in philosophy is mainly concerned with the problem of

function ascription. Philosophers do not seem interested in the structure of functions, which is

so broadly discussed in AI and conceptual modeling. This is of no surprise, since philosophy is

not concerned with the practical problems of building functional models, which in turn is the

issue in computer science.

Finally, function ascription in philosophy is analyzed in a wider context, covering not

only functions of artifacts but also functions of natural objects. In this sense the approaches

developed there seem to be richer and more general than those discussed in the previous

sections.

2.4 Requirements for an Ontology of Functions

In the current section on the basis of the works discussed we will summarize the issues which

we find to be of importance for a top-level ontology of functions.

The list below will be used as a guide in the coming chapters for the construction of the

top-level ontology of functions. Many of the issues listed below are handled by at least one of

the approaches mentioned. However, to our knowledge none of the approaches is aimed to

handle all of them, which, in our opinion, is the task for top-level ontology.

In order to provide a domain independent top-level ontology of functions (OF),

incorporated into a wider ontological framework, in our opinion four questions require an

answer:

1. How to represent and determine functions independently of their realizations?

2. Under what conditions an entity is a realization of a function?

3. What does it mean that an entity has a function?

Requirements for an Ontology of Functions

55

4. Of what ontological kind is function?

Those questions indicate the main areas, which OF should cover, namely the structure of

function, the realization of function, function ascription, and the incorporation of the ontology

of functions into a wider top-level framework. The first question concerns the structure of

function and is of particular relevance in functional modeling, where it is required to represent

functions independently of particular realizations. Secondly, we find it important to provide

the ontological foundations for the evaluation of function realization. Thirdly, the functional

description is often a part of the knowledge about entities, thus it is important to provide

conditions for an item to assign a function to it. Finally, the ontology of functions is intended

to be incorporated into a wider framework of the top-level ontology which will provide strong

ontological foundations and enable cohesive representation of both functional and non-

functional knowledge. In order to permit it, an ontological status of function should be

investigated. Those four problem areas are broken down into the detailed requirements the

ontology of functions should meet, presented in table 2.

Reference

number

Requirement Description

R.1.

The representation of a function should be independent from the function’s

realization. In particular, the following should be provided:

R.1.1. The function description, which is both precise and easily comprehensible for

human users.

Especially in complex models, comprising a high number of functions, it is

important to represent functions in a form easily comprehensible for human users.

On the other hand, the representation must be precise enough to enable

identification of functions.

R.1.2. The function representation should be compatible with most common understanding

of functions, in particular with the input-output approach.

R.1.3. Function and realization should be handled separately. In particular:

R.1.3.1. The function representation should be realization-free, since functions are often

modeled independently of non-functional aspects, especially in the first phases of

the design.

R.1.3.2. The description of function realization should be function-free (a non-functional

description). Entities realizing functions may be described in purely non-functional

way, i.e. as processes.

R.1.4. Function should be differentiated from behavior and processes in general. The

definition and representation of functions should not be given in behavioral terms.

This enables one to deal with non-behavioral, passive functions.

Related Works

56

R.1.5. Functions should not be defined in the context of devices only, but the functions of

non-devices (non-artifacts) should be handled as well.

R.1.6. Relations between functions should be defined independently of a particular

function realization. For instance, functional decomposition should be independent

of the partonomy of structures realizing the function.

R.1.7. Side effects and accidental benefits of functions should not be identified with

function goals but should be included in the framework.

R.2. Conditions for the realization of function which permit to evaluate entities against

their functions should be provided.

R.2.1. Apart from processes, other (static) entities should also be considered as candidates

for realizations of functions.

R.3. Conditions for function ascription, stating the circumstances under which an entity

has a function, should be provided. In particular the following should be

investigated:

R.3.1. Possible modes of function ascription.

R.3.2. Types of entities that may have functions ascribed. For example, not only objects

(persistants, presentials) carry functions but also processes, e.g. services.

R.3.3. The role of agents’ beliefs and intentions in function ascription should be examined.

R.3.4. The normativity of functions and malfunctions should be handled. Due to the

normative character of functions also malfunctions are ascribed to entities.

R.4. An ontology of functions should be incorporated into a full-fledged top-level

ontology.

R.4.1. The features of functions should be recognized.

In order to find out of what ontological kind function is, first its properties should

be investigated.

R.4.2. The ontological status of function should be determined and the definition of

function should be provided. The determination of the ontological status of function

permits to incorporate it into the broader taxonomy of a top-level ontology.

R.4.3. Taxonomy of functions should be developed. Classifications of functions enable

one to specialize the concept of function and provide a backbone of the ontology of

functions.

Table 2. List of the requirements for a top-level ontology of functions.

57

3 Structure of Functions

3.1 Introduction

After presenting in the previous chapter the requirements which we believe the ontology of

functions should fulfill, in the present chapter we introduce the general structure of functions.

The structure of functions is doubly relevant: first it provides the means necessary for

representing functions independently of their realizations (ref. R.1), and secondly it sets frames

for a definition of function (ref. R. 4.2).

In OF we propose to represent the structure of function Fu(F) as a quadruple

STR(F)=(LABEL(F), REQ(F), GOAL(F), FITEM(F)), where:

− LABEL(F) denotes a set of labels of function F.

− REQ(F) denotes requirements of function F.

− GOAL(F) denotes a goal of F.

− FITEM(F) denotes a functional item of F.

In the present chapter we are going to discuss in detail each of the above function components.

Moreover, an additional notion of final state of F, FSTATE(F) will be introduced, which

provides a means for the introduction of multiple-goal functions.

3.2 Label

Functions are represented in natural language form in a number of approaches to functional

device modeling, e.g. FCO, FBSstate, FBSstate/m, but also in the fields of business modeling and

system modeling, e.g. the CASE*Method or FBSstate. In the latter approach function is

expressed as a tuple (fsymbol, b), where the functional symbol fsymbol is a natural language

expression of the form “to do something”, whereas in OPM functions are described by function

statements, which are imperative sentences of the form “do something”.

The representation of functions in natural language is useful especially for the purpose

of interaction with human users. However, we find it insufficient to reduce the representation

of a function only to a natural language form as it is done in the CASE*Method or OPM, since

this results in an imprecise function representation which does not permit further analyses of

Structure of Functions

58

functions. Therefore, we adopt the natural language form as an intuitive and easily

comprehensible label of a function, but only for the purpose of supporting a human user. The

remaining components of a function are introduced in order to permit a precise function

representation.

Definition 1 (Labeling). The labeling of a function f is a set of natural language expressions

which describe the function: LABEL(f) = {l1,..., ln}. Every member li (1 ≤ i ≤ n) of the labeling

is called a label of the function.

Beside the verb phrase “to do something” adopted in FBSstate, OF further admits forms like

“doing”, a substantive adverbial form, e.g. research, login, and a conditional form

“if...then”. The latter has the advantage of an explicit reference not only to the goal state but to

the function requirements as well. Finally, we do not restrict the number of function labels. A

function may have several natural language descriptions assigned. For example, the labels

goods transport or to transport goods may form a labeling of one and the same

function.

As reported in section 2.1.2, FBSstate/m not only uses the phrases of natural language for

function representation, but also it provides the decomposition of the phrases into three

elements: a verb called function body, a noun called objective entity and an adverbial phrase

called function modifier. We find it problematic to treat adverbial phrases in general as

function modifiers, having some degree of satisfaction. For example, in the function to

deliver mail undamaged the adverbial phrase undamaged should not be considered

as a modifier but rather as a part of the function body. We believe that it does not say how a

function should be achieved but what a function should achieve.

Secondly, modifiers in examples given by the authors in [Takeda et al., 1996] do not

seem to refer to functions but rather to the objects on which functions operate, or even to

external entities. For example, bicycle rear rack is considered to have a function to

carry/fasten backpack to a bike. To that function the authors assign four

modifiers: easy of use, a sporty-appealing form, for most bikes, and

reasonable price range. However, it seems that only the first of them refers to the

function. Neither a sporty appealing form, for most bikes nor a

reasonably price refers to the function, but rather all of them are requirements for the

device itself. Thus, they express non-functional requirements and have nothing to do with the

function of a rack.

It seems intuitive that for each function there is an entity on which the function operates.

In the function to carry/fasten a backpack to a bicycle, these entities are

Goal

59

bicycle and backpack. However, the notion of objective entity does not permit to

distinguish entities which perform the function, here a rack, from those entities on which the

function operates - a bicycle and a backpack.

In FCO a more detailed picture of the entities involved in a function is given. There are

distinguished agent, operand and conduit of a function [Kitamura et al., 2004]. The division

between an agent and an operand permits to distinguish an entity which performs the function

from that on which the function operates – an operand.

Unfortunately, FCO has also some limitations in revealing the structure of the label of a

function. An operand is defined as a physical object which is changed by the function.

However, this does not hold for all types of functions, as Kitamura and colleagues [Kitamura

et al., 2002] recognize themselves. There is a big group of functions not changing anything,

and for those functions the notion of an operand is not properly defined. Moreover, not all

functions operate on physical objects.

Although the grammatical analysis of function labels yields insight into a function, it is

however difficult to build a formal representation of functions on that basis alone. We argue

that the natural language form should be included in the functional structure, but it is

insufficient to represent functions only by their labels, as these are too ambiguous and not

precise enough in determining functions.

Therefore, in the current study we make use of some ideas presented in FBSstate/m,

namely we adopt the distinction between the verb - the function body and the noun - the

operand of the function. We make some improvements, trying to avoid the pitfalls reported

above. An operand is considered herein neither in the FCO sense, i.e. being limited to physical

entities changed by the functions, nor in the general sense as the objective entity in FBSstate/m.

In our understanding, an operand is every entity involved in the function realization which is

not a realizer16 of that function. In addition, we put no ontological constraints on the nature of

an operand; thus it is not limited to physical objects.

3.3 Goal

Functions are commonly considered as teleological entities which is reflected in most of the

approaches discussed in section 2.1 by the inclusion of a goal to the representation of

functions. For example, [Sasajima et al., 1995] define function as a teleological interpretation

16 The notion of realizer is introduced in section 5.5, here suffice it to mention that intuitively a realizer

is identified with an entity realizing a function. For example, the realizer of the function to drive a

car is a person driving a car, namely a driver.

Structure of Functions

60

of behavior, and Chandrasekaran and Josephson identify the function of a device with the

effect “that the object under discussion has on its environment”[Chandrasekaran, Josephson,

1997].

In OF we also consider functions to have a teleological character and represent this by

including a goal into the structure of a function. This, however, yields the following questions:

(1) Of what ontological kind are goals? (2) Does the goal completely determine the function or

are additional determinants needed?

The second question is to be investigated in the next section. Regarding the first, it

should be mentioned that there are differences in the understanding of the notion of a goal

across the literature. In approaches like FR, the goal of a function is considered as a causal

process of a function’s realization, whereas in McDowell’s approach a goal is seen as a goal

state that must be reached and maintained, or the control relation that must be maintained

[McDowell et al., 1996]. Hence, we see that FR identifies the goal of a function with the

process of function realization, which, as reported in above, causes a functional representation

to be realization dependent.

We interpret a goal, following [McDowell et al., 1996] for instance, as the result state of

a function. For example, pumping blood is the function resulting in the state of blood

being pumped, and the function of some logistics company of transporting goods

to the specified destination results in the state in which goods are

located in the specified destination.

The first observation concerning the nature of a goal is that it is a relational entity. For

example, in Sowa’s ontology the relation has purpose is introduced as a triadic relation

between an agent that has an intention, an act performed by that agent and an intended

situation, which is the reason for which an agent performs an act ([Sowa, 2000], p. 272). Since

we are not interested in the goals of the actions of agents but in goals of functions we

paraphrase the above and define a goal as a relational entity mediating between an agent, a

function, and some chunk of reality
17:

17 The notion of chunk of reality by analogy to the notion of state of reality does not impose that a given

ontological entity is indeed a part of reality. According to our pragmatic realistic approach, the entities

of the ontology are not considered as parts of the reality but as elements of the model, i.e. ontology,

which is used for the description of reality. Our approach is both realistic and pragmatic, since the only

argument for our claim that the constructs used in the ontology do have their counterparts on the side of

reality is pragmatic in nature – we assume that those counterparts exists since we find it useful to model

reality by means of the model elements corresponding to them.

Goal

61

Definition 2 (Goal). A goal of a function f is an intentional entity established for some reason

by an agent referring to a chunk of reality, which is (to be) affected by the function f.

A goal is a relational entity, since it is of something (of a function in our case) and for

somebody (an agent). The GoalOf(x,y) relation means that a goal x is assigned to some

function y, and GoalFor(x,y) means that x is a goal for an agent y; in other words, agent y

establishes the goal x. The entity x can be assigned to the function as its goal only if x is

affected by function y, which is denoted by Affect(y,x). Thus, definition 2 can be represented

formally,

Goal(x,y,z) → GoalOf(x,y) ∧ GoalFor(x,z).

(1)

In the next sections we will have a detailed look at the above definition.

3.3.1 Affected by the Function

Each function is associated with some state of the world, in which it is expected to result. In

terms of GFO that state can be considered as a complex whole. For example, the function of

painting a wall results in a configuration consisting of a wall, paint and the

relation of being covered that holds between them. In accordance with the

axiomatization of GFO in FOL provided in [Heller et al., 2005] this could be represented as

follows:

∃xy(Ph(x) ∧ x :: wall ∧ Ph(y) ∧ y :: paint ∧ covered-by(x, y).18

The state of the world, which is a result of the function f is called a final state of function f and

is discussed in section 3.3.7. Nevertheless, we do not consider the whole final state to be the

goal of the function. The goal of painting a wall is to establish a particular relation between the

wall and the paint. That relation is the goal of painting the wall, in contrast to the overall

situation consisting of a wall, some paint, and the relation between them, which may be the

18 There exists an individual physical object which is an instance of a wall and there exists an individual

which is an instance of paint and the former is covered with the latter. The GFO predicate Ph(x) denotes

a physical object x and x::y – x being an instance of y. All notions and symbols of GFO used in the

current text are defined in appendix A.

Structure of Functions

62

goal of the function to preserve the existence of the wall and the

paint AND to cover the wall with the paint.

Therefore we restrict the goal of the function only to those entities which are affected by

the function. Intuitively, we call affected all those elements of the state of the world which are

influenced by every realization of the function19. To grasp the intuitions behind it, consider our

example of the function to paint a wall. Before the realization of the function happens,

the wall is not covered with paint and after the realization it is covered, thus what the function

affects is the relation covered-by(x,y) between a wall x and a paint y. Restricting the goal

only to affected entities seems to meet the intuitions that the goal of the function to paint

a wall is not to maintain the existence of the wall or the paint, but it concerns only the

individual relation between a paint and a wall.

3.3.2 Agent

Although the notion of an agent is not central for the theory of functions, functions and agents

are correlated, since functions are agent-dependent entities. Therefore, let us briefly clarify our

understanding of the notion of agent.

In the agent based systems community a number of theories of agents have been

developed (for an overview see [Wooldridge, Jennins, 1995]). Among the commonly accepted

features of agents is proactivity. Agents are proactive in the sense that they are able to take the

initiative in performing goal-directed actions. However, performing a goal-directed action

requires that a goal is established and recognized. In this sense agents are understood herein as

those entities which are able to establish goals. This narrow interpretation of an agent is

adopted for our framework.

In addition in OF three particular relations are assigned to agents, namely the relation of

having belief, denoted by Believe(x,y), the relation of having desire denoted by Desire(x,y)

and the relation of having intention, denoted by Intent(x,y). In this sense the adopted in OF

notion of an agent corresponds to the postulates of a well known paradigm of agency – BDI

(belief, desire, intentions) introduced by [Bratman, 1987].

19 Affectedness is taken in OF as a primitive notion. Among other things, it touches on the Frame

Problem, which, however, we find to be outside the scope of the present work.

Goal

63

3.3.3 Established by an Agent

A goal is an intentional entity; for some reasons an agent may distinguish some part of reality

to be a goal. For example, the state of the world W: the goods are located in

Berlin may be recognized as a goal for the manager M in a logistics enterprise. Here we

would say that W is a goal for M, GoalFor(W,M). A goal is always established intentionally by

some agent, and there is no goal without an agent who recognizes a given chunk of reality as a

goal. The effected entities not being a part of the function’s goal are called side effects and are

discussed in section 3.7.

Note that the goal-for relation should not be seen as restricted to the relation of desire,

as for example in [Chandrasekaran, Josephson, 1997] where the function is considered as a

desired or intended effect of a device. As will be demonstrated later, an agent may pick up a

given chunk of reality as a goal due to other factors than just desire. Therefore, we use a

general relation of goal establishment, whose specific types, including desire, result from

different types of reasons an agent has when establishing a goal.

The inclusion of an agent into the structure of a function has the following consequences

on the nature of functions:

1. functions are subjective,

2. functions are not part of the material stratum20,

3. The normativity of functions comes from agents.

Since on the one hand a goal is a function’s determinant and on the other hand it involves an

agent who establishes it, there are no functions independent of agents. In order to describe any

function we have to refer to an agent who establishes its goal. This means in turn that a chunk

of reality, which is established by one agent A as a goal is not by itself recognized as such by

another agent B, and therefore agent B could not recognize the function resulting in that goal.

In this sense, we say that functions are subjective. This corresponds to the claim of Searle. In

[Searle, 1995] he says that functions are assigned to entities by an external observer, and

therefore they are observer relative. Although, this claim refers to the problem of function

ascription, we think that it is not only function ascription that is determined by an agent, but

also that a function itself is agent-dependent. Agents create functions by establishing goals,

instead of finding functions as elements of an objective reality.

Concerning the second point above, since functions are agent dependent they may not be

present at a level of reality (or a level of the description of reality) at which agents are not

present. Because agents do not belong to the material stratum but to the social or cognitive

20 For details see ‘Stratum’ in appendix A.

Structure of Functions

64

strata, functions cannot be present at the material stratum either. This works well for the

example of the business function to deliver goods introduced above, which is situated

at the social stratum, as it is established by some human in the role of a manager.

However, the elimination of functions from the material stratum raises issues, e.g. the

handling of biological functions. Biological functions, in particular their teleological character,

like the heart’s function of pumping blood, are common but also controversial aspects of

biology (see [Cummins, 2002] for a critique of teleology and [Gould, Lewontin, 1979] for a

critique of the adaptationist programme in biology based upon teleological explanation). If we

consider the function of the heart to pump blood then there seems to be no agent involved.

Moreover, since biology is concerned with the material stratum, in principle biological

functions seem to be functions at the material level. If biology is understood as a description of

the world that does not refer to any subjectivity but is supposed to be objective, then,

according to the assumptions made above, such a description cannot contain functions. In this

sense the current framework seems to be inappropriate for biological functions.

However, we think that biology is not only concerned with explanation of the world in

purely descriptive terms but, like other sciences, it is also about developing theories. Theories,

in turn, being artifacts developed by scientists belong to the cognitive and social strata and

involve some subjectivity. Thus, in OF we represent goals of biological functions as goals

established by particular agents, namely by scientists. In this sense we argue that there are no

biological functions at the level of the biological (material) stratum, but that functions are

constructed by biologists in their theories, which are intentionally created artifacts belonging to

the cognitive and social strata21.

Regarding the third point we see that since functions come from agents then the

normative character of functions also has its origins in agents establishing functions.

3.3.4 Kinds of Establishing Goals

Definition 2 says that a goal is established by an agent. This means that an agent recognizes

some state of reality (or more precisely some chunk of reality, see below) as a goal. The most

intuitive case refers to an agent which desires some state of reality and establishes this as his

goal. In many functional modeling paradigms discussed in chapter 2 goals are identified with

21 Functions belong to the social stratum since they are established by agents, and the notion of an agent

belongs to the social stratum. However, functions do not require a society of agents - one separate agent

can establish a goal and then recognize a function. In this sense functions belong primarily to the mental

stratum.

Goal

65

desired states of reality, e.g. [Chandrasekaran, Josephson, 1997]. In this sense the relation of

having a goal is considered as a relation of desiring a goal (preferably by a particular agent,

e.g. the designer of the device). However, the establishment of a goal is not only driven by

desire. Preliminarily, we can distinguish the following kinds of goal establishment:

− A goal is desired by an agent. This corresponds to the most intuitive meaning of the

phrase of having a goal - an agent x desires some state of the world y, Desire(x,y), and

therefore calls it a goal. We assume that having an intention implies a desire.

− A goal is believed by an agent to have a utility. An agent does not have to desire a state

of reality to call it the goal of somebody or something. In this case the agent establishing

the goal does not gain the profits of it. For example, the state in which blood is being

pumped is useful for the human organism and as such is distinguished by some agent

(say some physician or biologist) from other states as a goal. The goal of blood

being pumped is not desired by a physician but nevertheless he considers it as the

goal of the heart’s function of pumping blood. Neither is the state of circulating

blood recognized as a goal of the heart’s function, due to some agent who desires it, i.e.

the person, whose organism is under consideration. X may be established by some agent

to be a goal, not because it is desired but because an agent believes that it is useful in

some context y, Useful(x,y)22.

− A goal provides a good explanation of a given phenomenon. A particular type of a goal’s

utility is its epistemic usefulness. Some state of the world x may be crucial for some

theory acknowledged by an agent – it may provide an explanation of some phenomenon

y, Explain(x,y), and thus it may be recognized as the goal of a function. For example, the

fact that hemoglobin transports oxygen from the lungs to other parts of the body may be

considered as an answer to the question “why does blood contain hemoglobin?” relevant

in the context of some biological theory. That kind of explanation is called functional

explanation and is broadly discussed e.g. in the context of biology.

In conclusion we can say that a chunk of reality is a goal for some agent, either when he

desires it or believes that the state is useful in some context, or that it provides an explanation

of some phenomena, formally,

22 A goal is believed by an agent to be useful in some context; this, however, does not imply that it is

really useful in that context.

Structure of Functions

66

GoalFor(x,y)↔ Agent(y) ∧

 (Desire(y,x) ∨ ∃wvr (Believe(y,w) ∧ BelCont(w,r,x,v) ∧

 (r :: Useful ∨ r :: Explain))).

(2)

The relation Believe(x,y) has the meaning that an agent x believes in y. The content of the

belief b is depicted by the predicate BelCont(b, R, a1...an) where R is an n-place relation and

a1, . . . , an are arguments of R. In the above definition the relation r is either the useful or the

explanation relation. Thus the content of the belief is either “x is useful for v” or “x explains

v”.

3.3.5 Priority of Goals and Functions

Not all goals are equally important and thus not every function has an equal priority. For

example, the heart’s function of pumping blood is more important than the function of

producing beat sounds. In fact due to the lack of good reasons the second could be

considered not to be a function of the heart. Common factors determining the priority of a goal

are the following:

− the reasons underlying the goal,

− the reliability and number of agents who establishes the goal.

The reliability of an agent is the value of the social trust, which an agent has and it depends on

the role of the agent in a given society.

The priority of functions is of particular relevance in the context of function conflicts.

Consider the situation where the requirements and the triggers23 of two conflicting functions

are fulfilled. Which function should be realized in such a case? Intuitively, one could say that

the first to be realized is the function which is more important – in our terms one that has a

higher priority. The order in which functions are realized is given by the order of goal

priorities; the higher the priority of a goal the earlier the position of the function in the queue

for realization.

23 Triggers are discussed in section 3.4.

Goal

67

3.3.6 Arbitrary Chunk of Reality

Often a goal is called a goal state or a situation which could suggest considering goals only as

situations. For example, the goal of the function to bring peace to the world is the

situation of the world peace.

For our part, however, goals do not refer only to situations. Situations in GFO are

considered as presential comprehensible wholes which are complex entities having a high

degree of independence in comparison to other types of entities. However, as the example of

the previous section has shown, a goal can consist of one binary relation only, which cannot be

considered as a whole situation. The goal of the function to paint a wall is not a

complex entity (an entity composed of two or more entities), but it comprises only a binary

relation that holds between a wall and paint. Note that in the GFO framework we do not

consider relations as mere collections of their arguments, but as concrete entities that glue their

arguments together. In this sense the relation of being covered by paint is not a pair (wall,

paint) but rather it is an entity per se gluing them together.

An agent, when establishing a goal of a function, is not restricted to any particular type

of entity, but may choose an entity of an arbitrary ontological kind to be a goal. Let us consider

a particular type of goal establishment, namely desiring. The object of my desire may be a

whole situoid, e.g. holidays in the mountains but I may also desire a tiny part of

reality, like the color of the wall in my room is green. The former is a

situoid, whereas the goal of the function to paint a wall green is a presential,

individual value of the individual property of an individual wall. We find no common feature

of those two entities, apart from the fact that they are both goals for some agent and may

become goals of certain functions. A goal, therefore, can be an arbitrary ontological category,

which we call an arbitrary chunk of reality 24 . Table 3 gives some examples of various

ontological kinds that may play the role of the goal of a function.

The final remark regarding the nature of a goal to be made here concerns the issue of

universal goals. We have put no constraints on the ontological status of goals, and hence we

permit both individual and universal goals. An individual goal refers to a chunk of reality with

"fixed"/particular constituents, whereas a universal goal refers to a chunk of reality where

24 To be precise one should say that actually a goal is not an arbitrary chunk of reality, since, as stated in

definition 2, it is an intentional and relational entity which refers to a chunk of reality once that the goal

is established. However since in the current work we refer mainly to the latter, for the sake of the

simplicity of language we call the latter the goal. This seems to be well justified even in natural

language where entities of the world are called goals, e.g. one can point to a painted wall and say “this

was my goal”.

Structure of Functions

68

some constituents are merely constrained by universals but not individually identified. In other

words the individual goal is composed of individuals only, and refers to exactly one individual

chunk of reality, whereas the universal goal is also composed of universals and may refer to

more than one individual chunk of reality. For example, the goal at time T the wall W

is painted with paint P is an individual goal, referring to an individual presential

relator between W and P located at time boundary T. In contrast, the goal a wall is

painted is a universal goal, constrained by the universal relation cover-by between the

universals wall and paint, which refer to the set of all relators gluing some paint with some

wall.

Function Goal GFO category

to pump blood blood is being pumped process (situoid)

to deliver goods to

Rome

goods are located in

Rome

presential relator

to paint the wall red redness of the wall property value

to build a house a house presential

Table 3. Various GFO categories may play a role of function goals.

3.3.7 Final State

The goal of a function can refer to an arbitrary chunk of reality and, as shown in the previous

section, often it is not a comprehensible whole. In the case of the function to paint the

wall the goal is a binary relator, i.e. the instance of the covering relation. As a relator this

goal requires two relatas - the wall and paint. If we consider the relator of covering

together with the wall and paint, this yields a new entity, namely the wall being

covered with paint. An entity of this kind in GFO is called a fact, and is considered to

be a comprehensible whole.

In GFO facts are most simple composite entities considered as wholes. They are

constructed of one relator together with its relata or one property bearer with its property. Facts

come in a number of kinds depending on the kind of the entities involved in them, e.g. the

presential fact consists of presential relata and relator, the processual fact – of a processual

relator and relata etc. Facts can be aggregated in more complex entities, which are considered

as wholes as well. An aggregate of presential facts which exist at the same time-boundary is

called a configuration. A configuration is itself a presential. For example, a wall being pained

and polished is a configuration consisting of two facts – wall being painted and wall

Goal

69

being polished. In turn, aggregates of processual facts are called configuroids and are

considered to be occurrents.

Most complex aggregates considered as wholes are called situations and situoids. A

situation is a configuration which can be comprehended as a whole and satisfies certain

conditions of unity, which are imposed by relations and categories associated with the

situation. The wall together with all its properties and its environment is a situation. A situoid

is a processual counterpart of a situation, i.e. it is such an occurrent whose boundaries are

situations. Facts, configurations, configuroids, situation and situoids have their universal

counterparts, e.g. a universal fact has at least one relatum being a universal, e.g. the fact John

speaks to the clerk contains the universal clerk. All the above notions are

underpinned by a derived notion of complex whole, denoted by Whole(x)25.

If a goal is not a comprehensible whole then it may be placed in the context of the

comprehensible whole which it is a part of. For that purpose we introduce the notion of final

state, which can be optionally included into the structure of functions.

Definition 3 (Final State). A final state x of a function f, denoted by FSt(x,f), is a minimal

comprehensible whole that contains as its part a goal of the function f . Formally,

FSt(x,y) → Whole(x) ∧ Fu(y) ∧ ∃u(GoalOf(u,y) ∧ Part(u,x)).

(3)

A final state is a minimal comprehensive whole; hence a final state cannot have a final state as

its part. Formally,

FSt(x,y) → ¬ ∃z(FSt(z,y) ∧ Part(z,x)).

(4)

For the goal being the covered-by relator a final state is the fact of wall being covered with

paint, but it is not a configuration or situation comprising that fact.

3.3.8 Complexity of Functions

Analysis of the final states permits to distinguish basic function from complex functions, later

called non-basic as well.

25 Whole(x) ↔ Fact(x) ∨ Config(x) ∨ Configu(x) ∨ Sit(x) ∨ Situ(x)

Structure of Functions

70

Definition 4 (Basic Function). A function f is called a basic function, and denoted by

FuBasic(f), iff the final state of f is a single fact.

FuBasic(x) ↔ ∀yz(FSt(y,x) ∧ FSt(z,x) → Fact(x) ∧ Fact(y) ∧ y = z).

(5)

Definition 5 (Complex Function). A function f is called a complex function, and denoted by

FuCompl(f), iff it is not basic.

FuCompl(x) ↔ Fu(x) ∧ ¬ FuBasic(x).

(6)

Basic functions are the most elementary functions, which in functional hierarchy always

appear as the bottommost and non-decomposable. The goal of a basic function is called a basic

goal and it consists of a single property value, or a single relator, e.g. the goal of the function

to deliver goods to Rome comprises only one basic entity, namely the located-in

relator.

Every non-basic function can be decomposed to basic functions by the decomposition of

its goals. For example, the complex function to deliver undamaged goods to

Rome, with the final state which is a configuration consisting of two facts - goods are in

Rome and goods are not damaged is an aggregate of two basic functions: to

deliver goods to Rome and to protect goods.

The final states of non-basic functions may compose one coherent entity or its parts may

remain unrelated26. The functions of the former kind we call coherent functions, and contrast

them with the multiple-goal functions.

Definition 6 (Coherent Function). A function f is called a coherent function, and denoted by

FuCoh(x), iff all final states of f compose a coherent entity. Formally,

FuCoh(x) ↔ ∃y(Coh(y) ∧ ∀z(FSt(z,x) → CPart(z,y)).

(7)

From the above definition and the definitions of coherent entity and fact, it also follows that all

basic functions are also coherent entities.

26 By a coherent entity, denoted by Coh(x), we understand such a complex entity (a whole) that all its

constituent parts are interrelated: Coh(x) ↔ ∀yz(CPart(y,x) ∧ CPart(z,x) ∧ z ≠ y ∧ x = y + z →

Rel(y,z)). The relation Rel is a root relation of the GFO relations hierarchy.

Goal

71

Definition 7 (Multiple Goal Function). Every function which is not a coherent function is

called a multiple-goal function, and denoted by FuMultGoal(x). Formally,

FuMultGoal(x) ↔ Fu(x) ∧ ¬ FuCoh(x).

(8)

For example, the final state of the function to deliver undamaged goods to Rome

is a configuration of two facts involving the same goods. In contrast the function to

deliver goods to Rome by plane has two basic goals, whose corresponding final

states do not compose one coherent entity. The first final state, the goods are in

Rome, is a presential composed of the presential goods, the presential Rome and the relation

located-in that holds between them at some time boundary. The later final state is the

process of transportation involving goods and plane considered as persistants participating

in the process. Therefore, the final states of that function do not form one coherent entity but

instead two distinct entities: (i) a configuration C supporting the fact that the mail is in Rome

and (ii) a configuroid (or a complex process) C’ of transporting goods by plane. Note that C

and C’ are independent of each other and have different temporal extensions.

3.3.9 Restrictions on Functions

Often a goal of a function is distinguished from the restriction of its realization. The former

could be considered as what should be done, whereas the latter how it should be done. For

example, the function of transporting goods by car could be understood as a function to

transport goods restricted by the constraint: a car should be used for

transportation. Intuitively, two general types of restrictions can be distinguished. One,

concerning the realization of the function, as in the example above, and the other concerning

the output of the function. To illustrate the latter consider the function to deliver goods

restricted by the condition that goods should not be damaged. Hence, the goal goods are

in B is restricted to the goal goods are in B AND goods are NOT damaged.

As the reader could already observe in the previous section, we do not include the

distinction between the goal and the restriction in OF. According to accepted assumptions a

function is not about how something is to be done but about what is to be done. We assume

that everything which is intended to be affected by a function is the goal of the function, thus

we do not distinguish the output from the goal as [Eriksson, Penker, 2000] do. Therefore both

types of restrictions are considered to be merely goals of functions. That is, the function to

transport goods to B by car is interpreted as a multiple goal function having two

Structure of Functions

72

goals - the goods are located in B and the goods are being

transported by a car. If any of its goals is not fulfilled, then the function is not

realized.

A particular type of function restriction is the time constraint. Take for example a

logistics company in which, due to regular delays, the function to deliver goods in

24 hours was introduced. This is a non-basic function, with the goals G: goods are in

destination location and G’: goods are in the destination location

not later than in 24 hours. The second goal concerns the temporal location of the

presential configuration. The basic goal referring to the temporal location we call a time frame

of the function.

An additional phenomenon concerning restrictions is that they are often considered to be

secondary to the goal or less important than the goal. For example, one may claim that it is

more important that goods are delivered than the fact that it is done by car. This, however, can

be adequately represented in OF by means of priorities which can be attributed to goals.

3.4 Requirements

The interpretation of function as a teleological entity raises the questions if a goal alone

determines the function or are there additional determinants needed?

In our opinion the goal alone does not determine the function, since the same state may

be a goal of two different functions, and the relation between a function and a goal is not one-

to-one. For example, the function of transporting goods to Rome and the function

of preventing goods from leaving Rome have the same goal, which is a state, in

which the goods are in Rome, but clearly those are two different functions. Those functions

differ not with respect to the goals they result in, but in their initial states. In the first case

goods are expected not to be in Rome, whereas in the second they are expected to be there.

The information about an initial state may be present in the function structure in two ways:

1. It could be stated explicitly in a goal, i.e. the goal of the former function may have the

conditional form: If the goods are in Rome (initial state), then they

should not leave Rome (goal state). Here, the goal is not considered as a state

of the world, which will appear, when the function is realized, but instead it is a

conditional statement comprising the conditions and the goal state. This interpretation

of a goal, which, however, we do not follow, is adopted e.g. in CFRL, where a

functional goal comprises a whole causal process of function realization, including

both its initial state and final state ([Iwasaki et al., 1995] p. 13).

Requirements

73

2. It is introduced as an additional determinant of a function, beside a goal. It is often

implicitly indicated by the verb in the function’s label. For example, in the label to

prevent goods from being sent the verb prevent implicitly indicates

that the goods are initially in Rome.

Since we consider a goal as an intentional entity referring to a chunk of the reality in which a

function results, and not as a conditional statement, we see that it is insufficient to represent a

function only by reference to a goal. Therefore, we introduce requirements as an additional

component of the function structure.

Definition 8 (Function Requirements). Requirements of the function f are an intentional

entity referring to a chunk of reality which should be present if the function f is to be realized.

Later in the text we refer to requirements also in terms of an initial state
27 or conditions of the

function, which is denoted by Req(x,y), having the reading that x is the requirement of

function y. Each function requires some conditions to be fulfilled in order to enable its

realization. Those conditions are common for all individual realizations of the function28. For

example, every realization of the function to hammer nails requires that there are

available nails and some physical object, to which nails should be

hammered. Those conditions do not impose what is the type of the object, into which nails

should be hammered, although some conditions of it can be given, for example that its

hardness must be lower than the hardness of nails. The conditions remain realization-

independent: they are equally valid for hammering nails into a wooden table as into a brick

wall. We say that all of those necessary conditions compose the requirements of a function.

Requirements, by analogy to the goal, are said to form a chunk of reality, since it seems

that there are no restrictions on the ontological character of the entity or entities that form

them. Fairly good candidates for requirements in the context of GFO seem to be configuroids

and configurations. For example, in case of the function of hammering nails, the

requirements form a configuration containing two facts: nails are present and a

physical object, for nails to be hammered in, is present.

27 The initial state can be considered as a minimal comprehensible whole of which requirements are part,

analogically to the final state in case of a goal. However, this distinction is not made explicit in the

present work since it is not as relevant as the earlier-introduced distinction between a goal and a final

state.

28The notion of an individual realization of a function is discussed in section 5.2, whereas the distinction

between individual and universal functions is drawn in section 4.2.1.

Structure of Functions

74

However, we do not want to exclude the functions that have simpler requirements, i.e. those

consisting only of one simple entity.

Often the label of a function refers itself to the requirements of the function. For

instance, the label “to hammer nails” refers to nails, which are the function operand, and

which must be present in order to realize the function. An operand, however, is not always

present in the requirements, for example in case of the label: “to prevent flood”, where the

operand flood is not part of the requirements.

The role an entity plays in the context of a function determines the type of requirements

that concern it. The following types of requirements are distinguished29:

− The operand requirements denoted by ReqOp(x,y), having the meaning that x is an

operand requirement of function y.

− The environmental requirements denoted by ReqEnv(x,y), having the meaning that x is

an environment requirement of function y.

− Functional item requirements denoted by ReqFi(x,y), having the meaning that x is a

functional item’s requirement of function y30.

The operand’s requirements are those requirements that concern an operand, for example in

the function of hammering nail, the operand nail is expected to have a particular shape

and to be reasonably tough in comparison to the object into which it is to be hammered to. The

functional item requirements are those requirements that concern an entity playing the role of a

functional item, which is an entity executing a function. In our example a functional item is

required to have enough force to hammer nails.

Finally, the environmental requirements are all those requirements, which are neither

operand nor functional item requirements. In our example environmental requirements are e.g.

those given by the background theory like the laws of physics.

Requirements are necessary but not sufficient conditions for the realization of a

function. Apart from them, for a function to be realized what is needed is a trigger, denoted by

the predicate Trig(x,y) having the reading that x is a trigger of function y. The notion of a

trigger is present, among others, in the CASE*Method [Barker, Longman, 1992]. In OF a

trigger, together with the requirements, provide a necessary and sufficient condition for the

function realization; in this sense a trigger can be understood as a direct cause of the

realization of a function. For instance, the realization of the function of transporting

goods may be triggered by the event the invoice is signed or by the event the

29 Req(x,y) → (ReqOp(x,y) ∨ ReqFi(x,y) ∨ ReqEnv(x,y)).

30 The notion of functional item is defined and discussed in section 3.6.

Temporal Extensions of Functions

75

phone order. In contrast to requirements a trigger is not considered to be a part of the

function structure. Therefore, a function remains the same regardless of having different

triggers in different realizations. For instance, the function of transporting goods

triggered by the event the invoice is signed, and the function of transporting

goods triggered by the phone order, remain in our framework the same function, to

which different triggers are applied. This enables us to represent functions independently of

their particular applications.

3.5 Temporal Extensions of Functions

After introducing the notions of requirements, goal and the basic function we will now provide

the classification of basic functions reflecting the relation of functions to time. The issue is of

relevance since firstly it permits to separate the notion of function from the notion of process,

and secondly it enables the identification of the three kinds of function realization.

Concerning the first point we see that functions are commonly related to processes and

treated as particular types of processes. We discuss the interdependence of functions and

processes in detail in section 7.3.1, as well as in the context of function realization in section

5.8. Herein we mention only two approaches that follow this line, namely Loebe’s approach

[Loebe, 2003] and the CASE*Method.

In [Loebe, 2003] a function is treated as the universal of a processual role. A processual

role is a layer of the process containing a persistant. Since a process layer is considered to be a

part of the process which is a process itself, therefore a function is considered to be a particular

type of a process universal, namely one whose instances (1) contain a persistant and (2) are

layers of some process. For instance from the universal process of painting a wall containing

among others a painter, a wall and paint, one may cut out a layer containing a painter and its

behavior, which can be understood in terms of a painter’s role in that process. This process

layer according to Loebe is to be understood as the function of a painter.

Similar ontological assumptions yield the solution adopted in the CASE*Method

[Barker, Longman, 1992], where the difference between functions and processes is that the

latter contain the mechanism of realization and the former are mechanism-free processes31.

Here, functions could also be considered as particular layers of bigger processes, namely ones

which are free of the realization mechanisms.

To illustrate the above let us consider the process P of transporting goods

with a car. We could cut off the layer of that process, which does not contain a car but

31 See section 2.2.1 for a detailed discussion)

Structure of Functions

76

only goods being transported and call this layer a function F: to transport

goods. In this sense function F is a layer of a process P and thus is a process itself. Although

we follow a very similar strategy in defining the realization of functions (see chapter 5), yet we

argue that functions are not processes.

Understanding functions as processes requires functions to be time-extended. This meets

the intuitions behind functions such as to transport goods, or to pump blood,

where in both cases the function is recognized as extended in time. However, we think that

functions do not have to be time extended-entities. To demonstrate this let us have a closer

look at the relation of function to time. When discussing this relation we recognize two

important factors:

1. time-location of the requirements

2. time-location of the goal

For the sake of simplicity we do not take into account multiple-goal functions but we

concentrate only on basic functions. When considering points (1) and (2) in terms of GFO, we

see that the requirements and the goal of a function can have one of two types of time

locations: each can be either a time extended process, projected on the framing chronoid or a

presential, fully present at a time boundary. From the number of all possible combinations of

pairs of the temporal extensions of the requirements and the goal we excluded as unreasonable

those where a goal started before the start of requirements and where it ended before the end of

requirements. This gives us ten reasonable combinations of time locations of the requirements

and the goal, of which three will be analyzed in detail three (figure 13).

In the first two cases both the requirements and the goal are presentials. In the first case

the requirements are located before the goal. For example, in the function to transport

goods, the requirements are the presential configuration of goods located in A at some time

boundary tb1, whereas the goal (final state) comprises goods being located in location B at

some time boundary tb2. Typically, we assume that transportation is not instantaneous, thus tb1

and tb2 not only are not coincident but moreover tb1 < tb2. We call functions of that kind

sequential functions as the requirements and the goal are in the temporal sequence.

Temporal Extensions of Functions

77

Req Goal

Req

Goal

Goal

Req

Req

(i)

(ii)

(iii)

tb
1

tb
2 t

Figure 13. Three combinations of time locations of the requirements and the

goal of a function. The arrow indicates the time line. Points represent presentials

located at time boundaries, lines joining the points represent processes.

Requirements are labeled ‘Req’, while goals - ‘Goal’.

Definition 9 (Sequential Function). A basic function f is called a sequential function,

denoted by FuSeq(x), iff the requirements and the goal of f are presentials and the requirements

are present before the goal.

FuSeq(x) ↔ FuBasic(x) ∧

 ∀yz (Req(y,x) ∧ GoalOf(z,x) → Pres(y) ∧ Pres(z) ∧

 ∀st(At(y,s) ∧ At(z,t) → s < t)).

(9)

In the second case presented in figure 13 the goal and the requirements are also presentials but

are not sequentially ordered in time. For the presential requirements and the goal it is not

necessary that the goal occurs after the requirements, but instead they may be present on the

same time boundary. Although this case seems to be odd at the first glance, we will

demonstrate that it is well justified.

Consider the function F to camouflage a tank at a battlefield. The

requirements and the goal (and the final state) of the function could be defined as follows,

REQ(F): a tank is at a battlefield, FST(F): a tank is camouflaged

at a battlefield, GOAL(F): the camouflaged-at relation. The realization of this

function may be provided by an appropriate type of covering. Due to its chemical structure it

may absorb the heat generated by the tank’s engine, and due to an appropriate color and

pattern it makes a tank hard to be spotted by an observer. It seems natural to say then that the

covering of a tank realizes the function to camouflage a tank.

Now, suppose we consider an individual tank as a presential at a given time boundary t.

We find that at that time boundary a tank is covered by covering c. Thus in GFO terms, what

we find at the time boundary t is a situation that fulfils the requirements of the function (tank

is at a battlefield) and the relation of being camouflaged, camouflaged-

Structure of Functions

78

in(tank, battlefield). Both the requirements and the goal are presentials and parts of the same

situation, thus, they are located on the same time boundary.

This example shows that the realization of a function is not necessarily a time extended

process, and thus the notion of function should not be identified with a process. Functions of

that kind we call instantaneous functions and they refer to passive functions discussed in

[Keuneke, 1989; Chandrasekaran, 1994b].

Definition 10 (Instantaneous Function). A basic function f is called an instantaneous

function and is denoted by FuInstant(f) iff the requirements and the goal of f are presentials

located on the same or on the coinciding time boundaries. Formally,

FuInstant(x) ↔ FuBasic(x) ∧

 ∀yz (Req(y,x) ∧ GoalOf(z,x) →

 Pres(y) ∧ Pres(z) ∧ ∀st(At(y,s) ∧ At(z,t) → s = t ∨ Coinc(s,t))).

(10)

The requirements and the goal of an instantaneous function can be generalized to time

extended entities, which brings us to the third case presented in figure 13. In this case both the

requirements and the goal are processes having equal temporal locations. Functions of that

kind we call continuous functions.

Definition 11 (Continuous Function). A basic function f is called a continuous function

and is denoted by FuContin(x) iff the requirements and the goal of f are processes having the

common start and ending.

FuContin(x) ↔ FuBasic(x) ∧

 ∀yz (Req(y,x) ∧ GoalOf(z,x) → Proc(y) ∧ Proc(z) ∧

 ProcStarts(y,z) ∧ ProcEnds(y,z)).

(11)

To illustrate this kind of function the camouflage function may be modified to the following:

to camouflage a tank in the battlefield overnight. Here, the

requirements are the process of the tank being in the battlefield overnight, and the goal is the

(time extended) state of the tank being camouflaged overnight. Both processes have the same

temporal extensions, namely from sunset till dawn.

This particular continuous function can be reconstructed by a number of instantaneous

functions. The tank is camouflaged overnight if it is camouflaged at every moment of the

night. This, however, is not the case with all continuous functions. Take for example the

Functional Item

79

function to pump blood. The requirement of this function is a presence of blood in the

circulatory system and the goal is the process of blood being pumped. Note that the presence

of blood in the circulatory system should be considered here not as a presential but as a process

extended in time which co-occurs with the process of blood being pumped.

Intuitively, this function says that whenever blood is provided, it should be in the state

of being pumped. It cannot be reduced to the number of presential functions as was done in the

case of the camouflage function above. There the goal was the static relation of

camouflaged-in, which could have been considered on the presential level as well. Here,

the goal is the movement of blood, which is a process and cannot be interpreted on the

presential level. If the process of blood being pumped is projected on the time boundary of its

framing chronoid then there would be found a presential blood participating in that process.

However, on the level of presentials there will not be found the movement of blood, as it is a

process. Thus, we see that not all cases of time extended functions can be reduced to presential

functions.

From the above three function kinds some other kinds can be constructed. For instance

the requirements of the function could be a presential and the goal of the function – a process,

which starts after the requirements. Consider as an example the function of the house

construction, the requirements of this function is a presential configuration of required

materials. The goal of the function is the time extended presence of a house.

This function can be decomposed into two functions – a sequential and a continuous

function. First we observe that the function of constructing the house is a sequential function in

which the goal is a presential house. However, a house is not only intended to be ready when

the construction process ends, but moreover it should persist throughout a given period of

time. This can be represented by the continuous function of maintaining the house. In this

sense it is a combination of the sequential and continuous function.

3.6 Functional Item

So far we have represented functions by means of the requirements, which are an input of the

function, the goal which is an output of the function and the function’s basic kind. This

representation resembles the input-output view on functions. However, it is in our opinion not

sufficient to represent functions only as the input-output pairs, since this looses the important

feature of functions, which is their dependency. Treating a function as a dependent entity

supports the intuitions that a function is always of something. Thus the goods

transportation understood only in terms of an input and an output is not a function but

Structure of Functions

80

rather a teleologically interpreted process. Moreover, the lack in the function structure of the

entity to which a function is assigned results in ambiguities and does not permit to determine

the function precisely, because it is possible that two different functions have exactly the same

requirements and the same goal. Consider for example two functions F and F’:

LABEL(F) =” to deliver an item to A”

REQ(F) = Ph(x) ∧ x :: item ∧ ¬ located(x,A)

GOAL(F) = located(x,A)

LABEL(F’) = “to be delivered to A”

REQ(F’) = Ph(x) ∧ x :: item ∧ ¬ located(x,A)

GOAL(F’) = located(x,A)

Both functions have the same requirements: item is not located in A, and the same

goal: item is located in A, thus F and F’ in light of previous considerations should

be considered as the same function. However, the difference between F and F’ is obvious. The

first is the function of somebody (something) who is supposed to deliver an item, while the

second is the function of an item that ought to be delivered. Therefore, we see that the function

specification must not only indicate the input and the output but also the entity, which realizes

the function. That entity, let it be x, we will call a functional item of a function f, and denote

by FI(x,f).

In the literature on functional modeling a device can be found to be a typical counterpart

of our functional item. Function is therefore defined as a function of a device. For reasons

presented in section 2.1.5 we find this solution problematic. To give a brief summary of its

drawbacks: firstly, it assigns functions only to devices, but clearly not only devices realize

functions, and secondly and most importantly, it makes functions realization-dependent. For

example, if a device is a part of a function specification then, the function of transporting

people realized by a car must be considered to be different from the function of

transporting people realized by a plane, since a car and a plane are two

different devices32. But this makes functions realization-dependent and does not permit to

model functions independently of their realizations.

32 If we consider different brands of e.g. cars to be different devices, then it makes functions even more

realization vulnerable: Fiat’s functions of transporting people and Renault’s function of transporting

people should be considered as two different functions then.

Functional Item

81

Thus, there arises quite a dilemma: on the one hand the functional representation should

assign a function to its realizer, but on the other hand it should be independent of it. To solve

the dilemma we will refer to the concept of role.

3.6.1 Role

We adopt here the pattern of roles developed by Loebe [Loebe, 2003; Loebe, 2005] and

incorporated into GFO, which is coherent with other approaches, e.g. with the Eriksson and

Penker’s Actor-Role pattern ([Eriksson, Penker, 2000] pp. 191-197) (see figure 14). According

to Loebe a role is an entity played by some role-filler which is said to have a role in some role-

context.

Role(x) ↔ ∃yz(HasRole(y,x) ∧ RoleIn(x,z)).

(12)

For instance a person may have a role of student in the context of a university. The

role-context is the main criterion of classifying roles. The distinguished types of roles are

relational roles, whose context is a relation, processual roles, whose context is a process and

which describes participation in a process; and social roles which corresponds to the

involvement of a social object within some society.

Although roles should not be confused with properties (and property values), we find

those entities similar. Firstly, they both describe the entity they refer to, called a role player or

a property bearer, respectively. Secondly, they are both dependent on that entity. Finally, they

can both be understood as aspects of that entity33. In this sense a role is an aspect of an entity

against some (external to the entity) context or, to be more precise, a role selects some of the

aspects (properties) of an entity with respect to some context. For example, the role of a

driver selects such aspects of a person as driving skills or driving

experience.

Roles can be classified on the basis of the nature of properties they select. Thus a driver

role selects the properties we call structural, i.e. belonging to the structure of the role-filler and

as such can be called a structural role. Moreover, some roles are a mixture of the structural and

role aspects, where the structural aspects come from the role player and the role aspects from

the context of a role [Loebe, 2005]. For example, the role of father contains both the

structural aspect of a male and a role aspect of a parent. In contrast, parent is a pure

33 Similarly e.g. in UML both roles (called there associations ends) and attributes are generalized under

the notion of property [OMG, 2004b].

Structure of Functions

82

role, which does not contain any structural aspect of its role-player but is defined purely by its

context.

 Finally, we observe that it is common for the comparison of entities to be based on and

restricted to the scope given by their roles, hence one can compare two persons with respect to

their properties such as driving skills or driving experience, which are captured by their driver

roles.

Figure 14. Part of the business actor-role pattern developed by Eriksson and

Penker ([Eriksson, Penker, 2000] p. 193). A role is considered as an entity

mediating an actor and a context.

3.6.2 Functional Item as a Role

As observed above we do not want to define the functional item in terms of particular entities

(devices) which realize the function in order not to fall into realization-dependent function

specification. Instead we will use for that purpose a notion of role: we understand the

functional item as the role an entity plays in the context of the realization of function.

For example, a heart in the context of the process of pumping blood can be

considered to be a blood pump. A car in the context of the process of transporting

goods can be considered as a goods transporter, etc. In this sense both a blood

pump and a goods transporter are roles of those entities in the context of the process

which realize functions.

However, not every role is suitable to be a functional item. The functional item should

not constrain the realization of the function more than the goal of the function does. If this

condition is not fulfilled, then the functional item again would be a source of the realization-

dependence in the function structure. For instance, if we consider the function of pumping

blood, the functional item should not be the role heart pump but rather a more general

role pump, which does not exclude mechanical hearts from being its role players. As a

solution to this problem we think that the roles naming the entities realizing the function

Functional Item

83

should be constrained only by the goal of the function. Therefore we define the functional item

as follows:

Definition 12 (Functional Item). The functional item of a function f indicates the role of

entities executing a realization of f, such that all restrictions on realizations imposed by the

functional item are dictated also by some goal of f.

The functional item is a purely teleological role in the sense that it abstracts from every aspect

of the entity realizing the function, which is not related to the (appropriately defined) goal. It

abstracts from everything apart from the goal, and thus does not impose any structural features

of the filler as long as the goal does not do it. As such it is a common umbrella for all roles

which are constrained not only by the goal but also by the role filler. For instance,

transporter as a functional item of the function to transport goods is a common

umbrella for car-transporter, plane-transporter and all the others realizers of

this function. Each of them extends the functional item by structural aspects. For instance,

plane-transporter, beside the teleological aspect of executing the realization of

transportation of goods, contains also the structural aspects of a plane, like cargo space,

maximum flight distance, and others.

A functional item is either a simple entity, which is a role of a single entity, like in case

of teacher, being a role of person, or it can be a more complex entity composed of roles

of several entities. A functional item composed of more than one role is called a complex

functional item:

Definition 13 (Complex Functional Item). A functional item x of a function f is called a

complex functional item of f, and denoted by FICompl(x,f) iff it has as its role proper part more

than one role.

FICompl(x,y) ↔ ∃vw(RolePPart(v,x) ∧ RolePPart(w,x) ∧ v ≠ w) 34.

(13)

For example, a functional item car-transporter of the function to transport

goods by car involves beside a role of a car also a driver, which is a role of an

agent. Often the complex functional item is not just a simple aggregate of its elements but it

34 The notion of proper role part is defined as follows: RolePPart(x,y) ↔ Role(x) ∧ Role(y) ∧

PPart(x,y). The predicate PPart(x,y) denotes a proper part which is a non-reflexive variant of the part-

of relation.

Structure of Functions

84

may have the interior structure. For example, in case of car-transporter, there is

involved a relation of driving that holds between a car and a driver. In this sense

complex roles are complex wholes whose relata are roles only35.

3.6.3 Discussion

We have introduced functional item as a pointer to the entities intended to realize the function.

However, in order to avoid defining functions in the context of the entities that realize them,

we assign functions to their realizers by the mediating role called functional item.

Now one could object to our example that transporter could in fact be considered

as a type of device, whose subtypes are plane and car. The introduction of transporter

as a general device concept solves the problem of realization-dependency on the one hand, and

on the other it does not force us to resign from the number of approaches that assign functions

directly to devices.

There are, however, at least two reasons, for which such a solution is problematic.

Firstly, if we organize into one hierarchy the categories of device, transporter, car

and plane and still want to remain realization-independent in defining functions, we have to

provide criteria that permit to define functions by means of some of the concepts of this

hierarchy, like transporter and prevent from doing so by means of others, here by car or

plane. However, it seems that no such mechanism may be provided. If the hierarchy

represents devices then, as long as defeasible subsumption is not considered, there is no basis

on which a device, i.e. transporter, can be a functional item whereas its subconcepts, car

and plane, cannot.

This solution has also a second drawback, namely such that placing transporter in

a subsumption hierarchy above the concepts of car and plane results in the erroneous

taxonomy. Transporter, as we have seen, is a role, thus by definition for each role x there

is some y, which is its role player, and some z, which is a context of the role x. Since car and

plane would be subconcepts of transporter, the above should by inheritance hold for

them as well. However, it can clearly be seen that it does not. An entity to be a car does not

require any role player and any context. Thus, we see that the non-role concept cannot be a

subconcept of the role concept. Analogous constraint on subsumption taxonomy, although

based on different arguments, is given in OntoClean36.

35 FICompl(x,y) → FI(x,y) ∧ Whole(x).

36 OntoClean is a methodology for supporting construction of concept taxonomies [Guarino, Welty,

2004]. It is founded on the ontological meta-properties of rigidity, identity, dependency and unity which

Side Effects

85

In conclusion we can say that (1) the approaches that define function by reference to a

device are fated for representing functions in realization-dependent manner; (2) this problem

may not be avoided by considering the role-concept of functional item as a type of device,

since it gives no means to differentiate functional items from mere device concepts, and

moreover it results in erroneous taxonomy, where role concepts subsume non-role concepts.

3.7 Side Effects

Not all effects of the functions must be established by the agents as goals. In such cases

functions are said to have side effects. We recognize two kinds of side effects: one which

belongs directly to functions and one which belongs to a particular realization of functions.

The former we define as follows:

Definition 14 (Function Side Effect). A function side effect of a function f, denoted by

SideEf(x,f), is a chunk of reality x affected by f, which is not a part of the goal of f .

SideEf(x,y) ↔ Affect(y,x) ∧ ¬∃z(GoalOf(z,y) ∧ Part(x,z)).

(14)

Side effects of functions could be taken as those consequences of the goal, which are not

intended by an agent. A side effect, then, is everything, which is not a goal but belongs to the

very nature of the goal or, in other words, everything which is inseparable from the goal or

dependent existentially on the goal. For example, the function to disband the

university U, which has a goal that there is no university U, has a side effect

that John stops being the professor at U. Here, being a professor is the role of John at

university U, which is dependent on John and on U. When U ceases to exists so does the role

of John. Thus the function affects the role. However, it does not have to be an intended goal of

disbanding the university U to deprive John of his position. In this sense a side

effect of the function is an unintended consequence of the goal.

The dependency relation between the goal and the side effect may be different in its

nature and in its strength, however for the purpose of the current topic it is not an issue to

investigate its nature, and we treat it roughly as an existential dependency relation.

provides constraints for taxonomy structures [Welty, Guarino, 2001]. The rigidity based constraint

prohibits subsumption of non-roles under roles [Guarino, Welty, 2000].

Structure of Functions

86

Whereas function side effects are independent of the particular way of function

realization, the second type of side effects is the result of a particular function realization.

Consider for example air pollution, which is a side effect of the process of transporting

people by car, which realizes the function to transport people. Here, however, the

side effect depends not on the function itself but on the particular realization. Hopefully, if we

switch to ecological cars, that particular side effect will be avoided. Side effects of that kind

are called realization side effects. The definition of the realization side effect is introduced

later in section 5.7.2 since it refers to the notions of individual realization, fulfillment and

others, which are handled in chapter 5.

3.8 Summary

In the current section we have introduced the structure of functions STR(x) which enables to

represent functions independently of their realizations. The structure of the function has four

elements, STR(x) = (LABEL(x), REQ(x), GOAL(x), FITEM(x)). Every element of STR(x) is

called a component of function x, and is denoted by C(x), C(x) ∈ STR(x).

LABEL(x) is a set of natural language expressions describing function x, the remaining

components are defined on the basis of introduced binary relations as follows:

REQ(x) = {y: Req(y,x)}.

(15)

GOAL(x) = {y: GoalOf(y,x)}.

(16)

FITEM(x) = {y: FI(y,x)}.

(17)

The goal and the requirements provide the ontologically refined view on the input and output

approach to functions. The particular type of the goal is the time frame, which provides a

temporal restriction on the function. The time frame is such a goal which is a time entity,

TFRAM(x) ={y: GoalOf(y,x)∧ Te(y)}.

(18)

The functional item indicates the entities which are intended to realize the function, without

imposing any constraints on them not imposed by a goal.

Since the label LABEL(x) plays only an informative role for human users, we do not use

it for determining functions. Functions are determined by the subset of the function structure,

Summary

87

defined as DETE(x) = STR(x) \ {LABEL(x)}37. Each element y of DETE(x) is called a

determinant of the function x and is denoted by D(y,x). The equality of functions is founded on

the equality of their determinants.

x =Fu y ↔ DETE(x) = DETE(y).

(19)

The equality of functions can be restricted to only some of their determinants, and thus two

functions can be equal with respect to the goal, the requirements or the final item:

x =Gl y ↔ GOAL(x) = GOAL(y).

(20)

x =Req y ↔ REQ(x) = REQ(y).

(21)

x =Fi y ↔ FITEM(x) = FITEM(y).

(22)

37 D(y,x) ↔ Req(y,x) ∨ GoalOf(y,x) ∨ FI(y,x).

88

4 Relations between Functions

4.1 Introduction

So far we have discussed the function considered in isolation, however for the purpose of

functional modeling functions are glued by relations into functional models. The primary

question then is what kinds of relations connect functions? In this chapter we investigate the

following relations:

− Instantiation

− Is-a

− Part-of

− Realization

− Enablement

− Support

− Prevent

Instantiation, is-a and part-of are typical ontological relations, commonly discussed and

applied. In the context of the functional modeling they are present in several approaches

discussed in chapter 2, however there is no consensus on their meaning, and they are seldom

defined in a formal way. The relation of realization is not a common ontological notion, but it

belongs to the domain of functional modeling, although its interpretation varies across

formalisms. Moreover, some additional relations, peculiar for functional representation can be

found. These are: enablement, support, and prevent. They are present in some of the AI

approaches to functional modeling, e.g. in FCO or MFM.

The aim of the current chapter is to give a formal and a general specification of the

relations mentioned, which permits them to be handled across diversified domains.

4.2 Instantiation

Firstly, let us consider the relation of instantiation. It is a common mechanism used in

programming, conceptual modeling and in ontologies. Take as examples the UML notion of

instantiation, and the RDF property rdf:type, utilized in OWL. The distinction between

Instantiation

89

instantiation and subsumption is often problematic. The problems have their roots already in

the linguistic ambiguity, since both relations pass is-a test. Informally, it can be said that “an

instance is a universal”, like in example John is a person, as well as that “a subclass is

a superclass”, i.e. a human is a mammal. Thus, both relations are sometimes called is-a

relations and therefore confused (see [Brachman, 1983] for discussion). Here, in accordance

with GFO and many other approaches we consider these two relations being different.

The instantiation relation varies across formalisms. In UML it is the relation holding

between the elements of models on different layers of MOF metadata architecture [OMG,

2002], and thus not only holding between objects of layer#1 and classes on layer#2, but also

between classes and meta-classes (layer#3); meta-classes and meta-meta-classes (layer#4). In

contrast in OWL Lite and OWL DL the instantiation denoted by rdf:type holds only

between individuals and classes. In OWL Full classes can be considered as individuals, thus

analogically to MOF the instantiation between classes is permitted there. In both UML and

OWL instantiation is not distinguished from the membership relation. In contrast, in GFO

instantiation is “the intensional counterpart of the membership relation as it (instantiation) does

not satisfy the principle of extensionality” (original emphasis, [Heller et al., 2005]).

In GFO instantiation, denoted by “::”, is a binary relation, whose second argument is a

universal and the first, called instance, is an individual or a universal. Individuals are entities

that do not have, and are not permitted to have, instances. Not all entities lacking instances are

individuals in GFO framework. For instance, classes, which do not have instances, but

elements, are not considered to be individuals. In contrast to universals individuals are located

in time and space. However, one should have in mind that it is not a necessary characteristic of

individuals since some of them, which in GFO are called general or abstract individuals, are

not located in time and space. Universals on the other hand are defined as entities that have, or

may have, instances. Universals all of whose instances are individuals are called primitive

universals.

Just as in UML and OWL Full, meta-universals, whose instances are universals, are

not excluded in GFO. Meta-universals are commonly met, especially in context of biological

taxonomies. In the example “Hedgehog is an instance of species, Tony is an instance of

hedgehog”, species is a meta-universal, Hedgehog is a primitive universal and Tony is

an individual ([Heller et al., 2005], p. 17). In GFO, in contrast to UML, and similarly to OWL

Full the instantiation hierarchy is not restricted to only four layers, and therefore higher than

meta-meta-universals are permitted38.

38 The discussion on the comparison of meta-architecture of MDA and the meta-architecture of GOL

can be found in [Herre, Loebe, 2005].

Relations between Functions

90

4.2.1 Individual, Universal Functions and Instantiation

Since the notion of instantiation is closely related to the notions of universal and individual, let

us first introduce our understanding of universal and individual functions. We account for both

those notions by the references to the function structure.

Definition 15 (Individual Function). A function f is called an individual function, and

denoted by IndFu(f), iff all its determinants are individually determined.

IndFu(x) ↔ ∀y(D(y,x) → Ind(y)).

(23)

Definition 16 (Universal Function). A function f is called a universal function, and denoted

by UniFu(f), iff at least one of its determinants is a universal.

UniFu(x) ↔ ∃y(Uni(y) ∧ D(y,x)).

(24)

The intuition behind the above definitions is that an individual function is such that cannot be

instantiated in any dimension, which means that none of its determinants can be instantiated.

In this sense the individual function is a function determined by individuals, whereas universal

function is determined by at least one universal. Consider for example the function F: to

paint a wall and the function F’: to paint by the person A the wall W

with the paint P within the time period T. The first is clearly a universal

since at least one its determinant, and here in fact all of them, is a universal. In contrast, the

determinants of the latter are individually determined. The requirements is the individual

configuration of paint P and the wall W located at the left time boundary of the period T. The

goal is the painted-with relator gluing the wall W and paint P located at the right time

boundary of the period T. Finally, the painter is the functional item which is a role

restricted to the individual role filler, namely the person A.

The interesting case of a universal function is such a function whose all determinants but

the functional item are individually determined. A function of that kind we call a primitive

universal function.

Definition 17 (Primitive Universal Function). A function f is called a primitive universal

function, and denoted by UniFuPrim(f), iff all its determinants apart from the functional item

are individual entities.

Instantiation

91

UniFuPrim(x) ↔ ∀y(GoalOf(y,x) ∨ Req(y,x) → Ind(y)) ∧ ∀z (FI(z, x) → Uni(z)).

(25)

Consider the function F’’: to paint the wall W with paint P within the

time period T. Here, both the goal and the requirements are the same as in the function

F’ and are individuals, whereas the functional item is a universal role with undetermined role

filler – a painter of wall W with paint P.

In contrast to primitive functions there are functions similar to F, all of whose

determinants are universals not containing as their parts individuals. Functions of that kind are

called absolute universal functions and are defined as follows:

Definition 18 (Absolute Universal Function). A function f is called an absolute universal

function, denoted by UniFuAb(f), iff all determinants of f are absolute universal determinants

of f. A determinant x of a function f is called an absolute universal determinant of f, denoted by

UniDAb(x,f) iff x is a universal that does not contain any individual as its part39.

39 The ontological analysis of the part-whole relation is a topic in itself, and exceeds the scope of this

work. Here in principle we refer to GFO as a framework defining the part-whole relation. It is only

worth mentioning that we treat the part-whole relation in a more general sense than it is done typically.

Typically, the part-of relation is considered as relation between individuals (see [Guizzardi, 2005] for

overview). We, however, do not exclude the part-whole relation between universals, or between

universals and individuals. For example, consider the situation S: a car is in a garage. S is

clearly a universal since it may be instantiated by an individual situation s1: my car is now in

the garage. On the other hand we may say that a car, which also is a universal (instantiated by an

individual My car) is a part of situation S. In this case a universal is a part of a universal. The part-

whole relation between universals refers to the problem of principles of concept structures discussed in

experimental psychology and in cognitive science [Laurence, Margolis, 1999]. In frames of GFO it is

handled by the relation of categorical part [Herre, Loebe, 2005].

In the current work we extend the notion of the categorical part to the relation that may hold

between a universal and an individual. Thus, we permit an individual that is a categorical part of a

universal. For example, an individual My Car is a part of a universal situation My car is in a

garage. However, one should not understand that the individual (really existing) physical car is a part

of the category, which would sound odd. All ontological entities discussed in the present work,

including individuals, are not considered here as entities in the world, but rather as elements of the

model which describe the world. In this sense My Car is considered as an individual, which refers to

some physical individual object in the world not as that object directly.

The relation denoted by Part(x,y) is used in the present work as a general notion of the part-

whole relation, which holds either between individuals, universals, or a universal being a whole and its

Relations between Functions

92

UniDAb(x,y) ↔ D(x,y) ∧ ∀z(Part(z,x) → Uni(z)).

(26)

UniFuAb(x) ↔ ∀y(D(y,x) → UniDAb(y,x)).

(27)

Now, after distinguishing individual from universal functions we can define the relation of

instantiation between functions. Just as the analysis of the function determinants permitted to

distinguish universal from individual functions, the instantiation between function

determinants is helpful in defining the instantiation of functions.

Let us consider the goal first. The goal a wall is painted is a universal relation

of being painted between the universal wall and the universal paint. In turn, the goal

the wall W is painted with paint P at time T is an individual presential

relator at time boundary T gluing the individual wall W with the individual paint P. It can be

easily seen that this relator is an instance of the relation of being painted. In this sense

we can say that the latter goal is the instance of the former. The instantiation of goals of two

functions is denoted by x ::Gl y, and defined as follows:

Definition 19 (Goal Instantiation).

x ::Gl y ↔ ∃vw (GoalOf(v,x) ∧ GoalOf(w,y) ∧ v :: w).

(28)

Similarly, the instantiation may hold between the requirements of two functions. For instance

the requirements of function F’ form an individual configuration which is an instance of a

universal requirement of F. In most cases, also in the case of function F’, the individual

requirements entail an individual goal, but this is not the rule. Consider the function of a

construction crew - to construct a house out of given components. Here,

requirements are a particular, individual configuration of the given components, whereas the

goal is a universal house. The configuration of components does not determine individually the

house which will be constructed.

The instantiation of requirements of two functions is denoted by x ::Req y, and defined

analogously to the goal instantiation.

individual part. The only case which we excluded is such, where a universal is a part of an individual,

thus : Part(x,y) → (Uni(x) ∧ Uni(y)) ∨ (Ind(x) ∧ Ind(y)) ∨ (Ind(x) ∧ Uni(y)). More on part of relation in

GFO can be found in appendix A.

Instantiation

93

Definition 20 (Requirements Instantiation).

x ::Req y ↔ ∃vw (Req(v,x) ∧ Req(w,y) ∧ v :: w).

(29)

Considering the functional item we assume that its role-filler usually is not determined by the

goal. For example, in the function to transport goods the goal is a universal and the

functional item is a role of an arbitrary entity which transports goods, i.e. a transporter.

However, there are also functions in which the goal imposes the filler of the functional item, as

for example in the function to transport goods by car LVB 2040. Here, the filler

of the functional item is individually determined persistant car LVB 2040.

On the basis of the relation of instantiation which holds between an individual and a

universal role filler of two functional items we introduce the relation of functional item

instantiation between functions.

Definition 21 (Functional Item Instantiation).

x ::FI y ↔ ∃vwst(FI(v,x) ∧ FI(w,y) ∧ HasRole(s,v) ∧ HasRole(t,w) ∧ s :: t).

(30)

According to the above definition the function to transport goods by car is

instantiated with respect to the functional item by the function to transport goods by

car LVB 2040, since the functional item of the latter has individually determined role

player, i.e. car LVB 2040 which is an instance of the role filler of the functional item of the

former, i.e. car.

Concluding we can see that a functional item analogously as a goal and requirements

can be a universal or an individual. In the former case it may be a universal role with or

without individually determined role filler. For instance transporter is a universal with

non-determined filler, whereas car LVB 2040 transporter is a universal comprising

transporter roles of an individual role filler: car LVB 2040. Finally, in the case of

individual functions where the goal, the requirements and the role filler of the functional item

are individuals the functional item is an individual as well.

Now, after defining the relations of the determinant instantiation we can define the

relation of function instantiation.

Definition 22 (Function Instantiation). An individual function f instantiates a universal

function f’, denoted by f ::Fu f’, iff f instantiates f’ with respect to all determinants.

Relations between Functions

94

x ::Fu y ↔ IndFu(x) ∧ UniFu(y) ∧ x ::FI y ∧ x ::Req y ∧ x ::Gl y.

(31)

4.3 Taxonomic Relations

4.3.1 Introduction

The is-a relation is the main taxonomic relation, often considered as a backbone of an

ontology. It is common across the conceptual modeling and the ontology representation

formalisms. For example, in UML the generalization is the relation between classifiers,

whereas in OWL the RDFS property rdfs:subClassOf is the basic taxonomic

constructor that holds between OWL classes.

The semantics of the notion of the is-a relation is, however, not clear-cut (for discussion

see [Brachman, 1983]). Most often it is taken as a logical implication, for example in OWL,

where if A is a subclass of B then every instance of A is an instance of B.

In this understanding it may be called an extensional subsumption and is contrasted to its

intensional counterpart, called also structural subsumption , which was introduced by Woods

in [Woods, 1991]. In accordance with the intensional subsumption one concept subsumes

another not by virtue of a model-theoretic criterion but by virtue of their structures. Concepts

in Woods’ approach are considered as atomic or composite descriptions. An atomic description

consists merely of an atomic concept label. A composite description is of the form: c1,…,ck /

m1,…,mn, where ci are primary conceptual descriptions, and mi are the relation-value pairs

(ri:vi) called modifiers ([Woods, 1991], p.50). For example [person] / ([like]:[golf]) is a

composite description describing a person who likes golf. Structural subsumption is

defined on the basis of subsumption of descriptions which is understood as the subsumption of

primary conceptual structures and the subsumption of modifiers. One conceptual description

c1,…,ck / m1,…,mn, subsumes the other c’1,…,c’k / m’1,…,m’n, if each primary conceptual

description ci subsumes some c’j and each modifier m1 subsumes some m’j.

For most cases both the extensional and intensional criterion brings the same results.

However, those notions are not equivalent. Woods writes:

“For example, one might judge the concepts [polygon with three sides] and [polygon with

three angels] to be intensionally distinct, even though they will necessarily have the same

extensions in all possible worlds, because that fact does not follow directly from the structure

Taxonomic Relations

95

of the descriptions but has to be deduced from the logic of the domain. If the two expressions

were intensionally the same, one would argue, then a proof should not be necessary - it would

suffice to examine the meanings to see they are the same.“ ([Woods, 1991], p. 72-73)

Moreover, Woods observes that the intensional subsumption entails the extensional

subsumption but not vice versa. In this sense the intensional subsumption is the extensional

specialization of the extensional subsumption40.

Both the extensional and intensional subsumption have problems when confronted with

the prototype theory and with exceptions. The prototype theory have its roots in the research of

Rosch and Mervis [Rosch, Mervis, 1975] in the field of cognitive science and experimental

psychology, who have found that people’s concepts often lack a definition of the necessary and

sufficient conditions, but instead they often are structured prototypically. Prototypically

structured concepts are depicted by a representative, having the typical features. However, not

all representatives of the category share all of the typical features. Representatives lacking

them are considered to be atypical or peripheral. For example a prototype of the bird has

wings, has feathers and can fly. All those hold for e.g. eagles, doves, etc. On the other hand

ostriches or penguins cannot fly but still are considered to be birds. In this sense the principles

of both extensional and intensional subsumption fail, since none of them permit to classify

ostriches and penguins as birds.

For that purpose the defeasible subsumption was introduced. In the defeasible

subsumption not everything that is true for a super-class must be true for a subclass, but it may

be cancelled. For example, the property of a bird: ability to fly is canceled in case of

ostrich and penguin. That mechanism is used also in the object-oriented paradigm where the

property of a class may be overwritten by its subclass.

However, the cancellation of properties in subsumption is not free of problems.

Brachman in [Brachman, 1985] reported the problems that the cancellation of properties raises

for subsumption. He observes that if it is allowed with no restriction to cancel in a subconcept

an attribute or an attribute value of the superconcept, then it results in the mishmash in the

subsumption hierarchy. For example, if we except non-flying penguins and ostriches as

subconcepts of bird, then nothing stops us from treating also airplanes as birds, in spite of

the fact that they are not living beings, though having wings and being able to fly.

The is-a relation is also required in function modeling and it has been introduced in

several approaches, e.g. FCO, although, as far as we know, the semantics of functional

subsumption seems not to be analyzed in details in the literature.

40 Every instance of the intensional subsumption is an instance of the extensional subsumption as well.

Relations between Functions

96

4.3.2 Subsumption, Specialization and Individualization

It is not our intention to contribute to the general discussion about the is-a relation outlined

above; instead we intend to provide a formal understanding of taxonomies of functions. In

contrast to the relation of instantiation, which is sometimes also labeled by “is a”, the is-a

relation holds not between an individual and a universal function but between universal

functions only. Three kinds of is-a relation between functions are introduced: subsumption,

specialization and individualization.

As in the case of instantiation, all three are founded on the analysis of the relation of

function determinants. Let us introduce subsumption first:

Definition 23 (Function Subsumption). A universal function f is subsumed by a universal

function f’, denoted by f ⊆⊆⊆⊆Fu f’, iff every determinant of f is subsumed by the corresponding

determinant of f’.

x ⊆⊆⊆⊆Fu y ↔ UniFu(x) ∧ UniFu(y) ∧

 ∀φ∀uv(φ ∈ DETE ∧ φ(v,x) ∧ φ(u,y) → Subsume(u,v)) 41.

(32)

Subsumption of determinants denoted by Subsume(x,y) is understood here in an extensional

sense and is reflexive,

Subsume(x,x).

(33)

The non-reflexive variant of subsumption of determinants is called here specialization, and is

denoted by Specialize(x,y).

Specialize(x,y) ↔ Subsume(y,x) ∧ ¬ Subsume(x,y).

(34)

On the basis of the specialization of determinants the specialization of functions is introduced.

Definition 24 (Function Specialization). A universal function f specializes a universal

function f’, denoted by f ⊂⊂⊂⊂Fu f’, iff all determinants of f are subsumed by the appropriate

determinants of f’ and at least one determinant of f specializes the appropriate determinant of

f’.

41 The formulas 32, 35, 36 are second order formulas but can be reconstructed in FOL.

Taxonomic Relations

97

x ⊂⊂⊂⊂Fu y ↔ UniFu(x) ∧ UniFu(y) ∧

 ∀φ∀uv(φ ∈ DETE ∧ φ(v,x) ∧ φ(u,y) → Subsume(u,v)) ∧

 ∃γ ∃wz(γ ∈ DETE ∧ γ (w,x) ∧ γ (z,y) ∧ Specialize(w,z)).

(35)

If determinants of two functions cross-specialize, then the subsumption between those

functions does not hold in any of the directions. For example, if the requirements of the

function F specializes the given requirements of the function G and the goal of G specializes

the goal of F, then neither F subsumes G nor G subsumes F.

Different kinds of functional specialization can be distinguished by references to the

kind of determinant which is specialized. These are goal specialization, requirements

specialization, and functional item specialization. Goal specialization usually entails

requirements specialization, since requirements are to some extend dependent on the goal. For

example, the function to deliver mail is a goal specialization of the function to

deliver item, since the goal of the former: mail is delivered is a specialization of

the latter: item is delivered. Concurrently the specialization holds between the

requirements of those functions, since the first function requires a mail and the second an

item to be present, and mail specializes item. In turn, the goal and requirement

specializations entail the functional item specialization.

Yet apart from the subsumption and specialization of functions there is another

taxonomic relation between universal functions, namely individualization. Determinants of

universal functions can not only be related by subsumption and specialization but, as it was

shown in the previous section, by instantiation. For example, the goal and the requirements of

the absolute universal function to renovate a house are instantiated by the goal and

the requirements of the primitive universal function to renovate the White House

within time period T. The latter is not an instance of the former since it is not an

individual – its functional item (the White House renovator) does not have

individually determined role fillers. In this sense one can say that the second function is a kind

of the former function. However, this is-a is neither founded on the subsumption nor on the

specialization of function determinants but on their instantiation. To cover cases of that kind

we introduce the next taxonomic relation called functional individualization.

Definition 25 (Function Individualization). A universal function f is an individualization of

a universal function f’, denoted by f ⇒Fu f’, iff at least one of individual determinants of f

instantiates a corresponding universal determinant of f’ and the remaining determinants of f are

equal to the corresponding determinants of f’.

Relations between Functions

98

x ⇒Fu y ↔ UniFu(x) ∧ UniFu(y) ∧

 ∃U (U ⊆ DETE ∧ ∀φ (φ ∈ U → x ::φ y) ∧ ∀γ (γ ∈ DETE \ U → x =γ y)).

(36)

In contrast to instantiation, individualization holds between universals and not between a

universal and an individual function. For instance, both functions to renovate a house

and to renovate the White House are of a universal character. Moreover,

analogously to subsumption and specialization the extension of the latter function is the subset

of the extension of the former. However, in contrast to subsumption and specialization,

individualization is founded on the relation of instantiation between determinants. Here, it is

founded on the instantiation of the universal house by the individual the White House.

Intuitively, the difference between specialization and individualization is that the first

restricts a universal function by the restriction of the kind of (at least) one of its determinants,

whereas the second restricts a universal function by the instantiation of its determinant.

However, the instantiation of one determinant does not imply the instantiation of the whole

function.

Concluding we can see that all three kinds of is-a relations – subsumption, specialization

and individualization are taxonomic relations for structuring universal functions. All three

have an intensional character - they are identified by the analysis of functions structures, not

only by the analysis of functions extensions. In addition, all of them fulfill the extensional

condition. Cancellation is not permitted and thus defeasible taxonomical links are not

supported in OF.

4.4 Part-Whole Relation

4.4.1 Introduction

It is common in the literature on functional modeling to consider the part-of relation between

functions. For example, in MFM [Lind, 1994] introduces the whole-part relations for all levels

of functional description – between goals, between functions, between behaviors and between

structures. Of our interests here are not the relations holding between behaviors and structures

but only those between functions, and between goals. The whole-part relation between goals

means that one goal is a super ordinate goal for other goals. [Lind, 1994] illustrates it with the

following example: the goal G that the central heating system operates

properly may be decomposed to three goals G1, maintain water level within

Part-Whole Relation

99

safe limits; G2, maintain condition for energy transport; and G3,

keep room temperature within limits. According to Lind G1, G2 and G3 are

parts of G. Analogously the function of transporting energy from radiator to

the boiler have three parts: transport of water from supply to

expansion tank, circulation of water, transport of energy from

boiler to radiator.

In FCO the notion of decomposition of functions is also introduced by means of the

part-of relation: “the part-of relation between functions represents how a function is achieved

by finer grained function [Kitamura et al., 2004], p. 116). Analogously in the OPM function

hierarchy, lower level function answers how the superordinate function is achieved.

4.4.2 Function-Part

In OF we distinguish two kinds of part-of relation applied to functions:

1. Function-part: Function A is a part of function B if the determinants of A, in particular

the requirements and the goal are the parts of the appropriate determinants of B

2. Sequence-part: Function A is a part of function B if it is an element of the sequence

realizing B.

The function-part is based on the part-of relation that holds between the requirements and the

goals of the functions and corresponds to Lind’s whole-part relation between goals. The

sequence-part seems to meet the intuitions similar to the whole-part relation between

functions. Both kinds of part-of relations are now define formally.

Definition 26 (Function-Part Function). A function f is a function-part of a function f’,

denoted by PartFu(f,f’), iff the requirements of f are the part of the requirements of f’ and the

goal of f is a part of the goal of f’.

PartFu(x,y) ↔ ∃vw(GoalOf(v,x) ∧ GoalOf(w,y) ∧ Part(v,w)) ∧

 ∃st(Req(s,x) ∧ Req(t,y) ∧ Part(s,t)).

(37)

Consider two functions F1: to deliver a car from A to B and F2: to deliver

an engine from A to B. The former has the requirements: car is in A and the

goal: car is in B, whereas the latter has the requirements: engine is in A and the

goal: engine is in B. We may say that F2 is a part of F1, since the configurations

containing the engine being in A or in B are parts of the configurations of the car being in A or

Relations between Functions

100

B, which follows from the fact that an engine is a part of a car. The function-part relation

should not be confused with the subsumption of functions based on the subsumption of

requirements and goals. For example, the goal G1 of the function to transport a car is

a subgoal of the goal G3 of the function to transport a vehicle, since car involved

in G1 subsumes vehicle involved in G3.
42

The particular pattern of function-part is the decomposition of a non-basic goal to the

basic ones. Every non-basic goal may be decomposed to two or more basic goals, and every

function resulting in any of basic goals is a function-part of the decomposed function. For

example, the function F: to produce software satisfying the needs of

customer may be decomposed to two basic functions I: to produce software, with

the goal: software present, and function H: to satisfy a customer, with a

goal: a customer satisfied. The complex goal of function F is then composed of

those two chunks which are the goals of functions G and H, hence G and H are the function-

parts of F.

4.4.3 Sequence-Part

To illustrate the second type of the part-of relation between functions consider the function F

of a purchase system: to purchase an item. The requirements REQ(F) is: exists a

customer and an item, and a goal GOAL(F) is: a customer posses an item.

In a typical e-commerce system this function may be decomposed into the sequence of the

following functions:

1. To view/search item

2. To choose item

3. To buy item

4. To deliver item to a customer

It seems intuitive to say that each of the above functions is a part of the function to

purchase an item in a sense that they answer how F is achieved. Such a part-of relation

we call a sequence-part and introduce it by means of the notion of sequence, that is the list l of

functions realizing a function f, denoted by Seq(f,l).

42 An analogous relationship holds for the requirements of those functions.

Additional Relations between Functions

101

Definition 27 (Sequence).

Seq(y, L) = L is a List ∧

 ∃v(Req(v, Head(L)) ∧ Req(v,y)) ∧

 for every prefix x of L and z s.t. L = x + z holds Enable(Last(x), First(z))

 ∧ ∃w(GoalOf(w,Last(L)) ∧ GoalOf(w,y)) 43.

(38)

Each element of the sequence of function y we call a sequence-part of y and write PartSeq(x,y).

Definition 28 (Sequence Part).

PartSeq(x,y) ↔ ∃L(x ∈ L ∧ Seq(y,L)).

(39)

In this sense we say that each of the functions of the e-commerce system is a part of the

function to purchase an item.

The sequence-part differs from the function-part in a number of properties. Firstly, a

function is a sequence-part of another function always with respect to some realization of the

second, whereas a function is a function-part of another function independently of the

realizations of the second. For example, the function F could be decomposed to some other

sequence in a different purchase system.

Secondly, the requirements and the goal of the sequence-part are not necessarily parts of

the requirements and the goal of the whole function, whereas the requirements and the goal of

the function-part function by definition are parts of the requirements and the goal of the whole

function, respectively. In fact, the goal, or the requirements, of any sequence-part function

taken in isolation may have nothing to do with the goal or the requirements of the decomposed

function. For example the goal of the function to view item, is not related to the goal of

the function to purchase an item.

4.5 Additional Relations between Functions

There may be found a bunch of relations between functions that relates the goal of one

function with the requirements of another function. Those relations correspond to meta-

43 Every two successive elements of the sequence are related by the enablement relation, which is

defined in the next section.

Relations between Functions

102

functions introduced in FCO [Kitamura, Mizoguchi, 1999]. A meta-function is introduced as a

role of a base function, called an agent function, for another base function, called a target

function. The meta-functions are distinguished from base-functions. The latter are defined as

teleological interpretations of behavior, whereas the former are the roles that some base-

functions play in the context of other base-functions. Since in OF we do not define functions in

the context of behavior, we are not forced to distinguish base-functions from meta-functions.

Moreover, we find that not a (agent) function has a role in the context of some other (target)

function but to be more precise it is the goal of an agent function having a role in the context

of the requirements of the target function.

The role that a goal of one function has in the context of the requirements of the other

function we represent by the relations: support, enable, prevent. Moreover, there are cases

where the goal of one function influences the other only in a particular realization of the first.

For example, the function to rotate is improved by the function to cool not in general

but only in the context of an engine. Thus, two realization-dependent relations between

functions, trigger and improve, are introduced later in section 5.7.

4.5.1 Support, Enable and Prevent

We say that the goal of a function f is relevant for a function f’ if it influences the requirements

of f’. The requirements of f’ may be influenced by the goal of f in various ways:

− the goal of f is a part of the requirements of f’, or

− the requirements of f’ are a part of a goal of f, or

− the goal of f excludes requirements of f’.

We introduce three relations corresponding to the above three cases, these are: support,

enable, and prevent.

Definition 29 (Support). A function f supports a function f’, denoted by Support(f,f’), iff a

goal of f is a proper part of the requirements of f’.

Support(x,y) ↔ ∃vz (GoalOf(v,x) ∧ Req(z,y) ∧ PPart(v,z)).

(40)

For example, the function to provide a nail supports the function to drive a

nail, since it results in the goal: a nail is present, whereas hammering nails

requires, among the other things, a nail to be present. Here the goal of the former function is a

proper part of requirements of the latter.

Summary

103

One function may not only partially satisfy the requirements of another but it may

support all the requirements of it. In such a case we say that one function not only supports but

enables another.

Definition 30 (Enable). A function f enables a function f’, denoted by Enable(f,f’), iff the

requirements of f’ are the part of the goal of f.

Enable(x,y) ↔ ∀v(Req(v,y) → ∃z (GoalOf (z,y) ∧ Part(v,z))).

(41)

The enable relation covers both the case when a goal of f equals the requirements of f’ and the

case where the requirements of f’ constitute a proper part of the goal of f.

In both the support and the enable relations the goal of one function has a positive

influence on the requirements of the other function. Analogously, a goal may have a negative

influence. We say that a goal of the function f has a negative influence on the requirements of

function f’ when it excludes the requirements or part of the requirements of f’. In those cases

we say that f prevents f’.

Definition 31 (Prevent). A function f prevents a function f’, denoted by Prevent(f,f’), iff

the goal of f excludes a part of the requirements of f’.

Prevent(x,y) ↔ ∃vwq (GoalOf(v,x) ∧ Req(w,y) ∧ Part(q,w) ∧ Exclude(v,q)).

(42)

The predicate Exclude(x,y) denotes that a chunk of reality x, here the goal of f, excludes a

chunk of reality y, here the requirements of f’, which intuitively means that from the presence

of x follows the absence of y.

4.6 Summary

In this section we identified several relations by which functions may be related in a functional

model. In the first place we have analyzed the classical ontological relations such as is-a,

instantiation and part-of relation. We have found that in context of functions those relations

have a particular character and may have different flavors.

The instantiation of functions was based on the distinction of the individual and

universal functions and the analysis of instantiation links between the determinants of

functions.

Relations between Functions

104

The is-a relation between functions is not defined in extensional terms but instead it is

based on the structural similarities between functions. Three kinds of is-a are introduced

namely the subsumption, its non-reflexive variant – specialization, and individualization.

The part-of relation between functions comes in two flavors – function-part and

sequence-part. The first says that one function has a goal and requirements which are parts of

the other function’s goal and requirements, whereas the second says that a function is an

element of the sequence of functions realizing some other function. The first kind of the

functional part-of relation is realization independent, thus in contrast to e.g. OPM function

hierarchy it enables the realization-free functional decomposition. The second kind grasps the

intuitions behind the realization-dependent function decomposition.

The distinction of various kinds of is-a and the two kinds of part of relation permits to

handle properly the functional decomposition, which is an issue of particular importance in

functional modeling, since it enables to construct generic and complex functions out of more

specific and simple ones. However, in our opinion the functional decomposition is often used

informally and is a mixture of several types of relations, e.g. in the goal decomposing pattern

of Eriksson and Penker [Eriksson, Penker, 2000] the subsumption and goal-part are implicitly

mixed on different levels of decompositions (for details see section 2.2.2). We believe that

functional decomposition can be composed of various relations, which however should be

explicitly named and formally defined. All of the relations introduced in the current chapter

can be used for functional decomposition. Figure 15 presents an exemplary decomposition of

the function to transport goods based on:

− Subsumption and Specialization (in all their flavors)

− Individualization

− Sequence Part

− Function Part

It can be seen that this approach to functional decomposition not only increases the

expressivity of the decomposition link but moreover explicitly distinguishes various principles

of decomposition underlying it.

Summary

105

Figure 15. Function decomposition founded on four distinct relations:

specialization, function-part, sequence-part and function

individualization. The figure uses the UML profile for OF presented in

chapter 8. Black-headed arrows represent functions named by labels. The

double-headed arrow labeled with <<fu>> represents specialization; the

line with a diamond labeled <<fu>> - the function-part; the line with a

diamond labeled <<seq>> - the sequence-part; and finally the arrow

labeled with <<fu-individual>> - the functional individualization.

Finally, the current chapter has defined three function-specific relations, which permit to

model further interdependencies between functions. These are: Support, Enable and Prevent.

106

5 Realization

5.1 Introduction

Having introduced the common ontological relations of subsumption, instantiation, and the

part-of, as well as a number of relations specific to functional modeling, we now turn to the

notion of realization. In contrast to the relations discussed so far, realization is peculiar since it

does not belong purely to the functional model but involves also non-functional entities.

The realization of a function provides the answer to the question how the goal of the

function is to be achieved. In the literature the notion of realization is often distinguished from

the notion of function, which in turn answers the question about what is to be achieved. We,

however, hold that the notions of functions and realizations are not disjoint because in OF

functions are also permitted to realize other functions.

In requirement R.1 for OF we postulated that the specification of an item’s function

should be separated from its behavior or its structure, which are often considered as the way

the function is realized. On the other hand, it is recognized that both notions of function and

realization are relative and context-dependent. For example, Salustri [Salustri, 1998]

demonstrates that the distinction between function and behavior is contextual. Below we

present Salustri’s example but, since we do not share his intuitions in defining function, we

interpret the example according to the intuitive difference between the function and the

realization based on the what- and how-questions. Salustri considers the following four

statements ([Salustri, 1998], p. 340):

S1. The refrigerator keeps food cold.

S2. The refrigerator keeps things cold.

S3. The refrigerator preserves food.

S4. The refrigerator lowers ambient temperature in an enclosed space.

Each of the above statements considered in isolation can be understood as a function of a

refrigerator, since each describes what a refrigerator does. For example, statement S1 could be

considered as the description of the refrigerator’s function to keep food cold 44. If one

asked the question how this function was realized, one could find the answer in statement S4:

44 Req: food present, Goal: food is_cold_during a period; FI: food cooler.

Introduction

107

food is kept cold by lowering ambient temperature in an enclosed space. In this sense

statement S1 refers to the function, whereas statement S4 refers to the realization of this

function. This picture, however, gets complicated if we consider statement S3. Just as S1 it can

be taken as a description of the refrigerator’s function, namely - to preserve food45. In

this case, when asked how it is achieved that food is preserved, one could use S1– food is

preserved by keeping it cold. We see that although S1 refers to a function (has a proper

functional structure and has its realization described in S4) it also refers to the realization of the

function described in S3.

Two conclusions could be drawn from the above: (1) the realization is not a particular

type of non-relational entity but it is a role of an entity in context of some function – the

realization is then a binary relation; (2) realizations are not restricted to non-functional entities,

but a function may also have a role of being a realization for some other function.

As a key for understanding the realization relation we use the what & how questions

test. For two entities e and e’ the test checks whether e (function) provides the answer to the

question “what is e’ doing?”, whereas e’ (realization) provides the answer to the question “how

is e achieved?”. The realization then provides additional information to a function, whereas the

function provides the justification of the realization. When applying what & how questions to

the pairs of functions related by the functional relations introduced so far the following can be

observed:

1. If x ::Fu y then x realizes y.

2. If x ⊆⊆⊆⊆Fu y or x ⇒⇒⇒⇒Fu y then x realizes y.

3. If PartFu(x,y) then y realizes x.

4. If Seq(y,L), then L realizes function y, but each x ∈ L taken in separation does not

realize y.

To illustrate the first case let us consider the function to purchase book B by

customer C at given time T. This function is an instance of the function to

purchase an item. In this sense the former gives a (partial) answer to the question how

the latter function is achieved - a purchase of an item is realized by customer C buying book B

at time T.

To illustrate the second case consider the function to purchase a book, which

answers how the function to purchase an item is realized. Here, the goal of the latter

function is a subgoal of the former.

45 Req: food edible at t1; Goal: food edible at t1; FI: preserver.

Realization

108

The third case can be illustrated by functions F: to transport an engine and

F’: to transport a car. F is a function-part of F’, concurrently F’ answers the question

how F is realized: An engine is transported via the transportation of a car.

Concerning the fourth case we see that a sequence of functions realizing the function to

purchase an item provides a mode of realization of that function and therefore answers

the question how this function is realized.

The above cases show the diversity and vagueness of the realization relation, when

based only on the intuitive what & how questions test. The picture gets even more complicated

when one recognizes that the realization holds not only between functions, but a function may

be realized by a non-functional entity as well, e.g. by a process, or a structure. In order to

provide one general definition of functional realization, beyond the ambiguous distinction

based on the what & how questions, and one that would be a common umbrella for the four

cases above, we will first define what it means that an individual non-functional entity realizes

a function. Secondly, the notion of individual realization will be generalized to the notion of

universal realization. Finally, on those basis we are going to define the relation of realization

that holds between functions.

5.2 Individual Actual Realization

Intuitively, the individual realization of a function f is an individual entity which is the

achievement of the goal of f in the circumstances satisfying the requirements of f. Take for

example the primitive universal function F: to transport goods G from Leipzig

to Berlin in time period T46 and the individual process of transportation

of goods G by plane from Leipzig to Berlin in T47. In brief, we can say

that the process starts with the requirements of F being satisfied and ends with achieving the

goal of F and in this sense can be called the realization of function F. Note, that the primitive

universal function F could be realized by some other individual process, e.g. by the process of

transporting goods G from Leipzig to Berlin by car in T. However,

it is not possible that both those processes realize that primitive universal function actually. For

46 Figure 16 illustrates some of the notions introduced in this section and their interrelations on the

example of the function to transport goods G from Leipzig to Berlin.

47 Processes are often labeled by the functions they realize, which is the cause of confusion of both

notions. For example both the function and the process can be labeled with the expression transport

of goods. However, one should keep in mind that those notions are different. For a detailed

discussion see section 7.3.1.

Individual Actual Realization

109

a non-primitive universal function there may be many actual realizations, whereas for a

primitive universal function there is at most one individual actual realization, but there may be

many possible realizations. We distinguish therefore actual realizations from dispositional

realizations.

Figure 16. The semi-UML diagram representing entities involved in function

realization. The right hand side of the figure presents the function determinants

marked gray, the left hand side the entities involved into realization of the

function. All classes are labeled with the OF or GFO terms.

Moreover, we distinguish three general kinds of function realization depending on the

temporal locations of the requirements and the goal, which we discussed in section 3.5. On the

basis of those three function kinds we now introduce three kinds of realization: processual

culminative, processual non-culminative and situational realization.

5.2.1 Actual Culminative Realization

The first kind of an actual realization discussed is the culminative realization, corresponding to

the sequential function.

Definition 32 (Actual Culminative Realization). An individual process x is called an actual

culminative realization of a sequential function f, and denoted by RlActCulm(x,f), iff x is a

Realization

110

process of causal transformation from the presential p fulfilling the requirements of f to the

presential p’ fulfilling the goal of f .

RlActCulm(x,y) ↔ Proc(x) ∧ FuSeq(y) ∧

 ∀st(Req(s,y) ∧ GoalOf(t,y) → ∃vw(v @ s ∧ w @ t ∧ Trans(x,v,w))).

(43)

The above definition makes use of the relation of fulfillment, denoted by x @ y, and having

the intuitive reading that an individual (preferably a complex whole) x fulfills an entity y, in

other words - y is fulfilled at x. If y is an individual then it is said to be fulfilled in a given

complex whole, when it is a part of it. If y is a universal then it is fulfilled in x, when an

instance of y is a part of x. For example, the universal goal goods are located in

Berlin is fulfilled by every situation, which contains as its part the situation of individual

goods being located in Berlin. Formally,

x @ y ↔ Whole(x) ∧ (Ind(y) ∨ Uni(y)) ∧

 (Ind(y)→ Part(y,x)) ∧ (Uni(y) → ∃z(z :: y ∧ Part(z,x))).

(44)

The culminative realization is defined in terms of the causal transformation from one presential

into the other, denoted by trans(x,y,z). Here x refers to an individual process and y and z to

presentials such that x is a causal transformation from y to z. We understand causal

transformation by means of the notion of causally cohesive process developed in [Michalek,

2006]. The causally cohesive process, denoted Causecoh(x) is a process of a particular causal

structure, namely every pair of coinciding (inner) time-boundaries contain presentials

connected by the basic causal relation. To give only a rough understanding of the causal

relation between the presentials, which in fact is out of scope of the current work, we should

mention that in [Michalek, 2005; Michalek, 2006] it is understood in terms of regularity and

manipulation conditions. The former is considered as a statistical dependency – the presence of

the cause raises the probability of the presence of the effect, the latter states that the effect is

manipulable by the cause.

By reference to the notion of causal cohesive process we introduce the notion of causal

transformation from one presential into the other.

Individual Actual Realization

111

Definition 33 (Causal Transformation). A causal transformation from a presential p to a

presential p’ is a causally cohesive process, whose projection on its left boundary contains the

presential p and the projection on its right boundary - the presential p’. Formally,

Trans(x,y,z) ↔ Causecoh(x) ∧ ProcLBd(y,x) ∧ ProcRBd(z,x)48.

(45)

From the above we see that not every process that starts with a presential p and ends with a

presential p’ is a causal transformation from p to p’ but only the one which is a causally

cohesive process. For example, if we consider the well-known example of the process of the

movement of a spot of light on the wall from point A to point B, then we would not consider it

as a causal transformation. The pairs of presentials on the coinciding inner boundaries of that

process lack the causal connection, i.e. there is no causal link between two locations of the spot

of light. The causal connection holds between the position of the source of light and the

position of the spot of light, but the former is not a presential being a projection of the process

of the movement of the spot of light on its time boundary. Rather it is a projection of the

process of the movement of the source of light.

Now, having discussed the notions of the fulfillment and the causal transformation we

can illustrate the culminative actual realization by an example. Let us consider the above-

mentioned process of flight which could be checked against being the realization of the

function of goods transportation. This process has on its left boundary a presential

situation of goods being in Leipzig which fulfills the requirements of the function to

transport goods from Leipzig to Berlin. On its right boundary the process

contains the presential fulfilling the goal of the function, namely the situation that the goods

are in Berlin. Moreover, since it is a causally cohesive process, it provides a causal

transformation from the state where the goods are in Leipzig to the state that they are in

Berlin. In this sense the process of flight is an actual culminative realization of the

transportation function.

The ternary relation of transformation can be decomposed to two binary relations:

transformation-from: TransFrom(x,y) ↔ ∃z Trans(x,y,z), and transformation-to:

TransTo(x,y) ↔ ∃z Trans(x,z,y). From formula 45 and the above splitting of the notion of

transformation we obtain the following formulae:

48 Process left and right boundaries are presentials located respectively on the left and the right time

boundary of the process’ framing chronoid. In GFO they are defined formally, ProcLBd(x,y) ↔ ∃c

(Prt(y,c) ∧ Prb(y,L(c),x)) (left process boundary), ProcRBd(x,y) ↔ ∃c (Prt(y,c) ∧ Prb(y,R(c),x)) (right

process boundary).

Realization

112

RlActCulm(x,y) → ∀z(Req(z,y) → ∃v(v @ z ∧ TransFrom(x,v))).

(46)

RlActCulm(x,y) → ∀z(GoalOf(z,y) →∃v(v @ z ∧ TransTo(x,v))).

(47)

In accordance with formula 46 the fulfilled requirements are the necessary condition for an

actual culminative realization to occur; and in accordance with formula 47 an actual

culminative realization is a sufficient condition for the goal to be fulfilled. For example, the

goods must be available in Leipzig in order to enable the process of transporting them from

Leipzig. If the process of transporting goods takes place, then at the end of the process the

goods are in Berlin. Note that an actual realization assumes a positive result. It cannot happen

that the process of transporting goods occurs but the goods are not transported as a result of the

process. If they were not transported, the process would not be called an actual realization.

5.2.2 Actual Non-culminative Realization

The second kind of realization corresponds to the continuous function and is defined as

follows.

Definition 34 (Actual Non-culminative Realization). An individual x is called an actual

non-culminative realization of a continuous function f, and is denoted by RlActNonCulm(x, f), iff x

is a process containing as its layers a process p fulfilling the requirements of f and a process p’

fulfilling the goal of f and all processes p’’ which adhesively cause p’.

RlActNonCulm(x,y) ↔ Proc(x) ∧ FuContin(y) ∧

 ∀st(Req(s,y) ∧ GoalOf(t,y) →

 ∃vw (LayerPart(v,x) ∧ LayerPart(w,x) ∧ v @ s ∧ w @ t ∧

 ∀q (Causeadh(q,w) → LayerPart(q,x))))

(48)

The notion of non-culminative realization is based on the notions of the process layer part and

the causally adhesive processes [Michalek, 2006]. The process layer part denoted by

LayerPart(x,y) is a process x being a processual part of y, which is framed by the same

chronoid as y. The causally adhesive processes, denoted by Causeadh(x,y) are the processes x

and y such that at every pair of coinciding time-boundaries t and t’, such that t is the boundary

of x and t’ is a boundary of y, there exist causally connected presentials p and p’ such that p is

the projection of the process x and p’ is the projection of process y.

Individual Actual Realization

113

Let us explain the definition of actual non-culminative realization by the example of a

continuous function to pump blood. Intuitively a situoid comprising a heart, its behavior

and the blood it pumps could be called a realization of this function. In this situoid we find a

layer fulfilling the requirement of the function (blood is present) and the one fulfilling

the goal (blood is being pumped). Moreover, this situoid has as its layer part a process

of behavior of the heart, which is an adhesive cause for the process of blood being pumped.

Since the goal of the function is not a culmination of that situoid but rather it is

maintained during the whole situoid, this kind of realization in contrast to culminative, is

called a non-culminative.

5.2.3 Actual Situational Realization

The third actual realization kind, corresponding to the instantaneous function, is called a

situational realization and is defined as follows.

Definition 35 (Actual Situational Realization). An individual x is called an actual

situational realization of an instantaneous function f, and is denoted by RlActSit(x, f), iff x is a

situation fulfilling the requirements and the goal of the function f and containing as its part a

causal factor for the goal being fulfilled.

RlActSit(x,y) ↔ Sit(x) ∧ FuInstant(y) ∧

 ∀st(Req(s,y) ∧ GoalOf(t,y) →

 ∃vw(CPart(v,x) ∧ CPart(w,x) ∧ v @ s ∧ w @ t ∧

 ∀q(CauseInst(q,w) → CPart(q,x))).

(49)

In contrast to the two previous kinds of realization the situational realization is not considered

as a time-extended entity but is a presential situation. This grasps the intuitions of

instantaneous function realization typical of functions realized by structures rather than

behaviors. In order to illustrate that definition let us consider the example of the realization of

the instantaneous function to camouflage a moth in environment. Since the

function is instantaneous it is required that whenever a moth is present in the environment,

then instantaneously, and not by means of some process extended in time, it is safe from

predators in that environment.

Now, if we consider the situation of an individual pepper moth sitting on dark bark, we

see that due to its dark color it is safe from predators in that environment. Thus, we may say

that this situation is the realization of the function. It not only fulfills the function’s

Realization

114

requirements (moth is present in environment) and the goal (moth is safe

from predators) but moreover it contains as its part a causal factor for the goal being

fulfilled, namely the dark color of the moth.

The causal factor denoted by CauseInst(x,y) is the relation between two presentials x and

y, namely between the presential fact that the moth has dark color and the presential fact that

the moth is safe from predators. In contrast to the causal connection between presentials,

which the causal cohesion and the causal adhesion refer to, here the presentials are considered

not at two coinciding boundaries but at the same time boundary, as both the causal factor and

its effect, are parts of the same situation. This understanding of the causal factor neither

disturbs the regularity nor the manipulation condition of causal relation. For instance, there is a

statistical dependency between the color of the moth and its safety. Analogously, manipulation

of the moth’s color influences its safety.

We see therefore that such an understanding of causality49 violates only the temporal

order of the causal relation and could thus be considered as the less restrictive form of it. On

the other hand, it seems to be in agreement with the common usage of the notion of cause,

which also refers to such instantaneous cases.

Some of the non-culminative functions can be reduced to the number of situational

functions. In particular those which do not involve the active behavior but are founded directly

on the structure. For instance, the function to support the roof for a given

period realized by the column of some house can be understood in terms of the number of

the (presential) situations in which the presential columns support the roof50. In contrast the

process of the heart behavior cannot be reduced to the number of situational realizations, but

should be considered on the processual level.

The three technical definitions above can be underpinned by the general notion of the

actual realization, RlAct(x,y).

RlActNonCulm(x,y) ∨ RlActCulm(x,y) ∨ RlActSit(x,y) → RlAct(x,y).

(50)

Intuitively, the actual realization is the individual entity which fulfills the requirements and the

goal of the function and provides an additional cause for the goal being fulfilled.

49 CauseInst(x,y) ↔ Pres(x) ∧ Pres(y) ∧ Reg(x,y) ∧ ∃q,w(Man(x,q,y,w)) ∧ ∃t(At(x,t) ∧ At(y,t)), where

the predicates Reg and Man refer to the regularity and the manipulation conditions. For details see

appendix A.

50 For details see the distinction between active and passive realizers in section 5.6.

Minimal Actual Realization and its Components

115

5.3 Minimal Actual Realization and its Components

An actual realization can be decomposed to the minimal actual realization which has a

particular structure, namely it contains entities contributing to achievement of the goal and

those executing the realization. The former we call the means of realization and the latter the

realizers.

5.3.1 Minimal Actual Realization

Often an individual realization is a complex entity. In one of the above examples it is the

flight of a plane, which is a complex process composed of a particular plane, together

with all its properties, like shape, color, and cargo space; with the crew, eventual passengers,

the airports, the route of the flight, and many others entities. Out of them we can distinguish

those, contributing to the realization of the function and those, having no influence on it. For

example, the persistants plane and crew, and the process of weather contribute to the

transportation of goods, whereas passengers do not. Thus, we can introduce the ternary relation

Contribute(x,y,z), with the meaning that x contributes to the realization y of function z. The

contribution to the realization should be understood in terms of the causal impact, e.g. the

plane contributes to the realization of the function of transporting goods, since it has a causal

impact on the situation of goods being located in the destination. Analogously, in the situation

realizing the function of camouflage, the dark covering of the pepper moth contributes to this

realization, since it is the causal factor for the moth being camouflaged.

On the basis of the notions of the individual actual realization and the contribution

relation we may introduce the minimal actual realization.

Definition 36 (Minimal Actual Realization). A minimal actual realization r of a function f,

denoted by RlActMin(r,f), is such a realization of f that every entity involved in r contributes to

the realization of the function f.

RlActMin(x,y) ↔ RlAct(x,y) ∧ ∀z(Part(z,x) → Contribute(z,x,y)).

(51)

For every actual realization there may be found a part of it, which contains only entities

contributing to this realization.

Realization

116

RlAct(x,y) → ∃z (RlActMin(z,y) ∧ Part(z,x))51.

(52)

For the process of a flight of a plane a minimal realization would be a layer of that

process comprising only those entities which contribute to the realization of the function of

transportation, i.e. a plane, a crew, goods, weather, whereas some other elements of a flight

would be left apart e.g. passengers. In this example the minimal realization is a process, which

we could call the process of transporting goods by plane, and which is a

layer contained in the process of flight of the plane. Note that just as in the case of

the individual actual realization there may be more than one minimal actual realization of a

non-primitive function. For example, the process of transporting goods by a car is

a different minimal actual realization of the function of transporting goods.

5.3.2 Means of Realization

In the process of minimal realization are involved only those entities which contribute to the

realization of the function. Each of those entities is related to the minimal realization by a

contribution relation and therefore plays some role in that realization. The role of each entity

contributing to the realization of the function we call a contributor. Thus, we may say that the

plane has a role of contributor in the realization of the function of transportation.

As a role of an entity in the contribution relation we understand such an aspect of that

entity, by which the entity contributes to the realization, i.e. a contributor is a structural role

including structural aspects of a role-filler. For example, the contributor role of a plane in the

realization of the transportation function comprises such structural aspects of a plane as the

maximum flight distance or the cargo space, whereas it abstracts from such aspects as the color

of the plane, the number of passenger seats, etc. Often a contributor-role has its own name, in

our example a plane’s contributor-role is transporter. All contributor-roles may be

combined into one entity, called actual means of realization:

Definition 37 (Actual Means of Realization). A composition x of contributor-roles of all

the entities contributing to the actual realization r of a function y is called the actual means of

realization of y, and is denoted by MeansActRl(x,y).

51 This formula trivially follows from the definitions of realization and the reflexive understanding of the

notion of part.

Minimal Actual Realization and its Components

117

In other words, the means of realization is a relational entity composed of all aspects of entities

involved in the realization of the function that are relevant for that realization. The means of

realization typically form a complex role composed of several contributor-roles, optionally

interrelated. In our example, the means of realization is the composition of contributor-roles of

the plane, the crew, the goods, the weather conditions, and the airports in the process of

transporting goods.

This example illustrates also the other feature of means of realization, namely that its

structure is not homogenous. Firstly, different types of entities may be role-fillers of particular

role-contributors. For instance, we may consider a plane, a person, and goods as persistants,

whereas the weather as a process. Secondly, the particular components of the means of

realization may be interrelated by various relations. For example, a pilot, which is a role of

a person, may be related to a plane-transporter role of a plane by the relation of

piloting: a pilot pilots a plane transporter, whereas transportee

(goods qua transportee) is related by the relation of transported on to plane

transporter.

5.3.3 Actual Realizer

Among the entities contributing to the minimal actual realization some have a primary status in

that realization, namely they are said to execute the realization of a function. For instance, to

the realization of the function to pump blood, contribute heart, blood, and veins.

However, the role of the heart is different from veins and blood, namely it is the heart which

pumps blood, and thus executes this realization. The relation of execution is thus a sub-relation

of the contribution relation: Execute(x,y,z) → Contribute(x,y,z). The role of entities executing

a realization in comparison to mere contributor-roles we would call an executor-role or an

actual realizer.

Definition 38 (Actual Realizer). An individual executing a realization r of a function f plays

in that realization a role x called an actual realizer of function f and denoted by RAc(x,f).

RAc(x,y) ↔ ∃uv(RlAct(u,y) ∧ Execute(v,u,y) ∧ HasRole(v,x) ∧ RoleIn(x,u)).

(53)

For every minimal actual realization there is an entity executing it, and thus there is an actual

realizer which is a role of that entity in this realization.

Realization

118

RlMinAct(x,y) → ∃z (RoleIn(z,x) ∧ RAct(x,y)).

(54)

The realizer might be a complex role composed of roles of several entities. For example, in the

case of the transportation function we could say that a pilot piloting a plane realizes a

function of transporting goods. Here, the realizer role of the function would be a

complex role composed of a pilot role and a plane role. A complex actual realizer of a function

f we denote by RComplAct(x,f) and define as follows:

Definition 39 (Complex Actual Realizer).

RComplAct(x,y) → ∃vw (RAct(v,y) ∧ RAct(w,y) ∧ w ≠ v ∧

 RolePPart(w,x) ∧ RolePPart(v,x)).

(55)

A realizer can be identified also by means of a functional item. A functional item is depicting

in purely teleological terms the role of an entity executing the realization of a function. A

realizer being an individual role of an entity(-ies) executing the realization of a function is an

either an instance of the functional item or in case of the individual functional item it contains

it as a part. In this sense we can say that a realizer fulfills a functional item. For instance, a pure

teleological role transporter is the functional item of the function to transport

goods saying that the role filler executes the transportation of goods. Among all contributors

of the realization of this function realizers are those which are instances of the functional item,

i.e. the complex role of a pilot and a plane. Every actual realizer of a function f fulfilling the

functional item of f must satisfy the requirements of the functional item, ReqFi(x,f) defined in

the requirements of the function f.

Note that the same configuration of entities may form the means of realizations for more

than one function. For example, the above-discussed means of realization of the function to

transport goods are also the means of realization of the function to be

transported. What distinguishes realizations of those two functions is that for the first

function the role of pilot piloting a plane forms a realizer, whereas for the second

the realizer is the transportee role of the goods.

In contrast to the functional item the realizer is not considered only in teleological terms

but instead it comes with a rich structural description exceeding that imposed by the goal. For

example, in case of the realizer a pilot piloting a plane each of roles composing it

is structurally described. For example, plane-transporter has such properties as cargo space or

maximum flight distance, whereas the pilot role is depicted by the required skills.

Minimal Actual Realization and its Components

119

5.3.4 Dynamic and Passive Realizer

If we analyze the dynamics of the realizer we find that it may be either dynamic or passive.

Definition 40 (Dynamic Realizer). A realizer r is called a dynamic realizer of a function f,

denoted by RDyn(r,f), iff r is a process with some dynamics involved in it, i.e. if it changes

over time. Formally,

RDyn(x,y) ↔ Proc(x) ∧ R(x,y) ∧

 ∃ e1 e2 b1 b2 (Prb(x, b1, e1) ∧ Prb(x, b2, e2) ∧ Change(e1, e2).

(56)

The predicate R(x,y) is the generalized notion of realizer comprising both the actual realizer

and the dispositional realizer introduced below; Change(e1, e2) is an abbreviation of GFO

predicate52 having the intuitive meaning that there is a change between two presentials e1 and

e2; Prb(x, b, e) denotes the relation of projection between the process x, the time boundary b of

the chronoid framing this process and the process boundary e of x located at b. In GFO

process boundaries are presentials located at time boundaries of chronoids framing a given

process. In this sense the processual realizer whose two boundaries form a change is called

dynamic. For example, chameleon camouflage, considered as a processual role of

chameleon’s covering in the process of camouflaging, which dynamically adapts to the

environment is a dynamic realizer of the function to camouflage, since it is a process

which has two boundaries such that there is a change of the color of the covering between

them.

The dynamics of a realizer may be classified on the basis of the classification of changes

developed within GFO, where two kinds of changes are distinguished – extrinsic and intrinsic.

Extrinsic changes are discontinuous, instantaneous changes, involving two coincident process

boundaries, which are instances of two disjoint universals; whereas intrinsic changes are

continuous, for example locomotions. Depending on the kind of change a dynamic realizer

undergoes during the realization of the function it can be classified as extrinsically dynamic,

intrinsically dynamic, or as a mixture of both kinds. For example, a chameleon’s covering is an

extrinsically dynamic realizer, since the change of the color in the realization is extrinsic.

Beside active also passive realizers are introduced to OF:

52 Full version of the GFO predicate is introduced in appendix A.

Realization

120

Definition 41 (Passive Realizer). A realizer r of a function f is called passive, and denoted

by RPass(x,y), iff the realization does not involve any changes of the realizer. Formally,

RPass(x,y) ↔ R(x,y) ∧ ¬ RDyn(x,y).

(57)

For example, the covering of a frog is the passive realizer of the function to camouflage,

since, in contrast to the chameleon’s covering, it does not undergo any change (extrinsic or

intrinsic) during the realization of the function.

Note that from formulae 49, 56 and 57 follows that all realizers of situational

realizations are passive since they are not processes but presential situations.

5.4 Universal Realization and Realizer

A minimal actual realization and actual realizer are individuals and as such they have

corresponding universals, which we call universal minimal realization and universal realizer,

respectively.

5.4.1 Universal Minimal Realization

A minimal actual realization is an individual, and thus there may be found a structural

universal which it instantiates directly53. Such a direct universal we call a universal minimal

realization.

Definition 42 (Universal Minimal Realization). A structural universal u is called a

universal minimal realization of a function f, denoted by UniRlMin(u, f), iff u is directly

instantiated by a minimal actual realization of f.

UniRlMin(x,y) ↔ ∃z(RlMinAct(z,y) ∧ z ::: x).

(58)

53 We are interested only in such individuals about which something may be predicated, and since

universals are considered to be entities that may be predicated of other entities and are expressed and

represented in terms of language, thus for every individual we speak about, we may point to its

corresponding universal.

Universal Realization and Realizer

121

The universal minimal realization is composed of universals directly instantiated by the parts

of the individual actual realization:

UniRlMin(x,y) → ∀z(CatPart(z,x) → ∃wv(w ::: z ∧ Part(w,v) ∧ RlMinAct(v,y))).

(59)

The direct instantiation, denoted by the predicate x ::: y means that x is an instance of the

universal y and there is no such universal z which is a sub-universal of y such that x is its

instance. Formally,

x ::: y ↔ x :: y ∧ ¬ ∃z (x :: z ∧ Subsume(y,z)).

(60)

In the case of the individual process of transporting goods by plane P a universal

realization would be the universal of the process of transporting goods by plane,

containing the universals corresponding to all individuals being parts of the minimal actual

realization. For each component of the actual minimal realization one should try to find a

corresponding universal that is instantiated directly by it. Only the directly instantiated

universals are taken into considerations, since we are interested in most specific universals.

This, however, shows the dependency of the notion of the universal minimal realization on the

granularity of a given taxonomy of universals. For example, the universal realization

corresponding to the individual process of transporting goods by plane is the universal process

of transporting goods by plane, containing a plane universal rather than the process of

transporting goods by a physical object containing a physical object universal, since the second

is not instantiated directly by the individual plane involved in the individual process. This,

however, is relative to the granularity assumed. If one refers to the most top level taxonomy of

universals, which lacks the category of plane but contains only the category of physical

object then the corresponding universal minimal realization would be the process of

transportation by a physical object.

A universal realization is a structural universal, which means that only structural aspects

of the actual realization are taken into account when constructing it. A universal realization

does not reflect the non-structural aspects of a process of transportations, such that it is a

causal transformation to the state where goods are transported.

The notion of the universal realization corresponds to the intuitions behind the notion of

the-way-of-achievement introduced and delimited from functions in FCO [Kitamura et al.,

2002]. The-way-of-achievement relates the function to “the principle of the achievement”

([Kitamura et al., 2002], p. 150). Similarly, a universal realization represents the principle

Realization

122

underlying the individual realizations instantiated by it. In this sense the universal realization is

a general specification of the way the function is realized by some individual realizations.

5.4.2 Universal Realizer

In an analogous way to the universal realization the universal realizer is constructed.

Definition 43 (Universal Realizer). A structural universal u is called a universal realizer of a

function f, denoted by UniR(u,f) iff u is directly instantiated by the individual actual realizer

of f.

The structural universal is a universal depicting only structural features of corresponding

individuals. In this sense the structural universal directly instantiating a plane-transporter role

is the universal depicting a plane only in the context of the structural features relevant for the

realization of the transportation function such as the cargo space and the maximum flight

distance. It does not include the characteristic saying that a plane is involved in the process of

flight since this characteristic is not structural.

Neither should a universal realizer be identified with the universal functional item of the

realized function nor put in the intensional subsumption relation to it. A universal functional

item is characterizing corresponding individuals only in teleological terms and abstracts from

the structural features not imposed by the goal, whereas a universal realizer is a structural

universal and it lacks functional characteristics typical of a functional item.

5.5 Dispositional Realizer and Realization

We can describe entities not only due to their actual state of being a realization of a function or

executing such a realization, but also due to their capability of doing that. For that purpose we

introduce the notions of dispositional realizer and dispositional realization.

5.5.1 Dispositional Realizer

If we consider some arbitrary plane, it is intuitive to judge whether or not it could be used as a

realizer of the function of transportation. As long as it is not involved in the process of goods

transport it is not an actual realizer; however, we would often say that it has a disposition to do

so. In this sense we can speak about a dispositional realizer of a function.

Dispositional Realizer and Realization

123

Figure 17. The UML diagram representing relations between Functional Item and

Realizers. Classes represent reified universal roles (Universal Functional Item and Universal

Realizer) and reified individual roles (Actual Realizer and Dispositional Realizer). Universals

are grouped in two disjoint Layers: Functional Layer and Structural (non-functional) Layer.

Universal Functional Item is a universal role depicted in purely functional (teleological)

terms, whereas Universal Realizer is a universal role depicted in purely structural terms.

Actual Realizer comprises both structural and functional aspects, whereas Dispositional

Realizer only structural aspects.

Commonly dispositional realizers are identified by means of analogy. If the actual realizer of a

given function is known, we consider the entities similar to it as potential realizers. In OF an

individual dispositional realizer is an entity relevantly similar to the actual realizer, where the

relevant similarity means that the individual dispositional realizer is similar to an actual

realizer in all aspects relevant to the realization of a function. In this sense it is an instance of

the same universal realizer. We say that every instance of the universal realizer which is not an

individual actual realizer is called an individual dispositional realizer. An individual

dispositional realizer r of a function f is denoted by RDisp(r,f),and is defined formally as

follows:

Definition 44 (Dispositional Realizer).

RDisp(x,y) ↔ ∃z(UniR(z,y) ∧ x :: z ∧ ¬ RAct(x,y)).

(61)

From the above we can see that each individual actual realizer is an instance of both a

universal functional item, which captures its teleological character, and a universal realizer,

which captures its structural features. In contrast, an individual dispositional realizer is an

instance of a universal realizer only. Since it does not realize the function actually, it lacks the

teleological characteristic and hence is not an instance of a functional item (see figure 17).

Realization

124

5.5.2 Dispositional Realization

Often not only persistants are judged against their disposition to execute the realization of a

function but also an entity, say a process, may also be judged against its ability to be a

realization of a function. For example, if we consider an arbitrary flight of the plane, it is

intuitive to judge whether it could be used as a realization of the function of transportation or

not. In this sense the process of flight is considered as a potential realization of the function,

but not as an actual realization, since it does not actually realize a function but only could do

so. So if we consider an individual process of flight, by which goods are not transported, call it

x, then it is clear that formula 47 does not hold for x. Since x is not an actual realization of the

function but only a dispositional one, thus it is not the case that when x occurs the goal of the

function is achieved, but rather it is only possible that the goal is achieved. For a dispositional

realization x of function y, denoted by RlDisp(x,y), formula 47 can be replaced with the

following formula of modal logic: RlDisp(x,y) → ∀z(GoalOf(z,y) → ◊∃v(v @ z ∧

TransTo(x,v))).

Unfortunately, the above formulation gives no hints about the structural conditions a

flight should fulfill in order to be a dispositional realization of the function of transporting.

That formula gives no help in the determination of the structural properties a flight should have

in order to realize the function, which in fact is the crucial issue when looking for possible

function realizations. One is not interested only in knowing that a dispositional realization is

such that may turn out to be an actual realization. Rather one wants to know what features

make it a possible realization. In practice, analogously to the case of dispositional realizers the

answer to this question is given by analogy. One looks into the current realizations and

searches for entities that are similar to them. However, not an absolute similarity to the actual

realizations is needed, but only similarity in those aspects which are relevant for the

realization. Helpful in the determination of those aspects is the above-introduced notion of the

universal minimal realization. We say that every instance of the universal minimal realization

of a function f which is not an actual realization of f is an individual dispositional realization

of f.

Definition 45 (Dispositional Realization).

RlDisp(x,y) ↔ ¬ RlAct(x,y) ∧ ∃s(UniRlMin(s,y) ∧ x :: s).

(62)

A universal minimal realization is thus considered as a template of the realization – it states all

the structural features, like plane cargo space, maximum flight distance,

Dispositional Realizer and Realization

125

duration of flight, flight route, skills of the crew, that must be

fulfilled by an individual realization. Each individual entity which fulfills those conditions and

thus is an instance of a universal minimal realization, but is not actually realizing a function is

a dispositional realization54. Since usually there are many ways of realizing a function, every

universal minimal realization depicts a particular way of realization, e.g. transport by

car, or transport by air (see figure 18).

Figure 18. Universal minimal realization as an template for individual

realizations. Every individual realization is an instance of some universal

minimal realization. Analogously, universal realizers are templates for

individual realizers.

5.5.3 Strong Dispositional Realizers

Now that the notions of dispositional realization and dispositional realizer are introduced we

may see that some of dispositional realizers are involved in dispositional realizations. For

example consider two planes 55 , which are dispositional realizers of the function to

54 In the current approach dispositional and actual realizations (and analogously realizers) are considered

to be mutually exclusive. However, this we find rather as a matter of convention and we are aware that

for the purpose of some applications it may be beneficial to consider actual realizations (and realizers)

as a subclass of dispositional ones. This can be easily achieved by slight modifications to axioms 62 and

63.

55 To be more precise we do not speak about planes as wholes here but only on their aspects relevant for

the realization of the function, thus plane-transporters.

Realization

126

transport goods from Leipzig to Berlin. One plane is on the flight to Berlin

and the second is locked in a hangar in Leipzig. In the first case not only the plane is a

dispositional realizer, but moreover the flight in which it participates is a dispositional

realization of the function to transport goods from Leipzig to Berlin. In the

second case the plane is a dispositional realizer but it is not involved in the process of the

dispositional realization. Clearly, the former plane is considered to be a better candidate for the

function realization then the latter plane, and is called a strong dispositional realizer.

Definition 46 (Strong Dispositional Realizer). A dispositional realizer x of a function f

involved in the dispositional realization of f is called a strong dispositional realizer of f and is

denoted by RDispStr(x,f).

RDispStr(x,y) ↔ RDisp(x,y) ∧ ∃z(Part(x,z) ∧ RlDisp(z,y))

(63)

5.6 Functional Realization

In the previous section, on the basis of the how & what question test, we identified several

cases, in which one function realizes another. Those cases are problematic, since they

significantly differ one from another and no common definition for the realization that joins all

of them was found.

Our strategy for introducing the notion of realization that holds between functions is to

reduce it to the above-defined notion of individual realization that holds between a function

and a non-functional entity.

Definition 47 (Functional Realization). A function f realizes a function f’ , denoted by

Realize(f,f’), iff all individual realizations of f are the individual realizations of f’ and not all

of the realizations of f’ are the realizations of f. Formally,

Realize(x,y) ↔∀w(RlAct(w,x) → RlAct(w,y)) ∧ ∃ v (RlAct(v,y) ∧ ¬ RlAct(v,x)).

(64)

The second part of the definition blocks the trivial case where the function realizes itself, as it

does not answer how the function is realized which should be answered by a realization.

Let us now examine the cases of functional realization reported in section 5.1 against

that definition:

Realization-dependent Relations between Functions

127

1. An instance function realizes the universal function it instantiates. By definition 31,

for f ::Fu f’ every individual determinant of a function f instantiates a corresponding

universal determinant of f’. Thus, the realization of f comprises instances of

determinants of f’ and in this sense is the realization of f’ as well. On the other hand an

arbitrary realization of a universal function is not necessary a realization of the

instance function.

2. A specialized function realizes a general function. Since every determinant of a

specialized function is subsumed by the appropriate determinant of the generic

function then it can be clearly seen that every entity being a realization of a specific

function is also a realization of a generic function. Analogously to the point above, not

every realization of a function is a realization of its subfunctions.

3. A whole function realizes its function-part. Every realization of a given function is also

a realization of its function-parts, but not every realization of its function-part entails

its realization.

4. A sequence of functions realizes the whole-function; every sequence-part function in

separation does not realize the whole-function. Each realization of the whole sequence

is an individual realization of the function. For instance, each realization of the

sequence search item, view item, order item, deliver item is a

realization of the function of purchase item. Note that not every individual

realization of the function is a realization of the sequence. It is possible that a purchase

is realized by a different sequence of functions. This distinguishes the sequence-part

from the function-part, for which the realization of the whole function is also the

realization of its parts.

From the above we see that every case of one function realizing another function reported in

section 5.1 can be reconstructed in terms of an individual realization.

5.7 Realization-dependent Relations between Functions

In section 4.5 there have been introduced three kinds of relations between functions based on

the role of the goal of one function in the requirements of the other, i.e. support, enable, and

prevent. It is often the case that the relations between functions are not modeled independently

of the realizations of functions but are intrinsic to them. One such relation introduced already

is sequence-part. Now, we consider two more, namely the trigger and the improve relation.

Realization

128

5.7.1 Trigger

A goal of one function might be relevant for the realization of another function not only when

it has an influence on its requirements, like in the case of the support, the enable and the

prevent relations but also when it is a trigger of the other function realization.

Definition 48 (Trigger). A function f triggers a function f’ in a realization r, denoted by

Trigger(f,f’,r) , iff the goal of the function f is a trigger of the realization r of the function f’.

Trigger(x,y,z)↔ ∃v(GoalOf(v,x) ∧ Trig(v,z) ∧ RlAct(z,y)).

(65)

A trigger together with the requirements provides the necessary and sufficient condition for the

function realization. In this sense a trigger can be understood as a direct cause of the function

realization. In contrast to the requirements which are common for all realizations of a given

function, different triggers may be assigned to different realizations of the same function. For

example the realizations of the transportation function can be triggered by such triggers as

phone order or invoice signed. Therefore the trigger relation between functions is

realization-dependent - one function has an influence on another only relatively to its particular

realization.

5.7.2 Improve

Two kinds of side effects are considered in OF. Beside the function side effects discussed in

section 3.7, which belong to the very nature of the function’s goal, we now introduce side

effects of the function realization. A realization side effect is not a result of a function as such

but it is a result of its particular realization. Having introduced the notions of realization,

fulfillment and transition we define realization side effect as follows:

Definition 49 (Realization Side Effect). An individual x is called a side effect of the

realization r of a function f and denoted by SideEfRl(x,r,f) iff x is a part of r’s result and no

effect of f is fulfilled by x.

SideEfRl(x,y,z) ↔ RlAct (y,z) ∧ Cause(y,x) ∧

 ∀v(GoalOf(v,y) ∨ SideEf(v,y) → ¬ x @ v).

(66)

Summary

129

The predicate Cause(x,y) is a common umbrella for three causal relations introduced in

section 5.2 and has the reading “x causes y”56. As an illustration of the above definition

consider the process of transporting people by car. This process is the realization of the

function to transport people and results among others in polluting the environment.

However, the fact of the environment’s pollution, considered as a situation, does not fulfill a

goal or any side effect of that function. Therefore, the environment pollution is considered to

be a side effect of that particular realization of the function of transportation. Relying on the

notion of the realization side effect we introduce the improvement relation between functions.

Definition 50 (Improve). A function f improves a given realization r of a function f’,

denoted by Improve(f,f’,r), iff a realization of f neutralizes some side effect of the realization

r of f’.

For example, the car transportation process which realizes the transportation function and

pollutes the environment might be improved by the function of reducing pollutant

emission which has the goal pollutant emission reduced.

Both trigger and improve are ternary relations, involving as a third argument the

realization of improved/triggered function, which reflects the realization-focused character of

those relations.

5.8 Summary

In this chapter we have investigated the problem of function realization, which can be stated as

the search for the answer for the question “what does it mean that an entity realizes a

function?”.

Two basic senses of function realization have been found. In the first sense an individual

entity, e.g. a process, is said to be a realization of a function. In the second sense an entity, e.g.

a persistant via its execution of the process of realization is said to realize the function. The

former have been called a realization of a function, the latter - a realizer of a function.

We believe that realizations should not be considered as functions, and in particular as

individual functions, since there are at least two differences between individual functions and

individual realizations:

1. Functions are subjective, whereas realizations are objective entities.

56 Causeadh(x,y) ∨ Causeinst(x,y) ∨ TransTo(x,y) →Cause(x,y)

Realization

130

2. Realizations are function-independent entities and conversely.

The first difference between a function and a realization concerns the structure of functions

and realizations. The former are determined by agents, and thus are agent dependent and

subjective57. Realizations on the other hand are not subjective but are objective entities having

causal powers to reach some goals. For a given function an individual entity is objectively its

realization or not.

Secondly, realizations and functions are independent from each other. The relation

between function and realization is many-to-many. One function may be realized in various

ways – it may have many dispositional realizations. On the other hand, one entity may be a

realization of more than one function. Moreover, realizations may be described independently

of the functions they realize. For example, the process of transporting goods by plane may be

described independently of the function it realizes by means of physics as the movement of

bodies. The physical description of that process does not refer to the function which the

process realizes.

The important point to be mentioned here is that realizations in OF are not reduced to

processes as it is the case for instance in [Johansson, 2004] where the state of functioning of an

item (which corresponds to our individual realizer) is considered as the participation of the

item in a process. Johansson postulates: “no state of functioning without some process”

([Johansson, 2004], p. 5) and illustrates his postulate with an example: “In (its state of)

function(ing), the screwdriver participates in a process, namely a certain characteristic

movement. In other words, it is in a state of being involved in a process.” ([Johansson, 2004],

p. 6). Paraphrasing Johansson’s postulate in our terminology we could say that an entity may

have a role of an actual realizer only in the context of a process. In this sense the only

realization of a function accepted by Johansson is a process. Although we agree that a function

may be realized by a process, we however, do not claim that it can be realized only (and in all

cases) by a process. As already mentioned in section 3.5 we do not excluded from our

framework instantaneous functions and thus do not exclude realizations which are presentials,

e.g. the presential situation containing a presential moth, its covering and an environment is a

realization of the function to camouflage a moth in environment.

Next, the different modes of both realizations and realizers have been introduced,

namely actual and dispositional realizations/realizers. The actual realization/realizer refer to

the individuals which actually realize or actually participate in the actual realizations of the

function. By means of induction and the mechanism of direct instantiation for every individual

actual realization and realizer a corresponding universal, called a minimal realization universal

57 Subjectivity of functions is discussed in section 7.2.1.

Summary

131

and a realizer universal, respectively, is found. Those universals are used for identification of

the individual dispositional realizations and realizers. Thus, the framework provides means not

only for representing individual actual and dispositional realizations and realizers but

moreover it handles the general patterns of realizations considered as universals.

Additionally, on the basis of the notion of individual realization, functional realizations

are introduced, which enable to predicate that one function realizes another function.

Finally, two relations between functions have been identified, namely trigger and

improvement. In contrast to the functional relations discussed in the previous chapter those

two are relative to the particular realizations of functions.

132

6 Ascription of Functions

6.1 Introduction

So far in our considerations we have taken a function-oriented perspective, which means that

we analyzed the structure of an isolated function in the first place, the relations between

functions in the second place, and we have finally defined the notion of function realization,

which glues functions with non-functional entities. However, the perspective taken in function

modeling is often different. The starting point is not the function’s structure but rather an

entity, to which a function is assigned. It is motivated by the need of representing the

functionality of entities, in particular of artifacts. In many of the works on functions reported in

chapter 2, the question “what is a function” is identified with the question “what does it mean

that an entity has a function”. This shows the importance of functions and functional

knowledge in describing entities. Functions permit to describe entities in an alternative way to

a structural or behavioral description. In OF we delimit the issue of what a function is, from

the issue of what does it means that an entity has a function. The former issue, which was

investigated so far is intended to be used as a foundation for defining the latter.

We ascribe a function to an entity by means of the has-function relation, denoted by

HasFu(x,y,z) having the meaning that an entity x, called a function bearer, has a function y in

context z. A function bearer should not be confused with a functional item or a realizer. A

functional item is a role by means of which a function is described, a realizer is a role of an

entity in the context of function realization, whereas a function bearer is an entity that is said to

have a function. Functions usually are defined independently of the function bearer, but

function bearers are often defined in terms of the functions they have ascribed.

The third argument of the has-function relation pointing to the context corresponds to

the function in interpretation of Cummins [Cummins, 1975]. Cummins observes that function

ascription is relativized to a context (see section 2.3.1). In his understanding, the context of the

has-function has an epistemological character, it is an analytical account of a capability of

some entity in which an object under question is considered. For example, he writes “it is

appropriate to say that the heart functions as a pump against the background of an analysis of

the circulatory system’s capacity to transport food, oxygen, wastes and so on” ([Cummins,

1975], p. 762). We do not restrict ourselves to the epistemological context but permit also a

situational (topological) context. For example, a hammer lying on my desk on a pile of papers

Introduction

133

may have a function of holding paper, but clearly when I remove it from my desk it would not

have that function anymore. Some considerations on the nature of context involved in the has-

function relations appear in chapter 7. Nevertheless, it is outside the scope of the present work

to investigate in detail the notion of context which is an issue in itself (see e.g. [Akman, Surav,

1996; McCarthy, Buvač, 1998]). For our purposes it is enough to represent it by means of GFO

notions of situations and situoids.

We believe there is not only one kind of the has-function but rather it comes in several

flavors. The aim of a top-level ontology of functions in our opinion is to name explicitly those

flavors and put them together into one coherent theory. Therefore, we do not define one has-

function relation but rather, by analysis of its different usages, we introduce several kinds of it

and show their interrelations.

Usually, functions are ascribed to objects that are actors of function realizers. Thus, the

first candidates for function bearers are the role-fillers of realizers. Consider as an example a

heart, which is an actor of the role of a blood pump, and it is often said to have a function

of pumping blood. However, function bearers are not restricted to actors of realizers only,

but functions can be ascribed also to realizations. In [Chandrasekaran, Josephson, 2000]

authors report the difference between functions of objects and functions of processes. It is not

only a heart that may have a function of blood pumping, but also the process of

heart’s behavior may be said to have that function. In section 5.2.3 we demonstrated

that the realization is not necessarily a process; thus we propose to draw the distinction,

referred to by Chandrasekaran and Josephson, not between objects and processes but rather

between actors of realizers and realizations. We say that a function may be ascribed to a

realization and/or to the actor of a realization.

Often to have a function means to realize (actually or potentially) that function.

Therefore, one could identify the has-function relation with the realization relation. We,

however, distinguish those relations for a number of reasons. Firstly, extensionally those

relations are not equal, since, as we will show in the current chapter, it is possible that an

object has a function although it is not realizing that function or is not its realization. The

differences in extension follow from the differences in intension. The realization relation is the

objective relation observable in the world, denoting a goal achievement, whereas the relation

of the has-function often involves an element of subjectivity58.

In the current chapter we will first consider the ascription of function to individuals, but

we do not exclude universals from having the function ascribed as well. For example, about an

individual hammer lying on my desk I can say that it has a function of driving in nails, but that

58 A function is sometimes assigned to an item due to the subjective feeling –intentions of some agent,

see for details section 6.3.

Ascription of Functions

134

statement can be generalized to the statement that hammers (in general) have the function of

driving in nails. In the second case one is not interested in a particular individual hammer but

in the class of hammers. In this sense the function is not ascribed to an individual hammer only

but rather to a hammer universal. Thus, we say that not only an individual hammer has a

function of driving in nails but a universal hammer as well. The former we call an individual

has-function, the later a universal has-function. Let us start with the notion of the individual

has-function and on its foundations we will develop its universal counterpart.

6.2 Actual and Dispositional Function

The first two kinds of individual function ascriptions that we will discuss are the actual and the

dispositional has-functions.

Definition 51 (Actual Function). An individual x has an actual function f in a situation or

situoid s, denoted by HasFuAct(x,f,s), iff x is an actual realization of f in s or x is a role-filler

of an actual realizer r of f in s.

HasFuAct(x,y,z) ↔ (RlAct(x,y) ∧ CPart(x,z)) ∨

 ∃w(RAct(w,y) ∧ CPart(w,z) ∧ HasRole(x,w)).

(67)

The above definition grasps the dual character of function ascription. A function may be

ascribed either to a realization or to the actor of the realizer participating in a realization. An

actual realization is not restricted here to the minimal realization - not only a process of

transporting goods by a plane, but also the flight has a function of transporting goods.

Frequently, an item has a function ascribed although it does not actually realize this

function. For example a car on the parking lot has a function of transporting people

although it is not realizing it currently.

We recognize several kinds of non-actual function ascriptions. Firstly, we will introduce

is the dispositional has-function. Just as in the case of the actual has-function, the dispositional

has-function is defined both for realizations and actors of realizers.

Definition 52 (Dispositional Function). An individual x has a dispositional function f in a

situation or situoid s, denoted by HasFuDisp(x,f,s), iff x is a dispositional realization of f in s

or x is an actor of a dispositional realizer of f in s.

Intended Function

135

HasFuDisp(x,y,z) ↔ (RlDisp(x,y) ∧ CPart(x,z)) ∨

 ∃w(RDisp(w,y) ∧ CPart(w,z) ∧ HasRole(x,w)).

(68)

If a flight from A to B is a dispositional realization of transporting goods, then it

follows that it has a dispositional function of transporting goods. Analogously, a plane being a

dispositional realizer has a dispositional function to transport goods.

An actor of a dispositional realizer may have a dispositional function ascribed in a weak

or a strong sense, which correspond to the weak and the strong dispositional realizer

respectively. For example, a plane involved in the flight being a strong dispositional realizer of

transporting goods has a strong dispositional function of transporting goods.

Actual and dispositional functions may seem on the first glance to be too liberal and

include also the cases of accidental effects. However, not everything that an entity does or is

capable of doing is its function. For example, although a car, actually or potentially, pollutes

the environment it does not mean that it has a function to pollute an environment.

In OF cases as the above are already excluded by the definitions of function and goal.

According to definition 2 the only valid goals of functions are such intended effects that are

established for explicit reasons by some agents. In this sense, as long as an effect is not

established for a good reason by an agent, one cannot speak about functions. Thus, we cannot

consider polluting of an environment as a function until there is a reason for establishing this

as a goal. For example, if we consider some mad scientist to have a goal to destroy the

ecosystem of the Earth then he may find it useful for his purpose to pollute an

environment and thus may define such a function and then assign it to a car.

An entity may have many actual and dispositional effects. Especially the number of the

letter is high, if not infinite. However, we would not find that intuitive to say that all

dispositions of an item are its functions. In OF we restrict the actual/dispositional function of

an item only to those actual or dispositional effects of an item which are related to some

(pre)defined system of functions and goals.

6.3 Intended Function

The two types of function ascriptions discussed above seem to meet the intuitions of Johansson

when he writes: “to say that functional entities have a function is to say either that they have a

disposition to be in a state of functioning or that they are in fact in such a state” [Johansson,

Ascription of Functions

136

2004]. However, we do not think that function ascription can be restricted to those two cases

only.

The common and intuitive interpretation of the statement “X has a function F” is “X was

designed to have a function F”. Those intuitions are reflected by several approaches reported

in chapter 2. However, from the statement that an item was designed to realize a given

function, does not follow that the item actually realizes that function or that it has a disposition

to realize that function, since it may be broken or ill-designed.

Therefore, the function ascription founded on the designer’s intentions cannot be

reduced to the actual or the dispositional has-function and should be considered as a third kind

of function ascription.

On the other hand, if one agrees to rely in function ascription on the designer’s

intentions, then the question could be raised why to take only the designer’s intentions into

account. Apart from the designer, the process of artifact construction also involves other

parties that have an influence on the function of an artifact. Let us take the example of

software engineering process. Most typically the process starts with the requirements of

stakeholders. On the basis of their requirements software is designed by designers (system

analysts) and developed by developers. If software does not meet the stakeholders’

requirements, then we could say that it does not perform its function. It may be the case that

software is ill-designed: intentions of designers do not reflect the requirements, or ill-

developed: designers’ intention may meet the requirements but they may be inappropriately

implemented.

Therefore, it seems that not only the intentions of designers have an influence on the

artifact’s function, but other parties like stakeholders should also be included. Thus, the

statement that the function of an item is what it was designed for seems to be too narrow, since

the function of an item may be not what an item was designed for but what an item was (is)

expected to do.

To grasp under one umbrella the intentions of designers, stakeholders and other parties

in the assignment of functions we introduce the third kind of function ascription, namely the

intended has-function.

Definition 53 (Intended Function). An individual x has an intended function f in a situation

or situoid s, denoted by HasFuInten(x,f,s), due to some agent who intends x to have the

function f in s. Formally,

HasFuInten(x,y,z) → ∃qvr(Agent(q) ∧ Intent(q,v) ∧

 IntCont(v,r,x,y,z) ∧ r :: HasFu).

(69)

Intended Function

137

The relation Intent(a,i) has the meaning that an agent a intends i. The content of the intention i

is depicted by the predicate IntCont(i, R, a1...an) where R is an n-place relation and a1, . . . , an

are arguments of R. In the above definition the relation r is the has-function relation. Thus,

herein the content of the belief is “x has function y in situation z”.

To illustrate this definition let us follow the example of the hammer lying on my desk. It

has a function of driving in nails due to the intentions of some agent, a designer, who

intended the hammer to have that function during its existence. Note that the situation in which

an agent intends an item to have a function, and the situation, in which an item has a function,

may be distinct. For instance a designer intends a hammer to have a function of driving in nails

during its existence, but the act of intending may take place before the existence of a hammer

or during the manufacture process.

The drawback of definition 53 is that it makes function ascription too general and too

liberal. Not all agents who intend an item to have a function have the power to ascribe

functions to items. The statement that an artifact has function f is not treated equally when

expressed by an artifact’s designer and by a person having no particular knowledge about the

artifact.

This shows that not every agent’s intention should be considered when ascribing

functions to items. Two factors are of importance when ascribing intended functions to items:

− reliability59 of an agent ascribing a function,

− number of agents ascribing a function.

As shown in the above example, some agents are more reliable in ascribing functions than

others. Some agents (or, to be more precise, some social roles of agents) are of particular

importance for the ascription of functions to artifacts. Those are: stakeholder, designer, user

and researcher roles. The role players of those roles are not disjoint, thus one agent can play

several of them.

Each of those roles reflects a different interest in the artifact. Stakeholder is the agent,

whose requirements should be satisfied by the artifact, and which motivate the manufacture of

the artifact. The function required by a stakeholder is called a required function of an artifact

and is denoted by the predicate HasFuReq(x,y,z) having the reading that x has a required

function y in situation/situoid z.

59 Reliability of agents is considered as the attribute of an agent in the context of a given community,

which was discussed in section 3.3.2.

Ascription of Functions

138

Definition 54 (Required Function).

HasFuReq(x,y,z) → ∃qvr(Stakeholder(q,x) ∧ Intent(q,v) ∧

 IntCont(v,r,x,y,z) ∧ r::HasFu).

(70)

A designer is an agent that designs an artifact. A function designed by a designer is called a

designed function and is denoted by HasFuDesig(x,y,z), having the reading: x has a designed

function y in situation/situoid z.

Definition 55 (Designed Function).

HasFuDesig(x,y,z) → ∃qvr(Desig(q,x) ∧ Intent(q,v) ∧

 IntCont(v,r,x,y,z) ∧ r :: HasFu).

(71)

A user is an agent who uses an artifact or some other entity. A function intended by a user is

called a user function, or ad hoc function and is denoted by HasFuUser(x,y,z), having the

reading: x has a user function y in situation/situoid z.

Definition 56 (User Function).

HasFuUser(x,y,z) → ∃qvr(User(q,x) ∧ Intent(q,v) ∧

 IntCont(v,r,x,y,z) ∧ r :: HasFu).

(72)

Finally a researcher, Researcher(x,y) is an agent x who examines an artifact or some other

entity y. A function assigned to an item by a researcher is called a researched function. The

researched function is denoted by HasFuRes(x,y,z), having the reading: x has a researched

function y in a situation/situoid z.

Definition 57 (Researched Function).

HasFuRes(x,y,z) → ∃qvr(Researcher(q,x) ∧ Believe(q,v) ∧

 BelCont(v,r,x,y,z) ∧ r :: HasFu).

(73)

Intended Function

139

The above function kinds differ among each other not only due to the role of an agent, who

intends them, but also due to the time when they are assigned to an artifact. The required and

the designed function are intended before or during the existence of the artifact. The user

function is intended during the existence of the artifact, whereas the researched function is

intended during or after the existence of the artifact. Consider, for instance, an e-commerce

software in a given moment m of its existence. We may say that it has a required function of

bringing profit in m, if we know that there was a stakeholder who intended, before

or during the existence of the software, that it would have that function in m. Analogously, the

software may have a designed function in a given situation s, for example to replicate

to central database at every 00:00, due to the designer who intended it before

s. Next, each user during the existence of an artifact intends that it has some functions, for

example for a customer it may have the function of buying cheap second-hand

photographer equipment. Finally, a sociologist, during or after the existence of the

software, may analyze its social impact and assign to it the function of changing

customer habits.

The intended functions are only the matter of intentions of particular agents and do not

involve actual nor dispositional realization. Therefore, none of the above function ascriptions

guarantees that the software really realizes any of those functions. For example, the needs of

stakeholders might not be satisfied, and the software might be unsuccessful in yielding profit.

Due to bad programming it might not perform data replication every 00:00, thus the designed

function would not be an actual function, either. The user may fail to buy the desired item

cheaply. Finally, the theory of social impact of the software may turn out to be false.

The second important factor influencing the intended function, beside the reliability of

an agent, is the number of agents intending the function. If, for example, an ancient artifact

found on an archeological spot, has an intended function f according to only one archeologist,

it is of lower reliability than another function f’, ascribed to it by the scientific community.

Again, the high number of agents does not guarantee that the function ascribed is actual or

dispositional.

Definitions 53-57 has a recursive character. An item has an intended function in a

situation s iff it is intended to have a function in s. The question, then, is what does it mean that

an agent intends an item to have a function in a given situation? We distinguish three

possibilities, as three kinds of the has-function have been distinguished. In the first two cases

an item has a function in a given context, because an agent intends that an item actually

realizes, or has a disposition to realize, the function in that context. In those cases an agent

intends an item to have respectively an actual or dispositional function. In the third case an

agent intends that an item has an intended, if only by some other agent, function. Take as an

Ascription of Functions

140

example an archeologist exploring an ancient artifact. The archeologist may have reasons to

claim that the artifact was designed to perform a given function. In this case a function that is

assigned to an artifact is an intended-intended function. The researcher intends that a designer

intended that the artifact should have a function f in s. Note that the artifact may be wrongly

constructed so that not only the artifact never actually realized that function, but also never had

a disposition to realize it. This, however, does not disturb the archeologist’s claim concerning

the intended function. The intended-intended function is independent of an actual or a

dispositional function.

In order to block infinite chains of intended functions, we postulate that behind each

intended function must stand an actual or a dispositional function. This postulate provides the

grounding of the function ascription in reality. In our example the grounding may be provided

by an actual function intended by a designer: The archeologist intends that the designer

intended the artifact to actually realize the given function in s.

So far we have considered intended function only in the context of artifacts, understood

as role-players of the function’s realizers. However, an intended function, just as a

dispositional and an actual function, may be ascribed not only to realizer-fillers but to

realizations as well.

This point is of particular importance in the context of processes and services. Take our

running example of an individual process of transporting goods by plane, which is

a realization of the function to transport goods. This process may be considered as a

service delivered by some provider. For that service there may be a stakeholder – a top

manager in a provider enterprise, who wants, by means of this service, to shorten the time

required for delivering goods. Thus, the required function of that process is then to

improve the time of delivery. For an individual customer of that service it might

have the function to deliver the wardrobe to Rome. In turn, for the analyst the

service may have a function of increasing the number of customers. Thus, we

see that an intended function may be ascribed to entities being realizations, just as the actual

and the dispositional functions are.

Against the intended has-function one could raise the objection referring to the

designer’s erroneous intention. In section 2.3.2 we have paraphrased the argument of Keil

[Keil, 2003] concerning the nature of the categorial essence to the question concerning the

nature of the has-function relation. One may argue that the intentions of the designer cannot be

taken as a function of the artifact because if they are erroneous they do not justify the function

of an artifact. This problem is solved in OF by reference to the agent’s reliability. When

concerning the example of Adam, who intended to copy a surgical tool and instead copied a

plumber’s tool, we can say that Adam’s tool has an intended function to be used in

Universal Has-Function

141

the surgery since there is a designer – Adam who intends it to have this function. But on

the other hand Adam’s reliability in the area of the surgery tools manufacture is low, and thus

the function established by Adam and assigned to the tool due to his intentions is of low

reliability.

6.3.1 Inherited Intended Function

In the age of mass production it is seldom that each artifact is individually designed. Rather it

is a prototype, which is individually designed, and the remaining mass produced items are

copies of that prototype. If we consider mass produced artifacts then we find that many of

them lack the designer that designed them individually, and therefore it would follow that they

have no designed function, which is counterintuitive. To handle such cases we extend

definition 55 of designed function by the inherited designed function:

Definition 58 (Extension of Designed Function definition). An individual x has a designed

function f in a situation or situoid s, denoted by HasFuDesig(x,f,s), if there is a designer who

intends x to have a function f in s or x is a copy of an individual x’ which has an intended

function in a situation s’ similar to s60
.

Designer(q,x) ∧ Intent(q,v) ∧ IntCont(v,r,x,y,z) ∧ r :: HasFu → HasFuDesig(x,y,z).

(74)

HasFuDesig(x’,y,z’) ∧ CopyOf(x,x’) ∧ z :: s ∧ z’ :: s →HasFuDesig(x,y,z).

(75)

In the second case an individual inherits the designed function from some other individual out

of which it was copied. The relation of copying, denoted by CopyOf(x,y) has the

straightforward reading: x is a copy of y, and should be considered as transitive. It is outside

the scope of this work to investigate in detail the mechanism, which stands behind that

relation.

6.4 Universal Has-Function

So far we have analyzed the ascription of functions to individuals, but universals may have

functions ascribed as well. A function may be ascribed to a universal in two different modes.

60 In a similar way the definition of the required function can be extended.

Ascription of Functions

142

In the first mode a universal may have a function ascribed to it due to the fact that

corresponding individuals have the function ascribed. For example, the process of boiling

of water considered as a universal has an actual function of producing steam in the

sense that all individual processes of water boiling have an actual function of producing

steam. In the second mode, a function is ascribed not via individual instances but directly to a

universal. To illustrate this consider a universal ideology, which is a particular type of a

universal, namely a conceptual structure. It may be said that a function of ideology is to

have a political impact. Thus, we may say that a conceptual structure has a

function ascribed, and it seems that the same holds for other types of universals as well.

In the current work we are interested only in the first mode of function ascription to

universals. The ascription of function to a universal can be understood as a universal

quantification over the instances of the universal.

Definition 59 (Universal Has Function). A universal x has a function f in a universal

situation or situoid s, denoted by UniHasFu(x,f,s), iff all instances of x have the function f in

the situations or situoids which are instances of s. Formally,

UniHasFu(x,y,z) ↔ ∀vs(v :: x ∧ s :: z → HasFu(v,y,s)).

(76)

Every type of the above-discussed individual function ascription may be generalized to the

universal level, and thus the following universal function ascriptions are introduced:

Definition 60 (Universal Actual Has Function). A universal x has an actual function f in

the context of a universal situation or situoid z, denoted by UniHasFuAct(x,f,z), iff all instances

of x have the actual function f in the situations or situoids being instances of the universal z.

Formally,

UniHasFuAct(x,y,z) ↔ ∀vs(v :: x ∧ s :: z → HasFuAct(v,y,s)).

(77)

Definition 61 (Universal Dispositional Has Function). A universal x has a dispositional

function f in the context of a universal situation or situoid s, denoted by UniHasFuDisp(x,f,z),

iff all its instances have the dispositional function f in situations or situoids being instances of

the universal z. Formally,

UniHasFuDisp(x,y,z) ↔ ∀vs(v :: x ∧ s :: z → HasFuDisp(v,y,s)).

(78)

Function Bearers

143

Definition 62 (Universal Intended Has Function). A universal x has an intended function f

in the context of a universal situation or situoid z, denoted by UniHasFuInten(x,f,z), iff all its

instances have the intended function f in situations or situoids being instances of the universal

z. Formally,

UniHasFuInten(x,y,z) ↔ ∀vs(v :: x ∧ s :: z → HasFuInten(v,y,s)).

(79)

In most cases functions are ascribed to universals rather than individuals. For instance it is

often said that the function of heart is to pump blood, not that this is a function of my heart.

6.5 Function Bearers

An entity, to which a function is assigned by means of the has-function relation we call a

function bearer. Function bearers, and especially artifacts, are often defined in term of

functions they have ascribed. So far we have permitted both individuals and universals to be

function bearers, but we have not investigated of what ontological kinds function bearers are.

In fact we put no ontological constraints on the ontological kind of function bearers. We think

that an arbitrary entity can have a function ascribed. The table below lists the exemplary

function bearers of several ontological kinds of GFO.

Ontological kind Function bearer

Universal Ideology has a function of political impact.

Persistant

A hammer considered as a persistant has through out its lifetime the

designed function to hammer nails.

Presential

A stone at a given time boundary t, considered as a presential may

have a user function to provide sitting at t.

Process A process of flight may have an actual function to

transport goods.

Situoid A picket considered as a situoid may have a function to influence

the government’s decisions.

Quality Value A color of a moth has a function to camouflage.

Table 4. Function bearers of various ontological kinds.

Ascription of Functions

144

6.6 Functionality and Multiple Function Ascriptions

Different kinds of the has-function relation have been presented in the current chapter. Now,

let us demonstrate how they can all be used for the description of an items’ functionality. We

introduce two straightforward postulates: (1) an entity may have more than one function

attributed; (2) a function may be attributed to an entity by different kinds of has-function

relations.

The first intuitive postulate can be well illustrated with such an object as for example a

Swiss pen knife, which has more than one function. The total of all functions of an individual

we call the functionality of an item. The second postulate is more interesting and is especially

important in the context of malfunction, which is discussed later. As an illustration consider an

individual hammer in the situation s of lying on my desk. The hammer was designed to realize

the function of hammering nails, which means that the designer intended the hammer to have a

function of driving in nails during its lifetime. The situation s is a part of the hammer’s

lifetime, hence a designed function of the hammer lying on my desk is F: to drive in

nails. The hammer, however, is currently not participating in a realization of that function,

but is lying on my desk. Thus, F is not its actual function. Nor is F its dispositional strong

function, because the process of the hammer lying on the desk is not a dispositional realization

of the function to drive in nails. However, since the hammer is well designed and

manufactured, and because it is not broken, it has a weak dispositional function of driving in

nails.

Moreover, the hammer is lying on a pile of papers, because I have put it there in order to

prevent the papers from being blown off by the wind, and thus its user function is to

prevent the papers from being blown off by the wind. Because the day

is windy and the window is open, the hammer actually prevents the papers from being blown

off by the wind. Therefore, preventing the papers from being blown off is

not only an intended user function of the hammer but it is its actual function as well. If the

wind stopped blowing tonight, the function of preventing the papers from being

blown off would become a dispositional weak function.

The example shows yet another important feature of the framework. Although the

intended functions are most common to artifacts, it does not follow that artifacts have only

functions of that kind ascribed. This feature is important when considering the example

presented in ([Kitcher, 1993] p. 380 – 381). During the process of machine manufacture,

unbeknownst to the designer there appears an error in the design. The design does not include

the connection between two parts of the machine, which is necessary to make the machine

work properly. Luckily, an accidental dropping of a screw provides that connection. Now, the

Malfunctions

145

screw clearly does not have a designed function, but it still has a function to provide the

connection. Kitcher derives that function from the overall intended function of the

machine, whereas in OF it would be considered as an actual, but not intended function of the

screw in the machine.

6.7 Malfunctions

Beside functions there also malfunctions that can be ascribed to items. About a broken engine

one says that it malfunctions, in the sense that it is not functioning properly. In OF malfunction

is introduced as a ternary relation, denoted by Malfu(x,y,z), having he meaning that an

individual x is malfunctioning with respect to a function y in a context z.

Especially in philosophical literature many works have been committed to the problem

of malfunctioning (see section 2.3), since the representation of malfunctioning brings

difficulties for the philosophical theories of functions. For example, the Cummins theory of

functions meets a problem in representing malfunctions, since it considers functions only as

the current dispositions of an item, and thus lacks the normative aspect. Neither are etiological

theories without problems. For example, Davies [Davies, 2000b; Davies, 2000c] argues that

etiological (or selective) theory has no means to handle malfunctions. He maintains that

etiological theories define functional types as the items having heritable properties that

resulted in selective success. This implies that the items that lack a relevant success property

cannot be considered as functional types and thus cannot be said to malfunction.

Malfunction is important not only from the perspective of a philosophical discussion,

but also in the context of validation, control and evaluation of artifacts. It is also relevant for

the purpose of representing biological knowledge which commonly refers to malfunctions. The

main points can be formulated as the following questions: (1) Under what conditions is an item

malfunctioning? (2) What is the difference between malfunctioning and a mere lack of

function realization?

Considering (1) we postulate that for the assignment of malfunction to an item in a

given context c two conditions must be satisfied:

1. The item is not realizing (actually or dispositionally) function f in context c.

2. The item should realize (actually or dispositionally) function f in context c.

The first condition is clear - only items that are not realizing a function may be considered

malfunctioning with respect to this function. On the other hand, it is not always the case that

an entity which does not realize a given function is said to be malfunctioning. Even though a

car engine is not realizing the function to enable steering the vehicle, it is not

Ascription of Functions

146

considered to be malfunctioning, since this function is simply not what an engine is supposed

to do. The example shows the need of delimiting malfunction from the ordinary lack of

function realization. This difference is the subject of condition (2), and requires a better

understanding of the normativity of function ascription. The question to be stated here is what

does it mean that an item should do something.

We find three general answers for this question: an item should do something because

(1) it was required/designed to do so, or (2) it used to do it in the past, or (3) other items of that

kind do it. On the basis of these three answers there are three kinds of malfunctions defined:

the malfunction with respect to the intended function, (2) the malfunction with respect to the

item’s history, and (3) the malfunction with respect to other instances of the item’s kind.

6.7.1 Malfunction with respect to Intended Function

The item is malfunctioning when it is not able to do what it should. In the case of artifacts,

agents involved in the creation of the artifact, dictate what an item should do. Thus, on the

basis of the intended function we define the first type of malfunction – malfunction with

respect to intended function:

Definition 63 (Malfunction with respect to Intended Function). An individual x

malfunctions in a given context c with respect to an intended function f, denoted by

MalfuInten(x,f,c), iff:

(a) x has required/designed function f in c and

(b) x does not have dispositional or actual function f in c. Formally,

MalfuInten(x,y,z) ↔ (HasFuReq(x,y,z) ∨ HasFuDesig(x,y,z)) ∧

 ¬(HasFuAct(x,y,z) ∨ HasFuDisp(x,y,z)).

(80)

Intuitively, the definition says that an item is malfunctioning if it is not able to do what some

agent intended it to do. Malfunction is therefore agent-dependent and the degree of

malfunction, just as the degree of intended function, varies with respect to the reliability and

the number of agents, who intend an item to have a given function. For example, if a hammer

lying on my desk turns out not to prevent the wind from blowing the papers off my desk, then

it does not perform the intended user function and thus it malfunctions with respect to that

function. Surely no one will accept the warranty return of such a hammer, simply because

preventing papers from being blown off is not the required or designed function of the

Malfunctions

147

hammer. Therefore, only malfunction with respect to the designed or the required function are

considered as intended malfunction.

Dominant Intended Function

The artifact design is a process extended in time and within it artifacts are often redesigned. In

the software engineering process several methodologies even assume that software is

redesigned. For example in prototyping, software evolves from the prototype to the final

product. It happens that the final product does not satisfy the functions that were required in

the first stages of the design because the design evolved. In this case although the product does

not realize the functions that it was initially required or designed for, we would not say that it

malfunctions. In order not to treat such cases as malfunctioning we define the subsets of

required and designed functions, called dominant required functions and dominant designed

functions, respectively.

Definition 64 (Dominant Intended Function). A function f of an artifact a in a context c is

called a dominant required/designed function iff a was designed or required to realize f in c

and f was not rejected in the later process of design.

Now, in order to handle the cases of prototyping and redesign the definitions of required and

designed functions should be restricted to the dominant required and designed functions.

6.7.2 Malfunctions with respect to History

So far we have restricted malfunctions to artifacts, but it is not only artifacts that malfunction.

Take for example body organs - a heart is considered to malfunction when not pumping blood.

However, malfunction of a heart cannot be explained by reference to designed or required

functions, since this would assume some agent, who designed a heart. In case of organs it is

problematic to find such an agent without slipping into the theological discussion about the

origins of life. The ontological framework of Chandrasekaran and Josephson in our opinion

falls into difficulties of that kind. In [Chandrasekaran, Josephson, 1997] function is

understood in terms of design, and nature or evolution is taken as a designer of biological

organs. However, the understanding of nature or evolution as a designer we find as an

oversimplification, since in the broader ontological framework this requires to regard them as

some kind of agentive and intentional entities. Alternatively, beside the notion of intended

malfunction, applicable for artifacts, we suggest introducing other kinds of malfunction suited

Ascription of Functions

148

also for non-artifacts. We rely here on the ideas fund in [Upton, 2004], which we develop,

formalize and incorporate into our ontology.

The first non-intentional criterion is provided by the reference to the history of a given

individual. Often, when complaining about the malfunction of some item, we say “so far it was

working fine”. Here, we judge an item to be malfunctioning not by references to the intentions

of a designer or a stakeholder, which in fact for most of us are unknown, but rather we refer to

the history of an item, which we know. In this sense, an item is recognized as malfunctioning

when it does not realize the function in a given situation, although it used to do so in the past.

Definition 65 (Malfunction with respect to history). An individual x malfunctions with

respect to its history in a situation or situoid s with respect to a given function f, denoted by

MalfuHist(x,f,s), iff x used to have a dispositional or actual function f in a situation/situoid s’

similar to s and does not have it in s.

Two situations or situoids we call similar when they are instances of the same universal. Thus,

we say that an item has a historical dysfunction if it is not functioning in a situation which is

the instance of the same universal as the situation in which an item had a disposition to f 61.

MalfuHist(x,y,z) ↔ ¬ (HasFuDisp(x,y,z) ∨ HasFuAct(x,y,z)) ∧

 ∃uv(z ::: v ∧ u ::: v ∧ (HasFuDisp(x,y,u) ∨ HasFuAct(x,y,u))).

(81)

Malfunction with respect to the history holds for both artifacts and for non-artifacts. By

analogy to a malfunctioning heart an engine is considered as malfunctioning if it is not

working today although it was working in the past in exactly the same conditions.

Malfunction with respect to the history has difficulties concerning the change over time.

An item may by natural (healthy) evolution loose some functions but it does not make it

malfunctioning. This issue is discussed below in section 6.7.4.

6.7.3 Malfunction in Comparison

Yet another way of identifying malfunction is the comparison of an item with similar

individuals in similar conditions. For example, one may judge one’s car to be malfunctioning

if it does not manage to drive up a steep hill, whereas other cars of the same model manage to

61 We refer to direct instantiation here since we are interested in the maximal similarity of the situations

compared.

Malfunctions

149

do so. In this case one is not referring to the history of an individual but to other individuals

instead.

Definition 66 (Malfunction in comparison) An individual x being an instance of a kind u

malfunctions in comparison with other individuals with respect to a function f in a

situation/situoid s, denoted by MalfuKind(x,f,s), iff:

(a) other instances of u have a dispositional or actual function f in situations or situoids

similar to s,

(b) x does not have the dispositional or actual function f in s. Formally,

MalfuKind(x,y,z) ↔ ∃prst (x ::: t ∧ s ::: t ∧ z ::: r ∧ p ::: r ∧ s ≠ x ∧

 (HasFuDisp(s,y,p) ∨ HasFuAct(s,y,p))) ∧

 ¬ (HasFuDisp(x,y,z) ∨ HasFuAct(x,y,z)).

(82)

In this definition, similarity of two individuals is represented by the common universal. In this

sense an item is compared with other instances of the universal, which it instantiates. However,

the universal used here is not a universal of an arbitrary type but instead it is a kind universal.

It is not our purpose to investigate the problem of natural kinds (for discussion see for example

[Wilkerson, 1995]) or the problem of typology of universals. For our purposes only three types

of universals are distinguished: universal functional item – a universal role depicting items in

purely functional terms, universal realizer – a structural universal depicting structure of items

in the context of the realization of some function, and finally the kind universal which is a

universal grouping entities considered to be of the same kind, such as e.g. human beings. Kind

universals extend natural kinds and we do not exclude kinds such as artifacts, but they should

not be identified with universal realizers. Thus, two individuals can be instances of the same

kind but not of the same realizer, e.g. the plane with loaded cargo and the plane with empty

cargo space are of the same kind but are not instances of the same universal realizer goods

transporter, since only the latter can be loaded with goods, and thus can realize the

function of goods transportation.

6.7.4 Priorities of Malfunctions

The three introduced kinds of malfunction are independent from another. For example, it may

be the case that an artifact malfunctions with respect to its history but not with respect to its

intended function. Consider a space probe designed to work only for a given period of time.

After the end of the period it is not expected to be functioning anymore. If in a situation which

Ascription of Functions

150

takes place after the end of that period, the space probe is not realizing its function, then

according to the design it is not malfunctioning. However, if this situation satisfies the

requirements of the function, then the space probe is malfunctioning in that situation with

respect to its history, since it does not realize the function which it was realizing in an

analogous situations in the past. Therefore, there arises a conflict – the space probe is

malfunctioning with respect to its history, but not with respect to its intended function. To

solve conflicts of this kind the priority of has-function and malfunction kinds should be given.

In OF the strongest malfunctions are considered to be those with respect to the designed

and required functions. An artifact may be considered malfunctioning with respect to its

intended function, although it does not malfunction with respect to its history or in comparison

to other instances of the kind. Concerning the first case, an artifact could never have realized

the function in question, for example due to a design flaw or a production defect and thus it

would not be said to malfunction with respect to its history. Concerning the second case, all

members of the kind might be wrongly designed and none of them might realize the function.

Therefore, the item would not malfunction with respect to other instances of the kind, neither.

Similarly if an artifact is not malfunctioning with respect to its required/designed

function but is malfunctioning with respect to its history or with respect to other members of

the kind then it is said not to be malfunctioning.

For non-artifacts, which lack designed and required functions, the malfunction due to

comparison with other members of the kind is prior to the malfunction with respect to the

item’s history. An item defective throughout its lifetime is not malfunctioning in a given

situation s with respect to its history but nevertheless it may be detected malfunctioning in

comparison to other items of its kind. For example, an inborn defect cannot be detected as

malfunction with respect to the history but it can be detected when comparing an item with

other instances of the kind.

From the above considerations we can provide the following hierarchy of malfunctions:

1. Required/ designed malfunction.

2. Malfunction with respect to other instances of universal.

3. Malfunction with respect to item’s history.

6.7.5 Side-Effect Malfunction

We have considered malfunction with respect to a given function f as the lack of a

dispositional or actual realization of f. In this sense an item is malfunctioning if the goal of a

function cannot be reached by the item. Such a malfunction we call a goal failure malfunction.

However, there are malfunctions which do not concern the goal. A goal of a function may be

Summary

151

reached but nevertheless the item may malfunction, since it results additionally in undesired

side effects. Such a malfunction we call a side effect malfunction. For example, an engine may

dysfunction not because it does not generate circular motion, which is its designed function but

because of a too high consumption of fuel.

We handle the side effect malfunctions in OF with the help of a broad understanding of

the function’s goal, comprising also restrictions on goals. As already discussed in chapter 3,

we understand a function as a specification of what is supposed to be done. In this sense

everything that is intended to be achieved is considered as the goal of a function, also that

which we treat as a secondary goal, or a restriction on the main goal. In our example we would

not consider the function assigned to an engine as to generate circular motion, but

rather we would extend it to the following: to generate circular motion AND not

to exceed the given level of fuel consumption. In this case an engine that

generates circular motion, but uses too much fuel, dysfunctions, since it does not reach the

second of its goals. In this sense it is not realizing its multiple-goal function. The distinction

between primary and secondary goal can be represented by the usage of goal priorities. In our

example, if required, one could say that the generation of circular motion has a higher priority

then the low level of fuel consumption.

6.8 Summary

In the current chapter we have investigated the notion of function ascription and have

introduced a number of notions that permit to model it. Several types of function ascription

have been recognized, among them the intended has-function typical of artifacts and the actual

and the dispositional has-function, founded on the notions of actual and dispositional

realizations applicable to non-artifacts as well. The notions introduced permit to ascribe

functions to arbitrary entities, involving both individuals and universals, processes, persistants

and presentials.

OF permits to assign not only functions to entities but also malfunctions. Several types

of malfunction together with their interdependencies have been introduced. Among them are

the malfunctions with respect to the intended function, the history of an entity, and the

comparison to other members of the kind. The side effect malfunctions are handled by the

extended understanding of the goal of a function.

152

7 Ontological Status of Functions,

Classifications and Architecture

7.1 Introduction

In the current chapter we touch the fourth main problem area of the top-level ontology of

functions mentioned in chapter 2, namely the ontological status of functions and the

incorporation of OF into a wider ontological framework of GFO. In the first place we discuss

characteristics of functions, and analyze the candidates for function definition against them.

Those investigations result in the definition of function and enable to plug the notion of

function in an appropriate place in the taxonomy of GFO.

Moreover, we introduce the most general classifications of functions as well as the

architectural principles for the organization of functional knowledge. These two issues are of

particular importance in the context of the application of OF in functional modeling and the

design of domain ontologies combining both functional and non-functional knowledge.

7.2 Characteristics of Functions

On the basis of the developed framework and the provided analysis of other works, in the

current section we will investigate the characteristics of functions, namely contextuality,

subjectivity, and goal-orientedness.

7.2.1 Context and Subjectivity

As a first characteristic of functions we will investigate this saying that functions are

contextual entities. Our aim here is not to investigate the broadly discussed notion of context

(see e.g. [Akman, Surav, 1996; McCarthy, Buvač, 1998]), but rather we intend to show that a

context is commonly involved in the definition of a function, and that several types of context

can be distinguished, when speaking about functions.

Characteristics of Functions

153

In AI approaches to functional modeling the notion of context is often involved in the

definition of a function. For instance, in CFRL function is defined by means of context

considered as an environment in which the device is supposed to function. In turn, in

Chandrasekaran and Josephson’s ontological framework, context, called there Mode of

Deployment (MoD), is the selective description of the environment of the object to which a

function is assigned. MoD is a specification of causal interactions between an object and other

objects in the world. In the example provided in [Chandrasekaran, Josephson, 2000] the

battery lying on the piece of paper may be considered in two MoDs: one, in which it is

connected to electrical terminals of some object, and the other, where the bottom surface of

the battery is in the a_top relation with an object paper. Those two MoDs result in two

different functions ascribed to the battery - the function of supporting paper and the

function of providing voltage. MoD therefore can be considered as a context in which

an object is investigated and which determines function ascription.

Context was also recognized as a factor in philosophical definitions of functions.

Cummins [Cummins, 1975] refers in his definition of function not only to the system

containing an object, but to an analytical account of that system’s capacity. Thus, the function

of an object varies not only with respect to some larger whole, in which an item participates, or

is located in - that is to some MoD, but also with respect to the way this whole, or more

precisely its capacity, is explained. In this sense a context seems to be considered on the

epistemological level, where the object’s function is a part of explanation/analytical account of

some capacity of the containing system.

Finally, a particular type of context that influences a function is an agent. Searle [Searle,

1995] touches on that point when he says that a function is always determined by an agent, an

observer, who finds the function in a given object.

The above examples show that the notions of function and function ascription in contrast

to, for example the notion of behavior, are often recognized as contextual. Moreover, the

examples show that there is no unified understanding of the function’s context but rather

various intuitions are hidden under that notion. On the basis of the brief review of functional

contexts presented above, the following preliminary kinds of functional context can be

distinguished:

1. Situational (topological) context includes the containing system, other components of

the containing system, and the environment which an item effects. In GFO terms the

situational context is provided by the situation or situoid in which an entity is

participates.

2. Causal context includes entities, on which the entity, having the function ascribed, has

a causal impact. Causal context may be considered as a part of the situational context.

Ontological Status of Functions, Classifications and Architecture

154

3. Epistemological context involves the way a phenomena is explained. It often concerns

some bigger whole, in which the entity under question is involved, namely its

situational or causal context.

4. Context of an agent determining and ascribing a function. The function is agent-

relative and thus to some extent has a subjective character.

The first three types of context touch only the relation of function ascription but not the

function itself. Due to the different situational, causal or epistemological contexts, different

functions may be ascribed to a given item.

In the examples discussed in chapter 6 mostly topological and causal contexts were

considered. However, it seems that has-function and malfunction can be ascribed also in the

epistemological context. For example, when considering the Cummins example, a heart has-

function not only in a circulatory system (topological system) but also in the epistemological

context of an explanation of the circulatory system’s ability of transporting stuff. Similarly, a

malfunction may be assigned against an epistemological context.

The fourth context kind, which implies subjectivity, in contrast to the three former ones

affecting only the ascription of function, is present also at the level of the structure of

functions. Considering the function structure, subjectivity is represented in OF by reference to

an agent, who by the establishment of a goal determines the structure of a function. We

postulated that there is no function without an agent and every function is relativized to an

agent establishing its goal. If some other agent does not recognize that goal then the function is

not to be recognized by him either. In this sense a function is always subjective.

In addition, subjectivity is also present in the ascription of a function to an item. Here,

however, not every kind of the function ascription involves an agent, but only the intended

has-function. An item has an intended function due to some agent that ascribes the function to

that item. In this sense the has-function relation is subjective - function ascribed to an item by

one agent does not have to be ascribed to it by another agent.

7.2.2 Teleology and Goal-Orientedness

The next commonly discussed aspect of a function is the goal-orientedness. For example,

paraphrasing the definition of a function as a teleological interpretation of behavior, one could

say that a function is a goal-oriented behavior. Several definitions of function discussed in

chapter 2 include a goal. And likewise in OF a goal is considered as a determinant of a

function. Moreover, as was demonstrated when discussing the structure of function other

determinants are necessary in order to adequately determine function, but it is a goal, which

Candidates for Functions

155

seems to be crucial for the notion of function. Even a function’s label, which is an informal but

commonly used technique for modeling functions, is goal-oriented.

Summing up, the following characteristics of a function should be taken into account

when investigating the ontological status of functions:

1. Function ascription is contextual. Whether an entity has a function depends on the

context.

2. Function is subjective. The function structure depends on an agent establishing a goal,

whereas the intended function ascription depends on the agent, intending an item to

have a function.

3. Function is goal-oriented. A goal is a crucial determinant of a function.

7.3 Candidates for Functions

The purpose of this section is to investigate the ontological kind of a function. Firstly, we will

investigate against the above function characteristics two popular candidates for functions,

namely processes and goals. Secondly we will provide the definition of function, which

enables integration of the notion of function into GFO.

7.3.1 Functions as Processes

Functions are often considered to be processes. The notion of a process differs across

formalisms, however some general intuitions are common. Here, we understand a process in

the GFO sense, where it is considered as a perduring entity extended in time, which, in contrast

to a presential located at the time boundary, is not fully present at any time boundary.

Processes in GFO are said to happen throughout time and are contrasted to persistants, which

grasp the endurantistic view. Process are often labeled with goal-oriented labels, which

suggests treating functions in terms of processes. For instance, the label to transport

goods could be adequate both for the function and the process of transportation.

In AI approaches to functional modeling there are close correlations of functions and

processes. For example, in [Sasajima et al., 1995] function is defined as a teleological

abstraction of behavior which can be seen as a process or a layer of a process. Goal-

orientedness can be reconstructed in terms of culmination, which is a criterion for

classification of events [Casati, Varzi, 2002]. An event has a culmination if it has a finishing

point. Thus, a goal-oriented process is a culminating process which reaches the goal in its

Ontological Status of Functions, Classifications and Architecture

156

finishing point. It therefore seems intuitive to consider functions as a particular type of

processes, namely achievements or accomplishments.

However, despite those similarities we found, as already mentioned in passing in section

5.8, that functions cannot be identified with processes. Firstly, we observe that not all

functions can be regarded as culminative processes; in particular continuous functions are

realized by non-culminative processes. For example, the function of pumping blood cannot be

treated in terms of a culminative process, because the process of pumping blood lacks a

culmination. Secondly, functions cannot be considered to be processes in general, since their

realizations, in contrast to processes, are not necessarily time-extended. A situational

realization of the instantaneous function of camouflaging a moth is a presential and thus is not

time extended.

Hence, since we do not consider functions in terms of processes, the definition of

function as a teleological abstraction of behavior is too narrow for our purposes, and in our

opinion does not fully grasp the ontological nature of functions.

7.3.2 Functions as Goals

Because a function is a teleological entity, one could identify it with the notion of a goal. In

this sense a goal in which a function results could be treated as a function itself or, in words of

Chandrasekaran and Josephson, the function of an object could be defined as the effects of the

object on its environment [Chandrasekaran, Josephson, 1997]. This intuitive solution seems to

be adequate for many purposes, however the scope of its applications depends on the accepted

interpretation of the goal. In FR and CFRL a goal is interpreted very broadly - it includes not

only the state of the world, which is the result of a function but also the whole chain of causal

factors that lead to that result state. A goal, then, is not only regarded as what should be

achieved but also as the way it is achieved.

In OF we refer to a much more restricted notion of a goal. A goal in our understanding

is an intentional entity referring to an arbitrary chunk of reality that is expected to be achieved

by the function realization and is distinguished for some reason by an agent. A goal, regarded

in this narrow sense, is insufficient for the adequate identification of a function, since functions

resulting in the same goal may be different with respect to their requirements, or functional

items.

The next argument against the reduction of functions to goals, or effects, comes from

analysis of the temporal location of goals and functions. In our framework functions lack a

direct relation to time. However, as presented in section 3.5 this relation can be derived from

the temporal relations of the requirements and goal of a function. In this sense we may

Candidates for Functions

157

informally speak about temporal extension of functions. In our opinion a function may have a

different time location than a goal, and since one entity cannot have two different time

locations, therefore a function and a goal should be considered distinct. This holds especially

for sequential functions. Consider the function to deliver a letter on 5th June.

Here, the goal is a presential relation (located_in) at the time boundary T = the fifth

of June62. The realization of that function is the process which has a right boundary at T. In

this case the goal is “at the end” of the function realization. Concluding, we argue that a

function is a goal-oriented entity, not a goal itself.

7.3.3 Functions as Intentional Entities

On the basis of the constructed framework and the discussed above characteristics of functions

we propose to define functions as follows:

Definition 67 (Function). A function is an intentional entity defined in purely teleological

terms by the specification of a goal, requirements and a functional item which commonly is

ascribed by means of the has-function relation to entities that in some context are the

realizations of the goal, execute such realizations or are intended by a reliable agent to do so.

The first part of the definition refers to the structure of the function introduced in chapter 3.

According to it functions are teleologically defined against goals valuated by some agent but

are not identified with the goals since they also include the specification of requirements and

the functional item. In contrast to the definitions discussed in section 2.1.2, the above

definition does refers neither to behaviors nor processes, and thus does not exclude non-

processual functions, but instead it is founded on the notion of intentional entity.

An intentional entity is understood as an abstract entity of the mental strata, i.e. a mental

representation, a thought, an idea which is dependent on some agent. Hence, functions in our

understanding are not entities of an objective world but are subjective, agent-dependent

entities. However, we admit that functions can be shared by a group of agents and in this sense

they may be relativized not to an individual agent but to a community of agents and inside the

community they may be considered to be objective.

The second part of the definition refers to the introduced relation of the has-function

which grasps the contextual character of function ascription and is founded on the realization

62 The fifth of June is regarded here for the sake of simplicity as a presential although it could

be considered as a chronoid.

Ontological Status of Functions, Classifications and Architecture

158

and realizer relations. Reference to both - the realizer and the realization - covers, among

others, the distinction between functions of objects and of processes. The subjectivity of

functions is stressed additionally by the intended has-function, which is an assignment of

functions to entities due to the intentions of reliable agents.

The definition introduced reveals similarities to the definition of [Sasajima et al., 1995],

where a function is considered as the teleological interpretation of behavior. It seems that “the

interpretation of behavior” can be interpreted as an abstract mental entity which is depicted in

purely teleological terms. The difference between those definitions, apart from the problem of

references to the notion of behavior discussed before, lies in the presupposed order of function

construction. In [Sasajima et al., 1995] goals and behaviors are primary to functions - for a

given goal and behavior, or set of goals and behaviors, a function is constructed by the

interpretation of that behavior in the context of the goal. In OF function is secondary to the

goal but not to the behavior or any other entity realizing it. Thus, our model assumes the order

from function to realization, whereas in [Sasajima et al., 1995] the function is constructed or

interpreted from the given behavior.

7.4 Classifications of Functions

For the purpose of modeling it is useful to provide not only a general framework of

representing functions and the function ascription, but also a taxonomy of functions. In the

current section we propose several classifications of functions, which are organized into two

groups called intrinsic and extrinsic classifications. Intrinsic are those classifications having

the principle of distinction (differentia) intrinsic to functions. A differentia is considered to be

intrinsic to functions if it refers to the function structure, and functional relations only. On the

other hand, a differentia is extrinsic to a function if it refers to notions beyond the structure and

functional relations, for example to the realization of a function. Thus, functions may be

classified according to their realizations, but one should keep in mind that this classification is

secondary and is founded on the classification of realizations. For the sake of completeness,

the current section also includes the classifications discussed already in previous chapters.

Classifications of Functions

159

7.4.1 Intrinsic Classifications

Classification Based on the Time-Extent of a Goal

A goal is an arbitrary chunk of reality, and as such may have various time-extents. In the

context of GFO we recognize two primary kinds of temporal locations of entities, namely the

projection to a chronoid and the location at a time boundary. The former is typical for

processes, whereas the latter for presentials. On the basis of this distinction two kinds of basic

functions are found:

− Accomplishment Function. If the goal of a basic function f is a presential, then we call f an

accomplishment function, and denote it by FuAccompl(f). An exemplary accomplishment

function is to deliver mail at given time point.

FuAccompl(x) ↔ FuBasic(x) ∧ ∀y(GoalOf(y,x) → Pres(y)).

(83)

Two kinds of accomplishment functions are distinguished in OF: sequential and

instantaneous functions. The difference between them concerns the temporal distance

between the requirements and the goal. In the former case the goal appears after the

requirements, whereas in the latter both are present at the same time boundary.

− Continuous Function. If the goal of a basic function f is an entity extended in time, then

the function f is called a continuous function and is denoted by FuContin(f). For example, for

the goal: blood is being pumped, which is a process extended in time, the

corresponding function to pump blood is a continuous function.

FuContin(x) → FuBasic(x) ∧ ∀y(GoalOf(y,x) → Proc(y)).

(84)

Intuitively the difference between the accomplishment and continuous functions is that,

whereas the former is aimed only at a disposable accomplishment of a given result, the latter

aims also at a continuous support of that goal for a given period of time.

This classification may also be applied for functions having universal goals. Although

universals in GFO are not related to time, they can still be classified due to the time extent of

their individual instances. In this sense the function with a universal goal, whose instances are

presentials, is classified as an accomplishment function.

The classification may be extended to non-basic functions by the decomposition of the

non-basic goals. And so a non-basic function, all of whose goals are presentials located at

Ontological Status of Functions, Classifications and Architecture

160

coinciding boundaries, is called an accomplishment function, whereas a function whose at

least one goal is a process is called a continuous function.

Classification Based on the Relations between Functions

The classification below is founded on the classification of the relations between functions.

For a given goal an arbitrary function may be classified as one of the following:

− Performer. For a given chunk of reality x if x is a goal of a function f, then f is called a

performer function of x. An actual realization of a performer function is a sufficient

condition for the fulfillment of the goal x, and is denoted by FuPerform(f,x).

FuPerform(x,y) ↔ GoalOf(y,x).

(85)

− Enabler. For a given chunk of reality x if a function f enables a function f’, which is a

performer function of x, then f is called an enabler function of x, and is denoted by

FuEnable(f,x).

FuEnable(x,y) ↔ ∃z(Enable(x,z) ∧ GoalOf (z,y)).

(86)

− Supporter. For a given chunk of reality x if a function f supports a function f’, which is a

performer function of x, then f is called a supporter function of x, and is denoted by

FuSupport(f,x).

FuSupport(x,y) ↔ ∃z(Support(x,z) ∧ GoalOf(z,y)).

(87)

− Preventer. For a given chunk of reality x if a function f is preventing a function f’, which is

a performer function of x, then f is called a preventer function of x, and is denoted by

FuPrevent(f,x).

FuPrevent(x,y) ↔ ∃z(Prevent(x,z) ∧ GoalOf(z,y)).

(88)

− Neutral. For a given chunk of reality x if x is not a goal of f and f is not related by any of

functional relations to a function f’ which is a performer function of x, then f is called a

neutral function for x.

FuNeutral(x,y) ↔ ¬ (FuPerform(x,y) ∨FuEnable(x,y) ∨ FuSupport(x,y) ∨FuPrevent(x,y)).

(89)

Classifications of Functions

161

The classification of functions based on their role in the achievement of a given goal is

especially useful in cases of hierarchical goal modeling, where one goal is central for the

whole model. In such cases this classification helps to organize functions, with respect to their

influence on the root goal.

The distinction between performers, enablers, supporters, preventers and neutral

functions is also applicable for functional items and realizers. A functional item/realizer of the

performer function of a goal g is called a performer of goal g, of the enabler function of goal g

- an enabler of g, etc.

Classification Based on the Complexity of the Goal

A goal is the chunk of reality which is an intended result of the function. Goals may be either

basic or non-basic. Depending on the type of goal the following function kinds are

distinguished:

− Basic Function

− Complex Function

− Coherent Function

− Multiple Goal Function

 If the elements of a non-basic goal do not compose a coherent entity, then the function is

called a multiple goal function. The basic, complex, coherent and multiple goal functions are

discussed in section 3.3.8.

7.4.2 Extrinsic Classifications

Beside intrinsic classifications of functions also extrinsic ones can be provided. In contrast to

intrinsic classifications the principles of distinction used in extrinsic classifications neither

pertains to the structure of a function nor to the interrelations between functions. Instead, they

are founded on the function’s realization and ascription. Thus, these classifications pertain

primarily to realizations and function ascriptions, and only indirectly to functions.

Classification Based on the Realization-Dependent Relations

This classification is the extension of the classification of functions based on their

interrelations. Here, the classification is based on the role one function has in the given

Ontological Status of Functions, Classifications and Architecture

162

realization of the other function. For a given goal an arbitrary function may be classified as one

of the following:

− Trigger. For a given chunk of reality x if a function f triggers a realization r of a function

f’, which is a performer function of x, then f is called a trigger function of x and is denoted

by Futrigger(f,x,r).

Futrigger(x,y,z) ↔ ∃w(Trigger(x,w,z) ∧ GoalOf(y,w)).

(90)

− Improver. For a given chunk of reality x if function f improves a realization r of a function

f’, which is a performer function of x, then f is called an improver function of x and is

denoted by Fuimprove(f,x,r).

FuImprove(x,y,z) ↔ ∃w(Improve(x,w,z) ∧ GoalOf(y,w)).

(91)

Classification Based on the Kind of Function Ascription

In the context of an item to which a function is ascribed it may be classified as one or more of

the sorts below:

− Actual

− Dispositional

− Intended: Designed, Required, User or Researched Function

For example transporting people is a required, designed, and dispositional or actual

function in the context of a car.

Classification Based on the Dynamics of Function Realizer

The dynamics of a function realizer is the criteria for distinguishing the following kinds of

functions:

− Passive Function. A function f is passive in context of its realizer r and is denoted by

FuPassR(f,r) iff the function realizer r is passive.

FuPassR(x,y) ↔ RPass(y,x).

(92)

A function is absolutely passive iff all its realizers are passive.

Classifications of Functions

163

FuPass(x) ↔ ∀y(R(y,x) → RPass(y,x)).

(93)

− Dynamic Function. Analogously, a function is active in context of a realizer r and is

denoted by FuDynR(f,r) iff r is a dynamic realizer of f.

FuDynR(x,y) ↔ RDyn(y,x).

(94)

A function is absolutely dynamic iff all its realizers are dynamic.

FuDyn(x) ↔ ∀y(R(y,x) → RDyn(y,x)).

(95)

Note that in our framework the passive or active character of the continuous or sequential

function cannot be determined on the pure functional level but it is relative to the function’s

realization. Take as an example the function to enable sitting. A chair which is a

typical realizer of this function is passive, thus the function is also considered to be passive.

However, one can imagine an intelligent chair made of foam that actively adjusts the shape of

the seat to the shape of the body of the person who seats on it. Clearly such a realizer will not

be passive anymore. Thus, it is not the function to enable sitting which is passive, but

particular realizers of that function. On the other hand, all instantaneous functions are

regardless of their realizations considered to be passive functions.

7.4.3 Reconstruction of the Current Classifications

In the current section we will refer to the classification of functions, introduced by Keuneke

[Keuneke, 1991] and formalized by Iwasaki and Chandrasekaran [Iwasaki, Chandrasekaran,

1992]. We will demonstrate how far this can be reconstructed and improved by means of the

classifications presented above.

Keuneke recognized four types of functions: toMake, toMaintain, toPrevent, and

toControl. ToMake is the basic function type; the aim of the toMake function is to achieve a

desired state of the world. For example, the function of locking the doors is aimed to

achieve a state in which the doors are locked. In terms of Iwasaki and Chandrasekaran

[Iwasaki, Chandrasekaran, 1992] toMake is a function whose trajectory’s final state satisfies a

Ontological Status of Functions, Classifications and Architecture

164

desired goal63. In terms of OF the toMake function type can be reconstructed by the sequential

function which is realized by the process ending with the goal state, understood as a presential.

The second type of function introduced by Keuneke is toPrevent. A function is of the

toPrevent type if during the realization of that function an undesired state does not take place.

The trajectory achieves the toPrevent function if in none of the states of the trajectory the

undesired state holds. ToPrevent can be represented in OF by means of a continuous function

where the goal is expressed in the form of negation.

The third type in Keuneke’s typology is toMaintain. In the toMaintain function type the

desired state not only must be achieved, but it must be sustained over a given period of time. A

trajectory Tr is said to achieve the toMaintain function, if the goal holds in all states of the

trajectory Tr. We can see that the difference between toMaintain and toMake concerns in fact

the time extents of their goals. In toMake the goal is not extended in time - preferably it is a

presential, whereas in toMaintain a goal is time-extended. It is not, however, clear whether

toMaintain is only about sustaining a desired state for a given period of time as the definition

of Iwasaki and Chandrasekaran ([Iwasaki, Chandrasekaran, 1992], p. 10) suggests, or whether

it also involves the achievement of a desired state as the following phrase of Keuneke

suggests: “Maintenance devices require components and mechanisms that both achieve a state

and make it persist.” ([Keuneke, 1991], p. 24). This ambiguity can be properly treated in OF.

In the first sense toMaintain can be reconstructed as a continuous function, whereas in the

second as the combination of a sequential and a continuous functions.

According to Keuneke, the ToMaintain(Not) function should be distinguished from

toPrevent: “ToPrevent functions provide short-term, fail-safe mechanisms, not operations for

normal and continuous maintenance” ([Keuneke, 1991], p. 24), whereas the maintain function

continuously sustains a desired state. Keuneke illustrates this difference with the example of

the dikes in Holland, which keep the land dry and thus have the toMaintain(NOT Flood)

function. In contrast, the function of the little boy who, in the case of a hole in a dike, puts a

finger in it and rescues the land from the thread of a flood, is according to Keuneke

toPrevent(Flood). Although the boy prevents Holland from flood, he does it only temporarily,

and therefore his function is not toMaintain(NOT Flood). This example shows that toPrevent

does not imply toMaintain(NOT). According to Keuneke toMaintain(NOT) does not imply

toPrevent either. She argues that the lamps in the building have the function toMaintain(NOT

Dark), but do not have the function toPrevent(Dark).

63 Framework of Functional Representation developed by Iwasaki and Chandrasekaran is discussed in

section 2.1.2.

Classifications of Functions

165

The distinction between toPrevent and toMaintain(NOT) can be reconstructed by

references to the goal’s time extent. In the toPrevent function the goal is a presential or

relatively short process, whereas in toMaintain(NOT) the goal is a time extended process.

Keuneke’s postulate that the toPrevent function does not imply toMaintain(NOT) holds

because from the fact that a goal is fulfilled at one time boundary b, it does not follow that it is

fulfilled throughout the whole chronoid whose time boundary is b. However, the second claim,

saying that toMaintain(NOT) does not imply toPrevent, seems to be incorrect. If a given goal

is fulfilled within the whole chronoid then it is fulfilled in every time boundary of that

chronoid. In the case of lamps, if they maintain the light in a building during some period of

time, it seems justified to say that they prevent the building from sinking into darkness at every

moment of that period.

The last function type distinguished by Keuneke is toControl. This function differs from

the above types since those were focused on achieving some state; while the control function

reflects the power of regulation. Keuneke writes: “To control something or someone implies a

direct multivalued relationship between the device’s action and the resulting effects.”

([Keuneke, 1991], p. 24). In OF there is no straightforward counterpart of the control function.

Nevertheless, it can be reconstructed by a number of sequential functions. For example, the

function to control the room temperature can be decomposed to two sequential

functions.

F1. Req: room temperature lower than the given value; Goal: enable

function of heating; FI: heater enabler.

F2. Req: room temperature higher than the given value; Goal:

enable function of cooling; FI: cooling enabler.

The typology of Keuneke was modified by Kitamura and colleagues [Kitamura, Mizoguchi,

1998; Kitamura et al., 2002], where yet another type of function, named toHold, was

introduced: “’ToHold’ is used when no special effort is made for the goal. For example, the

function of a pipe, ‘to pass fluid through’, is said to be ‘ToHold.’”([Kitamura et al., 2002], p.

151). It is not completely clear how the lack of effort should be understood, since even in the

case of a pipe there is a force of the water pressure which a pipe must sustain. It seems,

however, that the intuitions behind the toHold type are close to those underlying the notion of

a passive function. A pipe remains passive in realizing its function. Therefore, we suggest

interpreting the toHold function type as a passive function.

Ontological Status of Functions, Classifications and Architecture

166

We see therefore that the classification of functions developed in the current section

permits not only to reconstruct the well known classification of Keuneke together with its

formal interpretations and modifications, but moreover permit to detect some of its limitations.

7.5 Architecture

Application of OF to ontological engineering not only requires the organization of functions

into a taxonomic structure, but moreover we find it useful in providing a modularization of the

introduced notions. In particular, as was stated in the requirements of OF (R 1.3.), functions

should be modeled independently of their realizations. Several approaches reported in chapter

2 provide architectures supporting this requirement, e.g. FBSstate, MFM or FBSstructure.

In the current section we present a four-layered architecture for representing functional

knowledge. The following layers are introduced:

1. The Pure Functional Layer.

2. The Impure Functional Layer.

3. The Realization Layer.

4. The Non-functional Layer.

Each of those layers provides an answer for a different type of functional and non-functional

explanation. The pure functional layer and the impure functional layer answer what should be

done (what is the goal), and why it should be done (what is the reason behind the goal). The

non-functional layer answers the non-functional questions what is present and how it behaves.

The realization layer mediates the functional layers with the non-functional layer and provides

the answer for the question how a function is realized.

The distinguished layers permit to separate the functional from the non-functional

knowledge. It is not only important due to the fact that the functional knowledge, in contrast to

the non-functional one, is highly intentional and contextual, but it also reflects the fact that

those types of knowledge are highly independent. In turn the realization layer, as a mediating

one, is dependent on both the functional and the non-functional layer.

Figure 19 illustrates all the four layers by the example of the function to transport

goods.

Architecture

167

F

F

Figure 19. OF four-layered architecture presented on the exemplary function to transport

goods.

7.5.1 Non-functional Layer

A vast part of human knowledge does not concern functions. Moreover, one can observe that a

phenomenon described in terms of a function may be described from a non-functional

perspective as well. For example, the process of goods transportation can be described in

physical terms as the movement of bodies.

The non-functional knowledge is represented on the non-functional layer (NFL). On this

layer are handled the explanations of what an object is and how it behaves. All categories of

GFO used in the current work belong to that layer. The non-functional layer may belong to any

strata of our knowledge – physical, social or cognitive. Depending on the needs, a domain or

top-level ontology may be used on the non-functional layer. The non-functional layer is

completely independent of the functional one, thus none of the categories used on this layer

presupposes the categories of the functional layer.

7.5.2 Pure Functional Layer

The main purpose of the pure functional layer (PFL) is to represent the structure of functions

and their interrelations independently of their particular realizations. It is the layer for

modeling functions independently of their realizations. It is of particular importance e.g. in the

early phases of design, when the particular means of realization are not taken into

Ontological Status of Functions, Classifications and Architecture

168

consideration, but when of relevance are the goals. In this sense PFL also supports goals

modeling. In addition, it is beneficial for representing purely teleological view of phenomenon.

D(y,x)

Enable(x,y)

Exclude(v,w)

FI(x,f)

FICompl(x,y)

FIInd(x,y)

FITEM(x)

FSt(x,y)

Fu(x)

FuAccompl(x)

FuBasic (x)

FuCoh(x)

FuCompl(x)

FuContin(x)

FuEnable(x,y)

FuInstant(x)

FuMulGoal(x)

FuNeutral(x,y)

FuPerform(x,y)

FuPrevent(x,y)

FuSeq(x)

FuSupport(x,y)

GOAL(x)

Goal(x,y,z)

GoalFor(x,y)

GoalOf(u,y)

Intent(q,v)

IntCont(i,R,a1...an)

PartFu (x,y)

Prevent(x,y)

REQ(x)

Req(x,y)

ReqEnv(x,y)

ReqFi(x,y)

ReqOp(x,y)

SideEf(x,y)

Support(x,y)

TFRAM(x)

UniDAb(x,y)

UniFu(x)

UniFuAb(x)

UniFuPrim(x)

x ⊂⊂⊂⊂Fu y

x ⊆⊆⊆⊆Fu y

x ⇒Fu y

x ::FI y

x ::Gl y

x ::Req y

x =Fi y

x =Fu y

x =Gl y

x =Req y

Table 5. The categories of OF belonging to the Pure Functional Layer.

Although PFL enables the realization-independent functional modeling, PFL is not completely

independent of the non-functional layer. The categories of NFL provide the vocabulary for the

description of functions in PFL. It is clear since one cannot speak about functions and goals

when one lacks the vocabulary to describe the world. For example, to model the biological

function of a protein to copy a chromosome one needs to have the notion of

chromosome introduced. In this sense PFL is built above NFL.

The functional layer belongs not to the physical but to the cognitive or social strata as it

involves subjective, intentional aspects of descriptions, such as goals and reasons behind them.

The categories of OF belonging to that level are listed in table 5.

7.5.3 Realization Layer

The realization layer is the mediating layer between the pure functional layer (PFL) and the

non-functional layer (NFL). It delivers the answer to the questions: (1) how a given function is

realized, (2) what function is realized by a given entity and (3) what function an entity has

ascribed (4) is the entity malfunctioning. The mediation between the non-functional and the

functional layer is provided therefore by four relations: realization, instantiation between

Architecture

169

realizer and universal functional item, has-function and malfunction. A full list of OF

categories belonging to that layer is listed in table 6.

Contribute(x,y,z)

Execute(x,y,z)

HasFuAct(x,y,z)

HasFuDesig(x,y,z)

HasFuDisp(x,y,z)

HasFuInten(x,y,z)

HasFuReq(x,y,z)

HasFuRes(x,y,z)

HasFuUser(x,y,z)

Malfu(x,y,z)

MalfuHist(x,f,s)

MalfuInten(x,f,c)

MalfuKind(x,f,s)

MeansActRl(x,y)

R(x,y)

RAct(x,y)

RComplAct(x,y)

RDisp(x,y)

RDispStr(x,y)

RDyn(x,y)

RlAct(x,y)

RlActCulm(x,y)

RlActMin(x,y)

RlActNonCulm(x,y)

RlActSit(x,y)

RlDisp(x,y)

RPass(x,y)

UniHasFu(x,y,z)

UniHasFuAct(x,y,z)

UniHasFuDisp(x,y,z)

UniHasFuInten(x,y,z)

UniR(u,f)

UniRlMin(x,y)

x @ y

Table 6. The categories of OF belonging to the Realization Layer.

7.5.4 Impure Functional Layer

The demand of the functional modeling is to delimit the functional model, which provides the

information what should be achieved from the behavioral, or structural model, which provide

the information how it should be achieved. In practice, however, when modeling functions,

some aspects of realization are often taken into account. Sometimes there are realizations that

are the only good choices (or best practice) and sometimes there is no choice at all, since there

is only one way of realization available. Moreover, the side effects of realizations and

functions handling them are often included in the functional model. Those aspects should be

covered by OF, but surely they should not be treated as pure functional models in order not to

mix the order of what is achieved and how it is achieved.

Therefore, we introduce the impure functional layer, which is a sub-layer of the

realization layer. In contrast to the realization layer, it is not concerned primarily with the

realization of functions but it focuses on the same problem as the pure functional layer, namely

- what is to be done. In contrast to the pure functional layer, it considers this question not

independently of the realization but in the context of a particular realization and particular

realizers.

For example, consider a logistics company which has a strong fleet of transporter cars.

Considered on the purely functional level the company may have a primitive function to

transport goods from Leipzig to Berlin for 13:00, 23 May 2006.

However, due to the fact that there is a particular truck available, call it truck LVB 4040,

it is reasonable to state that this individual truck is intended to be used for that purpose. In this

Ontological Status of Functions, Classifications and Architecture

170

sense the business function of the company is an individual multiple-goal function to

transport goods G from Leipzig to Berlin for 13:00, 23 May 2006

by truck LVB 4040.

Figure 20. The UML diagram representing relations between Universal Functional

Item, Individual Functional Item and Realizer. Classes represent reified relations of

OF. Every class is embedded in the corresponding Layer.

The individual functional item resembles the individual actual realizer and the individual

function resembles the individual realization. However, those notions should not be confused.

An individual function is an intentional entity which may be realized or not, whereas the

individual realization is an objective entity having the causal power of achieving the goal of

the function. The relation between an individual function and an individual actual realization is

not one-to-one but instead one-to-zero-or-one, which means that an individual function may

be, but is not necessarily, actually realized by one individual entity. Analogically an individual

functional item is distinct from an actual realizer. The former is a purely teleological entity

while the second contains non-teleological structural description as well (see figure 20).

FuDyn(x)

FuDynR(x,y)

FuImprove(x,y,z)

FuPass(x)

FuPassR (x,y)

Futrigger(x,y,z)

Improve(f,f’,r)

IndFu(x)

PartSeq(x,y)

Realize(x,y)

Seq(y, L)

SideEffRl(x,y,z)

Trig(v,z)

Trigger(x,y,z)

x ::Fu y

x ::FI y

x ::Gl y

x ::Req y

Table 7. The categories of OF belonging to

the Impure Functional Layer.

Additionally, impure functional models enable to handle the realization-dependent relations

between functions, the side effects of realizations as well as the external classifications and

Summary

171

typologies of functions. The categories that belong to the impure functional layer are listed in

table 7.

7.6 Summary

The current chapter is oriented around the problem of the incorporation of the developed

ontology of functions into a wider ontological framework, namely into GFO. This task, in our

opinion, requires the identification of function characteristics, the analysis of some of the

candidates for function definition against those characteristics as well as the organization of

the developed notions into a taxonomic architecture. This led us to the definition of function

and enabled to plug the notion of function in an appropriate place in the taxonomy of the top-

level entities of GFO ontology.

We proposed to understand functions as subjective, contextual and goal-oriented

intentional entities. In addition, we discussed the limitations of treating functions as processes

or goals. On the basis of the notions developed in the previous chapters several classifications

of functions have been developed which, if organized in a combinatorial manner, provide a

general taxonomy of forty basic function types and an additional twenty four realization-

dependent ones.

Finally, the notions of OF have been organized into the four-layered architecture which

permits to keep separately the functional model from the model of the realization of function.

In addition, the modular architecture of OF permits to extend non-functional ontologies with

functional notions without significant changes to them.

172

8 A UML Profile for Functional

Modeling founded on OF

8.1 Introduction

In the present chapter we outline the UML profile for functional modeling based on the

ontology developed in chapters 3 to 7. The Unified Modeling Language (UML) is a powerful

and widely accepted tool for software engineering and conceptual modeling. Ontologies, on

the other hand, have been getting an increasing impact in recent years in a number of

application areas. Several attempts have been made to integrate UML and ontologies, which

could be subsumed by two main generic scenarios. The first is to apply UML to ontological

engineering, whereas the second is to improve UML with ontological analysis. Our intention is

to follow both of those strategies: on the one hand we aim to apply UML to ontological

engineering, but on the other we intend to provide an extension of UML founded on a

developed ontology of functions, which would permit to represent functional knowledge.

8.2 UML and Ontology Engineering

Many of the applications of UML are far beyond the area of object-oriented analysis, where it

is the current de facto standard. For example, UML has been used in relational database design

[Dermuth, Hussmann, 1999], data modeling [Gornik, 2003], business modeling [Eriksson,

Penker, 2000], multi-agent systems [Cranefield et al., 2001; Wagner, 2002; Bergenti, Poggi,

2000], and knowledge based systems [Abdullah et al., 2004].

Moreover, there is recognized a long list of benefits that the adoption of UML may bring

to ontology engineering [Cranefield, Purvis, 1999; Cranefield et al., 2001; Kogut et al., 2002]:

− The graphical notation of UML in comparison to text based logical languages, used as

ontology representation languages, is easily comprehensible for a human user, also for

domain experts who are not trained in logic. On the other hand there is no standard for

visual representation of ontologies. UML in this sense could be treated as a graphical

front-end of ontology representation languages.

− UML is based on many years of modeling experience.

UML and Ontology Engineering

173

− UML is an open standard commonly known and accepted both in industry and

academic world. None of the techniques developed for support of ontology

development has such a wide impact outside the research community.

− UML-oriented CASE tools are more accessible to software practitioners than current

computer-aided ontology engineering tools coming from the research community.

− Real world industrial ontology-based systems need to interact with legacy enterprise

systems, which often have existing UML models. One representation common for both

systems would simplify the mediation between those systems.

− There is a large source of ontological knowledge already available in UML models of

existing applications. Ontology extraction from existing UML diagrams can be

simplified if UML is used also for ontology development.

− In ontology-driven systems UML used both for ontology modeling and software

engineering allows to reduce the number of the needed modeling tools and techniques

to one.

− UML supports a modular approach to ontology development. UML models can be

changed easily due to the modular nature of object-oriented modeling.

− Many of the UML class diagram constructs can be directly mapped to traditional

ontology representation languages, i.e. class, generalization, instantiation, package.

Two scenarios of applying UML to ontological engineering can be distinguished. The first

involves direct application of UML to the development of ontologies. This line is followed,

among others, by Cranefield, Purvis and colleagues who in [Cranefield, Purvis, 1999]

proposed to apply UML combined with OCL as a formalism for ontology modeling and in

[Cranefield et al., 2001] discussed the application of UML to ontology modeling for agent

systems.

The second scenario involves attempts to make UML compatible with the ontology

modeling languages, especially those applied to Semantic Web such as DAML or OWL, by

extending UML metamodel. For example, [Baclawski et al., 2001] suggest using UML for

developing and displaying complex DAML ontologies. For that purpose UML is extended to

handle those elements of DAML which cannot be mapped straightforward by UML constructs,

such as property and restriction. [Falkovych et al., 2003] in turn propose to use UML to

overcome the ontology development bottleneck. For that purpose authors introduced a

translation mechanism between UML and OWL and introduced an alternative to Baclawski’s

way of handling incompatibilities between UML and OWL.

This scenario is also assumed in the OMG request for proposals for the Ontology

Definition Metamodel (ODM), which is aimed at supporting the development of ontologies

A UML Profile for Functional Modeling founded on OF

174

using UML modeling tools, the implementation of ontologies in the OWL and forward and

reverse engineering for ontologies [OMG, 2003a]. The required ODM should provide: (1) a

standard metamodel grounded in the Meta Object Facility; (2) a UML Profile defining a visual

notation for depicting ontologies, and (3) mappings between the profile and metamodel, and

between ODM and OWL DL. The request got response from both academia (e.g. [Djurić et al.,

2004; Brockmans et al., 2004]) and industry (e.g. [IBM, Sandpiper, 2005]).

Despite the benefits UML brings to ontology engineering a number of problems from

which it suffers have also been recognized. Among others it was pointed out by the Precise

UML Group (pUML) [pUML, 2005] that UML lacks in formal semantics. On the other hand,

as [Guizzardi et al., 2002a; Guizzardi et al., 2002b; Guizzardi et al., 2004a; Guizzardi et al.,

2004b] observed, defining UML constructs only in terms of its mathematical semantics,

although essential, is not sufficient to make UML a suitable ontology representation language.

In addition it was proposed to provide ontological correctness and so called real-world

semantics of UML constructs by means of upper-level ontology, in particular by means of

General Ontology Language and Unified Foundational Ontology [Guizzardi, 2005].

From the above introductory remarks we see that UML not only brings benefits to

ontological engineering but it also can be improved by means of ontologies, in principle top-

level ontologies upon which UML models can be built. In the current study we try to combine

both of those approaches. We pursue the idea that UML may be used as an ontology modeling

language, but on the other hand we propose to extend UML by means of the developed top-

level Ontology of Functions.

8.3 Objectives

As was recognized in section 2.2.2, UML has some limitations in representing functions and

functional knowledge. In particular, it does not permit to model functional knowledge

independently of the behavior realizing it. UML 2.0 is composed of two main views: structural

and behavioral, and lacks an independent functional view. Although such a functional view is

perhaps not required in the context of object-oriented modeling, it is however necessary if

UML is supposed to be used as a general language for conceptual modeling applicable also in

ontology engineering. Thus we propose to introduce to UML a third, functional view, based on

the developed top-level ontology of functions. The proposed extension of UML would enable

modeling of domain ontologies which require functional concepts.

Overview of the Architecture

175

8.4 Method

For extending UML with a functional view we use a UML-built-in extension mechanism and

by its means we adopt the notions of OF into UML. UML comes with two mechanism of

extension - a lightweight and a heavyweight approach ([OMG, 2004], p. 11):

− Lightweight approach - a new dialect of UML can be defined by using profiles to

customize the language for particular platforms (e.g., J2EE/EJB, .NET/COM+) and

domains (e.g., finance, telecommunications, aerospace).

− Heavyweight approach - a new language related to UML can be specified by reusing

part of the InfrastructureLibrary.

Here we intend to develop a lightweight extension, by developing a profile for functional

modeling. The UML profile is “a stereotyped package that contains model elements that have

been customized for a specific domain or purpose using extension mechanisms, such as

stereotypes, tagged definitions and constraints. A profile may also specify model libraries on

which it depends and the metamodel subset that it extends.”([OMG, 2003b], p.14)

8.5 Overview of the Architecture

The architecture of the profile is founded on the OF architecture presented in section 7.5. It is

composed of two profiles dependent on the Core Package: the Ontology Profile and the

Function Ontology Profile. The former is the profile for representing concepts of a non-

functional ontology and corresponds to the non-functional layer. Here, we refer to GFO but

also other ontologies, in particular domain ontologies, may be represented in this profile as

well. The Function Ontology Profile depends on the Ontology Profile and handles the concepts

introduced in the Ontology of Functions (figure 21).

Core OntologyProfile

FunctionOntologyProfile

Figure 21. Dependencies between Profiles.

A UML Profile for Functional Modeling founded on OF

176

Function Ontology Profile contains three packages: the Functions package, the Function

Ascriptions package and the Impure Functions which correspond to the functional layer,

realization layer and impure functional layer, respectively (figure 22).

FunctionOntologyProfile

Functions FunctionAscriptions

ImpureFunctions

Figure 22. Dependencies within the Function Ontology Profile.

The Functions package supports modeling of the structures of functions and interrelations

between functions independently of their realization. It contains two packages: Function

Structures and Functional Relations (figure 23).

Figure 23. Dependencies within the Functions Package.

The Function Ascriptions package relates functions to the structure and behavior, which realize

functions. Moreover, it provides means for modeling ascriptions of functions to the elements

of the Ontology Profile.

The Impure Functions package is structured analogously to Functions package and contains

the Impure Function Structures package and dependent on it the Impure Functional Relations

package. The former permits to model structure of individually determined functions, whereas

the latter permits to model interdependencies between functions, which depend on particular

realizations, such as the triggering, sequence-part and improvement relations64.

64 For more detailed discussion on the layers of functional knowledge see section 7.5.

Overview of the Architecture

177

8.5.1 Ontology Profile

In the present section we outline the Ontology Profile. However, we do not provide the full

definitions of the elements of the package. For our purposes it is enough to say that both

relations and categories of GFO are introduced as stereotypes in the Ontology Profile. On the

basis of them we define the stereotypes of the Functions, Function Ascriptions and Impure

Functions packages. Below we give only a short informal specification of the selected

stereotypes of the Ontology Profile which are used later in the specification of the Function

Ontology Profile:

− Entity (from Ontology Profile) – a most general notion comprising all kinds of entities.

− Individual (from Ontology Profile) – an element of the model that refers to exactly one

individual entity in the domain. Typically it is a UML object. However not all UML

objects are individuals, e.g. ape:species is not an individual but a universal.

− Universal (from Ontology Profile) – an element of the model which refers to more

then one individual in the domain.

− Complex Whole (from Ontology Profile) - it is a complex entity comprehended as a

whole. In particular these are facts, configurations, configuroids, situations and

situoids65.

− Agent (from Ontology Profile) – proactive agentive entity capable of establishing

goals.

− Role (from Ontology Profile) – an aspect of an Entity in some context.

− Part (from Ontology Profile) – general domain independent part-of relation.

− Proper Part (from Ontology Profile) - non-reflexive part-of relation.

− Process (from Ontology Profile) – an entity happening in time.

65 Note that in the profile developed we do not introduce the GFO distinction between situoids and

situations but integrate them under the notion of situation.

A UML Profile for Functional Modeling founded on OF

178

8.5.2 Functions Package

Function Structures

Class Diagram

Figure 24. Class diagram of the Functions Package.

Class Descriptions

Function (from Function Structures)

General

information

A stereotype extending Classifier (from Kernel).

Generalizations None.

Semantics A Function is an intentional entity defined in purely teleological terms by the

specification of a Goal, a Requirement and a Functional Item which

commonly is ascribed by means of the Has-Function relation to the entities

that in some context are the Realizations of the Function, execute such a

Realization or are intended by a reliable Agent to do it.

Specialization {disjoint, complete} Basic Function, Complex Function.

Overview of the Architecture

179

 {disjoint, complete} Coherent Function, Multiple-Goal Function.

Attributes label: String [1..*] Provides the label of the Function. Typically, it

is an expression of the form “to do something”.

determinant:

FunctionDeterminant

[3…*]

References the entities which determine the

Function.

sideEffect: Entity [0..*] References the unintended effects of the

Function. A Side Effect is an entity of an

arbitrary kind, which is affected by the function

realization but is not a part of the function goal.

In particular Side Effects are all unintended

entities existentially dependent on a Goal.

Associations

finalState: Entity[1..*] References the Comprehensible Whole, which

has a role of a Final State.

Notations Function is represented as a rectangle marked with a black arrowhead with a

white “F” inside and named by the label. Inside the rectangle in separated

compartments are listed determinants: associated Goal (optionally (1)

together with the Agent establishing it, the reason, and the priority (2)

together with the Final State containing it), the Requirements, the Functional

Item, and optionally Side Effects. Eventually, a function may be represented

in compact form as a labeled rectangle with a black arrowhead with “F”

attached.

F

Coherent Function (from Function Structures)

General

information

A stereotype extending Classifier (from Kernel).

Generalizations Function (from Function Structures).

Semantics A Function all of whose Final States compose a Coherent Entity.

Notations Similarly to Functions, but the black arrowhead is marked with “CohF”.

A UML Profile for Functional Modeling founded on OF

180

Multiple-Goal Function (from Function Structures)

General

information

A stereotype extending Classifier (from Kernel).

Generalizations Function (from Function Structures).

Semantics A Function whose Final States do not compose a single Coherent Entity.

Notations Similar to Functions, but the black arrowhead is marked with “MultF”.

Basic Function (from Function Structures)

General

information

A stereotype extending Classifier (from Kernel).

Generalizations Function (from Function Structures).

Specialization {disjoint, incomplete} Sequential Function, Instantaneous Function,

Continuous Function.

Semantics Basic Function is a Function having a single Final State being a Fact.

Constraints Shall have assigned exactly one Final State.

The Final State is single Fact.

Notations Similar to Functions, but the black arrowhead is marked with “BscF”.

Complex Function (from Function Structures)

General

information

A stereotype extending Classifier (from Kernel).

Generalizations Function (from Function Structures).

Semantics A non-basic Function.

Notations Similar to Functions but the black arrowhead is marked with “CmplxF”.

Sequential Function (from Function Structures)

General

information

A stereotype extending Classifier (from Kernel).

Generalizations Basic Function (from Function Structures).

Semantics A Basic Function whose Requirements and the Goal are Presentials and the

Requirements are intended to be present before the Goal.

Notations Similarly to Functions, but the black arrowhead is marked with “SeqF”.

Instantaneous Function (from Function Structures)

General

information

A stereotype extending Classifier (from Kernel).

Generalizations Basic Function (from Function Structures).

Overview of the Architecture

181

Semantics A Basic Function whose Requirements and the Goal are Presentials located at

the same or at coincident Time Boundaries.

Notations Similar to Functions but the black arrowhead is marked with “InstF”.

Continuous Function (from Function Structures)

General

information

A stereotype extending Classifier (from Kernel).

Generalizations Basic Function (from Function Structures).

Semantics A Basic Function whose Requirements and the Goal are Processes having the

common starts and endings.

Notations Similar to Functions but the black arrowhead is marked with “ContF”.

Function Determinant (from Function Structures)

General

information

A stereotype extending Classifier (from Kernel).

Generalizations None.

Semantics Function Determinant points to the Entity which determines the structure of the

Function.

Associations determinedFunction:

Function [1]

References the Function which is determined.

 filler: Entity[1] References the Entity which determines the

Function.

Notations Represented by a group of compartments within the function rectangle.

Goal (from Function Structures)

General

information

A stereotype of Classifier (from Kernel).

Generalizations Function Determinant (from Function Structures).

Semantics A Goal points to an Entity, which is intended to be affected by the Function.

Every Goal is intended by some Agent for some Reason and has a Priority.

Attributes reason: String [1..*] Provides the justification of a Goal.

 priority: Integer [1] Defines a priority of a goal; based on the

reason and the reliability of an Agent in a given

community.

Associations establisher: Agent [1..*] References the Agent who establishes a Goal.

Notations A compartment within the function rectangle labeled with “Goal”.

A UML Profile for Functional Modeling founded on OF

182

Requirement (from Function Structures)

General

information

A stereotype of Classifier (from Kernel).

Generalizations Function Determinant (from Function Structures).

Semantics Requirement point to the Entity which is intended to be present if the

Function is to be realized.

Notations A compartment within the function rectangle labeled with “Req”.

Functional Item (from Function Structures)

General

information

A stereotype of Classifier (from Kernel).

Generalizations Function Determinant (from Function Structures)

Semantics A Functional Item of the Function f indicates a role of entities executing a

realization of f, such that all restrictions on Realizations imposed by the

Functional Item are dictated also by some Goal of f.

Constraints The filler is restricted to Role

Notations A compartment within the function rectangle labeled with “FI”.

Additional externally defined stereotypes are used in the package:

- Entity (from Ontology Profile).

- Complex Whole (from Ontology Profile).

- Agent (from Ontology Profile).

Overview of the Architecture

183

8.5.3 Functional Relations Package

Class Diagram

Figure 25. Class diagram of the Functional Relations Package.

Class Descriptions

Functional Relation (from Functional Relations)

General

information

A stereotype extending Directed Relationship (from Kernel).

Generalizations None.

Semantics Functional Relation is an abstract class for all kinds of relations introduced

in the Profile holding between two functions.

source: Function [1] Specifies the source Function of the Functional

Relation

Associations

target: Function [1] Specifies the target Function of the Functional

Relation

A UML Profile for Functional Modeling founded on OF

184

Functional Subsumption (from Functional Relations)

General

information

A stereotype extending Directed Relationship (from Kernel).

Generalizations Functional Relation (from Functional Relations).

Semantics Functional Subsumption relates two Functions: a super-function and a sub-

function, so we say that the sub-function is a super-function. A Function f

subsumes a Function f’ iff all Determinants of f subsume appropriate

Determinants of f’.

source: Function [1] References the sub-function in the Functional

Subsumption relation.

Associations

target: Function [1] References the super-function in the Functional

Subsumption relation.

Notations A line between two Functions labeled with <<fu>> with a hollow triangle as an

arrowhead pointing to the superordinate function.

Functional Specialization (from Functional Relations)

General

information

A stereotype extending Directed Relationship (from Kernel).

Generalizations Functional Subsumption (from Functional Relations).

Semantics It is the non-reflexive variant of the Functional Subsumption. A Function f

specializes a Function f’ iff all Determinants of f” subsume the appropriate

Determinants of f and at least one Determinant of f’ specializes the appropriate

Determinant of f.

kind:

DeterminantKind

[1..3]

Functional Specialization can be classified on the basis

of the specialized determinants. The following flavors

of Specialization are introduced: Requirement

Specialization (req), Goal Specialization (goal),

Functional Item Specialization (fi).

target: Function[1] References the general Function in the Functional

Subsumption relation.

Associations

source: Function [1] References the specializing Function in the Functional

Specialization relation.

Notations A line labeled with <<fu>> with a double hollow triangle as an arrowhead

between two functions (optionally with listed kinds).

Overview of the Architecture

185

Functional Instantiation (from Functional Relations)

General

information

A stereotype extending Directed Relationship (from Kernel).

Generalizations - GFO Instantiation (from Ontology Profile).

- Functional Relation (from Functional Relations).

Semantics An individual Function f instantiates a universal Function f’ iff individual

Determinants of f instantiate the corresponding universal Determinants of f’.

target: Function [1] References the instantiated Function in the Functional

Instantiation relation.

Associations

source: Function [1] References the instantiating Function in the

Functional Instantiation relation.

Notations A dashed arrow labeled with <<fu::>> between two functions.

Functional Individualization (from Functional Relations)

General

information

A stereotype extending Directed Relationship (from Kernel).

Generalizations Functional Relation (from Functional Relations).

Semantics A universal Function f is an Individualization of a universal Function f’ iff at

least one of the individual Determinants of f instantiates an appropriate

universal Determinant of f’ and the remaining Determinants of f are equal to

the corresponding Determinants of f’.

Attributes kind: DeterminantKind[1..3] The Functional Individualization can be

classified on the basis of the instantiated

Determinants. The following flavors of

Functional Instantiation are distinguished:

Requirement Instantiation (req), Goal

Instantiation (goal), Functional Item

Specialization (fi).

target: Function [1] References the individualized Function in

the Functional Instantiation relation.

Associations

source: Function [1] References the individualizing Function

in the Functional Instantiation relation.

Notations A line between two functions with a hollow triangle as an arrowhead labeled

with <<fu-individual>> (optionally with listed kinds).

A UML Profile for Functional Modeling founded on OF

186

Function Part (from Functional Relations)

General

information

A stereotype extending Directed Relationship (from Kernel).

Generalizations - Functional Relation (from Functional Relations).

- Part-Of (from Ontology Profile).

Semantics Function f is a Function Part of a Function f’ iff the Requirements of f are

part of the Requirements of f’ and the Goal of f is a part of the Goal of f’.

target: Function [1] References the Function which is a whole in the

Function Part relation.

Associations

source: Function [1] References the Function which is a part in the

Function Part relation.

Notations A line between two functions ended with a diamond labeled with fu at the

function being the whole of the Function Part relation.

Support (from Functional Relations)

General

Information

A stereotype extending Directed Relationship (from Kernel).

Generalizations Functional Relation (from Functional Relations).

Semantics A Function f supports a Function f’ iff a Goal of f is a Proper Part of the

Requirements of f’.

target: Function [1] References the Function which is supported in

the Support relation.

Associations

source: Function [1] References the Function which supports in the

Support relation.

Notations A dashed arrow between two functions labeled with <<support>>.

Prevent (from Functional Relations)

General

Information

 A stereotype extending Directed Relationship (from Kernel).

Generalizations Functional Relation (from Functional Relations).

Semantics A Function f prevents a Function f’ iff the Goal of f excludes a Part of the

Requirements of f’.

Associations target: Function [1] References the Function which is prevented in the

Overview of the Architecture

187

Prevent relation

source: Function [1] References the Function which prevents in the

Prevent relation.

Notations A dashed arrow between two functions labeled with <<prevent>>.

Enable (from Functional Relations)

General

Information

A stereotype extending Directed Relationship (from Kernel)

Generalizations Functional Relation (from Functional Relations)

Semantics A Function f enables a Function f’ iff the Requirements of f’ are Part of the

Goal of f.

target: Function [1] References the Function which is enabled in the

Enable relation

Associations

source: Function [1] References the function which enables in the Enable

relation.

Notations A dashed arrow between two functions labeled with <<enable>>.

Determinant Kind (from Functional Relations)

Semantics It is the enumeration class that defines literals to determine the kind of

Functional Specialization and Individualization with regards to the kind of

the determinant. The following kinds are distinguished:

- Functional specialization/ Individualization with respect to

requirements

- Functional specialization/ Individualization with respect to the

goal

- Functional specialization/ Individualization with respect to the

functional item

Additional externally defined stereotypes are used in the package:

- Function (from Function Structures).

- Part (from Ontology Profile).

- Proper Part (from Ontology Profile).

A UML Profile for Functional Modeling founded on OF

188

8.5.4 Function Ascriptions Package

Realization

Class Diagram

Figure 26. Class diagrams of the Function Ascriptions Package.

Class Descriptions

Realization (from Functional Realizations)

General

Information

A stereotype extending Directed Relationship (from Kernel)

Generalizations None.

Semantics It is a class for all types of Realizations introduced in the profile66.

Associations realizationRange: Function [1] References the Function which is realized.

 realizationFiller: Entity [1] References the Entity realizing a Function.

66 Comprises both individual and universal realizations. In analogous way realizer and has-function are

introduced. All those relations pertian primarily to individuals and indirectly to the universals

instantiated.

Overview of the Architecture

189

Notations An arrow labeled with <<realization>> between an Entity and a Function.

Actual Realization (from Functional Realizations)

General

Information

A stereotype extending Directed Relationship (from Kernel).

Generalizations Realization (from Realizations).

Semantics Actual Realization references an Entity which fulfills the Requirements and

the Goal of the function and provides the additional cause for the Goal being

fulfilled.

Notations Similar to Realization but labeled with <<act-realization>>.

Culminative Realization (from Functional Realizations)

General

Information

A stereotype extending Directed Relationship (from Kernel).

Generalizations Realization (from Realizations).

Semantics References a culminative Process realizing a Sequential Function.

Notations An arrow labeled with <<culmin-realization>> between a culminative Process

and a Sequential Function.

Non-culminative Realization (from Functional Realizations)

General

Information

A stereotype extending Directed Relationship (from Kernel).

Generalizations Realization (from Realizations).

Semantics References a non-culminative Process realizing a Continuous Function.

Notations A labeled with <<non-culmin-realization>> arrow between a non-culminative

Process and a Continuous Function.

Situational Realization (from Functional Realizations)

General

Information

A stereotype extending Directed Relationship (from Kernel).

Generalizations Realization (from Realizations).

Semantics References a Situation realizing an Instantaneous Function.

A UML Profile for Functional Modeling founded on OF

190

Notations A labeled with <<sit-realization>> arrow between a Situation and an

Instantaneous Function.

Dispositional Realization (from Functional Realizations)

General Information A stereotype extending Directed Relationship (from Kernel)

Generalizations Realization (from Realizations)

Semantics References an Entity which has a disposition to be an Actual Realization of

a Function.

Notations A labeled with <<disp-realization>> arrow between an Entity and a Function.

Realizer (from Functional Realizations)

General

Information

A stereotype extending Directed Relationship (from Kernel)

Generalizations None

Semantics It is a class for all types of Realizers introduced in the Profile.

Attributes dynamics: RealizerKind[1] Specifies the kind of the Realizer with

respect to its dynamics.

realizerRange: Function [1] References the Function which is

realized.

Associations

realizerFiller: Role[1] References the Role being a Realizer.

Notations An arrow labeled with <<realizer>> between a Role and a Function.

Dispositional Realizer (from Functional Realizations)

General

Information

A stereotype extending Directed Relationship (from Kernel).

Generalizations Realization (from Realizations).

Semantics It is an Entity relevantly similar to the Actual Realizer. Relevant similarity

means that it is structurally similar to an Actual Realizer in all aspects

relevant for function Realization.

Notations A labeled with <<disp-realizer>> arrow between a Role and a Function.

Overview of the Architecture

191

Dispositional Strong Realizer (from Functional Realizations)

General

Information

A stereotype extending Directed Relationship (from Kernel).

Generalizations Dispositional Realization (from Realizations).

Semantics A Dispositional Realizer of a Function f which is involved into a

Dispositional Realization of f is called a Dispositional Strong Realizer of f.

Notations A labeled with <<disp-str-realizer>> arrow between a Role and a Function.

Actual Realizer (from Functional Realizations)

General

Information

A stereotype extending Directed Relationship (from Kernel).

Generalizations Realizer (from Realizations).

Semantics A Role of an Entity executing the Realization r of a Function f is called an

Actual Realizer of f.

Notations A labeled with <<act-realizer>> arrow between a Role and a Function.

Realizer Kind (from Realizations)

Generalizations None

Semantics It is the enumeration class that defines literals to determine the dynamics of

realizers. The following two kind are distinguished:

- Passive

- Dynamic

A passive realizer is such a realizer that does not undergo a significant

change during the realization of a function. A realizer is active if it

undergoes a change during the realization of a function.

Additional externally defined stereotypes are used in the package:

- Individual (from Ontology Profile)

- Universal (from Ontology Profile)

- Function (from Function Structures)

- Entity (from Ontology Profile)

- Role (from Ontology Profile)

- Process (from Ontology Profile)

- Situation (from Ontology Profile)

A UML Profile for Functional Modeling founded on OF

192

Has-Functions

Class Diagram

Figure 27. Class diagram of the Has-Functions Package.

Class Descriptions

Has-Function (from Has-Functions)

General

Information

A stereotype extending Directed Relationship (from Kernel).

Generalizations None

Semantics A relationship comprising all types of assignments of a Function to an

Entity in a Situation introduced in the Profile.

target: Function[1] References the Function which is ascribed in the

Has-Function relation.

source: Entity [1] References the Entity to which a Function is

ascribed.

Associations

context: Situation [1] References a Situation in context of which a

Function is assigned to an Entity.

Notations A diamond labeled with <<has-fu>> linked to an Entity, a Situation and a

Function. The Situation is indicated by the keyword context and the

Function - by the arrowhead pointing to it. Optionally, in cases where the

context of the Has-Function is irrelevant it may be represented as an arrow

labeled with <<has-fu>> between an Entity and a Function.

Overview of the Architecture

193

Has-Actual-Function (from Has-Functions)

General

Information

A stereotype extending Directed Relationship (from Kernel).

Generalizations Has-Function (from Has-Functions).

Semantics An Individual x has an Actual Function f in a Situation s iff x is an Actual

Realization of f in s or x is a role-filler of an Actual Realizer r of f in s.

Notations Similar to Has-Function but labeled with <<has-act-function>>.

Has-Dispositional-Function (from Has-Functions)

General

Information

A stereotype extending Directed Relationship (from Kernel).

Generalizations Has-Function (from Has-Functions).

Semantics An Entity x has a Dispositional Function f in a Situation s iff x is a

Dispositional Realization of f in s or an actor of a Dispositional Realizer of

f in s.

Notations Similar to Has-Function but labeled with <<has-disp-function>>.

Has-Intended-Function (from Functions)

General

Information

 A stereotype extending Directed-Relationship (from Kernel).

Generalizations Has-Function (from Has-Functions).

Semantics An Entity x has an Intended Function f in a situation s iff there is an Agent

who intends x to have a Function f in s.

Attributes kind: IntendedFunction Kind[1..4] Specifies the kind of Intended Function.

Notations Similarly to Has-Function but labeled with <<has-int-function>>.

A UML Profile for Functional Modeling founded on OF

194

Intended-Function Kind (from Has-Functions)

Generalizations None.

Semantics It is the enumeration class that defines literals to determine the kind of an

intended function. The following kinds are distinguished:

- required - Has Required Function

- designed - Has Designed Function

- user - Has User Function

- researched -Has Researched Function

Additional externally defined stereotypes are used in the package:

- Function (from Function Structures)

- Entity (from Ontology Profile)

- Situation (from Ontology Profile)

8.5.5 Malfunctions Package

Malfunctions are concerned with the lack of a dispositional or actual realization of a given

function. An item is malfunctioning when a goal of the function should be reached by the item

but is not.

Class Diagram

«stereotype»

Individual

«stereotype»

Function

«stereotype»

Malfunction

«stereotype»

Situation

«stereotype»

Malfunction wrt History

«stereotype»

Malfunction wrt Instances of Kind

+kind : Malfunction Kind

«stereotype»

Malfunction wrt Intention

PartOf

+required

+desigend

+user

+researched

«enumeration»

Malfunction Kind

context

target

source
part whole

Figure 28. Class diagram of the Malfunctions Package.

Overview of the Architecture

195

Class Descriptions

Malfunction (from Malfunctions)

General

Information

A stereotype extending Directed Relationship (from Kernel).

Generalizations None.

Semantics An abstract class comprising all types of Malfunctions of an Individual in a

Situation (context) introduced in the Profile.

target: Function[1] References the Function in the context of which

the Malfunction is attributed.

source: Individual [1] References an Individual to which a Malfunction

is attributed.

Associations

context: Situation [1] References a Situation in which an Entity

malfunctions.

Notations A diamond stereotyped with <<mal-fu>> linked to an Individual, a Situation

and a Function. The Situation is indicated by the keyword context, the

Function - by the arrowhead pointing to it. Optionally, the diamond may be

labeled with a description of the failure.

Malfunction wrt. Intended-Function (from Malfunctions)

General

Information

A stereotype extending Directed Relationship (from Kernel).

Generalizations Malfunction (from Malfunctions).

Semantics An Individual x malfunctions in a given context c with respect to the

Intended Function f iff:

(a) x has Required/Designed Function f in c and

(b) x does not have Dispositional or Actual Function f in c.

Attributes kind: MalfunctionKind [1..2] Specifies the kind of Malfunction.

Notations Similar to Malfunction but stereotyped with <<int-mal-fu>>.

A UML Profile for Functional Modeling founded on OF

196

Malfunction wrt. History (from Malfunctions)

General

Information

A stereotype extending Directed Relationship (from Kernel).

Generalizations Malfunction (from Malfunctions).

Semantics An Individual x Malfunctions with respect to its History in a Situation s in

the context of a given Function f iff x used to have a Dispositional or an

Actual Function f in a Situation s’ similar to s and does not have it in s.

Notations Similarly to Malfunction but stereotyped with <<hist-mal-fu>>.

Malfunction wrt. other Instances of a Kind (from Malfunctions)

General Information A stereotype extending Directed Relationship (from Kernel).

Generalizations Malfunction (from Malfunctions).

Semantics An Individual x being an instance of a kind u Malfunctions in comparison

with other Individuals of Kind u with respect to a Function f in a Situation

s iff

(a) other instances of u have a Dispositional or Actual Function f in the

Situations similar to s,

(b) x does not have a Dispositional or Actual Function f in s.

Notations Similar to Malfunction but stereotyped with <<kind-malfunction>>.

Malfunction Kind (from Malfunctions)

Semantics It is the enumeration class that defines literals to determine the kind of an intended

malfunction. The following types are distinguished:

- Malfunction with respect to required function

- Malfunction with respect to designed function.

- Malfunction with respect to user function.

- Malfunction with respect to researched function.

-

Additional externally defined stereotypes are used in the package:

- Individual (from Ontology Profile)

- Situation (from Ontology Profile)

- Function (from Function Structure)

Overview of the Architecture

197

8.5.6 Impure Function Structures Package

Class Diagram

Figure 29. Class diagram of the Impure Function Structures Package.

Class Descriptions

Individual Function (from Impure Function Structures)

General

information

A stereotype extending Object.

Generalizations Function (from Function Structures).

Semantics An individual instance of a Function. It is a Function defined in the context of

a particular realization. All determinants of the Individual Function are

Individuals.

Notations

F

Additional externally defined stereotypes are used in the package:

- Functional Instantiation (from Function Structure).

- Function (from Function Structure).

A UML Profile for Functional Modeling founded on OF

198

8.5.7 Impure Functional Relations Package

Class Diagram

Figure 30. Class diagram of the Impure Relations Package.

Class Descriptions

Impure Functional Relation (from Impure Functional Relations)

General

Information

A stereotype extending Directed Relationship (from Kernel).

Generalizations None.

Semantics It is a grouping of all impure functional relations introduced.

source: Function [1] References the Function which is the source in the

Impure Functional Relation

Associations

target: Function [1] References the Function which is the target in the

Impure Functional Relation.

 context: Entity [1] References the Entity which is the Realization of

the Target Function in context of which the Impure

Functional Relation holds.

Trigger (from Impure Functional Relations)

General

Information

A stereotype extending Directed Relationship (from Kernel).

Generalizations Impure Functional Relation (from Impure Functional Relations).

Semantics A Function f triggers a Function f’ in a Realization r iff the Goal of f is a

Trigger of the Realization r of the Function f’

Notations A diamond stereotyped with <<trigger>> linked to a source and target

Function and an Entity being a Realization of a target Function. The

Overview of the Architecture

199

arrowhead points to the target Function and the link marked with the

keyword context to the Entity.

Improve (from Impure Relations)

General

Information

A stereotype extending Directed Relationship (from Kernel).

Generalizations Impure Functional Relation (from Impure Functional Relations).

Semantics A Function f improves a given Realization r of a Function f’ iff the

Realization of f neutralizes some Side Effect of the Realization r of f’.

Notations Similar to Trigger but labeled with <<improve>>.

Sequence Part (from Functional Relations)

General

information

A stereotype extending Directed Relationship (from Kernel).

Generalizations - Impure Functional Relation (from Impure Functional

Relations).

- Part-Of (from Ontology Profile).

Semantics A Function f is a Sequence Part of a Function f’ iff f is an element of

the sequence of Functions realizing the Function f’.

target: Function [1] References the Function which is realized

by the sequence of Functions.

Associations

source: Function [1] References the Function which is an

element of the sequence of Functions

realizing the whole-function.

Notations If the context is not required - a line between two functions ended with

a diamond labeled with seq at the function being the whole of the

Sequence Part relation. If the context is required to be present then

Sequence Part can be presented similarly to Trigger but labeled with

<<seq-part>>.

A UML Profile for Functional Modeling founded on OF

200

Additional externally defined stereotypes are used in the package:

- Function (from Function Structures)

- Realization (from Realizations)

- Entity (from Ontology Profile)

- PartOf (from Ontology Profile)

8.6 Discussion and Conclusions

After presenting the developed profile let us reconsider the existing UML elements which may

be used to model functions and compare them to the profile developed. In particular we will

concentrate on use case diagrams which are often suggested to represent the functionality of a

system, see e.g. ([Rumbaugh et al., 1999], p. 488).

On the first glance functions in OF resemble use cases. Firstly, there are a number of

structural similarities: Firstly, the name of a use case resembles the label of a function.

Secondly, a use case is related to the behavior realizing it (by ownedBehavior relation), which

resembles the realization relation between function and the entity realizing it (e.g. a process) in

OF. Thirdly, use cases may be specified in terms of pre- and post-conditions, which resemble

requirements and goals of functions. Fourthly, use cases are assigned to actors representing the

role of the external to the system entity involved in the use case. The association of the use

case to an actor “describes how an instance of the classifier realizing the use case and a user

playing one of the roles of the actor interact” ([OMG, 2005], p. 579). In this sense an actor

resembles the functional item. In addition, use cases are organized into a

generalization/specialization tree and can be glued by <<include>> and <<extend>> relations,

which resemble the part-of relations between functions.

The above, then, suggests treating use cases as functions and the redundancy of the

additional profile for functional modeling. However, in our opinion the above similarities are

only superficial. The first strict difference concerns the essence of the use cases which are

behavioral classifiers, such that “each use case specifies some behavior, possibly including

variants, that the subject can perform in collaboration with one or more actors”([OMG, 2004],

p. 578). From this follows that if use cases are to be considered to represent functions, then in

fact they are restricted only to behavioral functions, i.e. functions realized by some behavior,

i.e. a process. The relation of ownedBehavior confirms this understanding of the use case. In

OF, on the other hand, accordingly with the principles adopted in functional device

representation, we consider functions to be independent of behavior. Moreover, as reported in

Discussion and Conclusions

201

section 3.5, there are functions not related to behavior, i.e. instantaneous functions. Thus, the

notion of function in OF is broader than the notion of function based on a use case.

Concerning the similarities in structure between use cases and OF functions we admit

that functions, analogously to use cases, are defined in terms of preconditions and

postconditions, called requirements and goals in OF. However, in contrast to pre- and post-

conditions, which in fact are not the elements of UML meta-model, requirements and goals in

OF are ontologically analyzed and formally defined. Concerning the similarity of the notion of

actor and the notion of functional item we claim that they cannot be identified. Firstly, an actor

represents the role of the external entity in interaction with a system, not with a single use case.

For example, consider the typical actor customer, which is a role of a person in the context

of a whole system. Customer can be assigned to various use cases, e.g. view item, or

purchase item. In the interaction with each of those use cases customer has a different

role, i.e. observer, purchaser. Those roles are not dependent on the actor as such but on

the use case, hence the same role may be shared by the different actors. For example, system

administrator may also be assigned to view item use case and have a role of an

observer in the context of that use case. As reported in [Irwin, Turk, 2005], those more

precise roles are not represented in use cases, but are represented in OF as functional items.

In addition, it seems problematic in use case diagrams to distinguish a mere participant

of a use case from an actor, being an executor of it. For example, the use case update

customer data may be defined in such a way that it requires the presence of a customer

but is executed by a bank employee. This again can be grasped by the notions of OF – here in

particular by the distinction between the realizer and the means of realization.

The relations between functions introduced in OF exceed the subsumption and part-of

relations and thus provide the richer framework for modeling functions than the relations

present in use case diagrams. Finally, the issues of function ascription and malfunction

ascription crucial in many domains are out of the scope of use case diagrams, but are handled

in OF.

Concluding we can say that functions in our understanding and the UML profile

developed on their basis differ significantly from use case diagrams and provide a richer

formalism for modeling functions. In addition, the understanding of a use case as a behavioral

classifier prevents us from considering functions as an extension of use case, but more

generally as an extension of classifier.

In addition, it should be mentioned that, for the purpose of modeling functions with

processual realizations only, the use case diagrams can be enhanced with some of the

expressiveness provided above, such as functional relations.

A UML Profile for Functional Modeling founded on OF

202

The profile is intended to be used just as it was discussed in the introductory section

for the domain ontology development. In the first place in [Burek et al., 2006] we intend to use

it for modeling functions within Open Biological Ontologies.

203

9 Conclusions

9.1 Problem

The current work is concerned with the development of a top-level ontology of functions and

the incorporation of it into a wider ontological framework as well as providing the means for

functional modeling. It was recognized that the notion of function is a domain-independent

notion and is important in a high number of application areas. However, in our opinion there is

a lack of a general, domain-independent treatment of this notion. The current approaches to

function representation are mainly domain-oriented and the available top-level ontologies lack

the notion of function or treat it scantily.

9.2 Solution

In the current work we have developed a formal, top-level ontology of functions incorporated

in the wider ontological framework of GFO. The developed ontology covers four basic

problem areas:

1. The representation of functions and functional relations independently of their

realizations.

2. The determination of function realizations.

3. The assignment of functions to entities by the has-function relation.

4. The determination of an ontological status of function and the incorporation of the

ontology of functions into the top-level ontology of GFO.

In addition, on the basis of the ontology developed the ready-to-use modeling framework has

been proposed.

9.3 Advantages

Concerning the first problem area in the developed ontology functions are represented by so

called functional structure, which brings several profits to functional representation. The

advantages are discussed in the order of the requirements for the ontology of functions

postulated in section 2.4.

Conclusions

204

− A function structure comprises the natural language label and the formally defined

determinants. The label permits multiple natural language description that makes functions

easily comprehensible for human users (ref. R.1.1). On the other hand, the label is only

one of the components of functional representation, thus functional representation is not

limited to ambiguous natural language description but may be precisely given by function

determinants – requirements, goal, and functional item.

− The requirements together with the goal can be interpreted as an input-output pair, which

makes the framework compatible with input-output representations (ref R.1.2.). On the

other hand, it extends them, since functions are not reduced in our approach only to the

pair of an initial state and goal, but a functional item is also included. In addition, all those

notions are ontologically founded in GFO.

− The OF architecture permits both to represent functions independently from their

realizations (on the functional level) and to represent entities involved in the realization

independently from functions (on the non-functional level) (ref. R.1.3.1, R.1.3.2). The

realization layer mediates those two independent layers.

− Functions are defined neither in behavioral nor in processual terms, which enables to

handle not only behavioral functions but also static, structural functions (ref. R.1.4). Three

basic kinds of functions permit to handle processual and non-processual functions.

Sequential functions handle the cases in which the goal of the function is the culmination

of the realization process. In contrast, continuous functions permit to handle functions

maintaining the goal for a given period of time. Finally, instantaneous functions handle

static and instantaneous realizations of functions like the functions realized by structures.

Moreover, the analysis of the dynamics of a realizer permit to distinguish processual

passive from processual active functions.

− Function is not defined by reference to the particular entity having or realizing it but to the

functional item, which is a role depicted in purely teleological terms. This makes the

function structure independent of the particular function bearers (ref. R.1.5).

− The introduced relations between functions enable not only to model a single function

independently of its realizations but also a web of functions (ref. R.1.6). Classical

ontological relations such as is-a, instantiation, part-of have been adopted for functions.

Moreover, a number of relations specific for function such as enable, support, prevent have

been defined.

− The notion of a goal permits to handle not only the proper goals of functions but also

restrictions on function realizations. Side effects, both positive and negative are handled

separately from the function goals (ref. R.1.7).

Adventages

205

− The very same function in different realizations may be triggered by various triggers. Not

including triggers into requirements is an additional aspect of making function structure

realization-independent.

− Additionally, conflicts between functions are handled by priorities assigned to goals which

permit to order functions.

Concerning the second problem area, two aspects of the notion of realization are identified. In

the first sense an individual entity, in particular a process is said to be a realization of a

function, and in the second - an entity, e.g. a persistant via its execution of the process of

realization realizes the function. The former is called the realization of a function, the latter -

the realizer of a function. This dichotomy enables to evaluate entities against being the

realizations of functions, as well as against executing and contributing to the realizations of

functions (ref. R.2). Moreover, since the notion of realization underlies the function ascription

it permits to handle the distinction of the function of processes and the function of objects. In

OF functions might be ascribed both to the entities being the realizations of functions, e.g.

processes or situations as well as to the entities executing those realizations, e.g. persistants

(ref. R.3.2).

Not only actual but also dispositional realizations and realizers, identified by the

references to the realization and realizer universal, are handled. They permit to identify the

potential realizations of functions.

Concerning the third problem area, three basic kinds of has-function relation have been

introduced: dispositional has-function, actual has-function and intended has-function (ref.

R.3.1). That solution seems to capture coherently most of the approaches discussed in the

literature. The first two kinds correspond to the intuitions of a function understood as a

capability or a actual behavior of an entity. In turn, the intended has-function takes into

account the agent’s intentions and justifies the normative character of function ascriptions (ref.

R.3.3). In particular, it is the extension of the view of a function as the “the designed

disposition”, which handles not only the designed dispositions, but also those required, or

intended by a user or researched. In addition, the framework permits also to assign

malfunctions to entities (ref. R.3.4), which is of particular importance in item evaluation. The

three modes of malfunction cover not only the malfunction of artifacts but also of other sorts

of entities, e.g. body organs.

Finally, the developed ontology has been incorporated into the wider ontological

framework of GFO (ref. R.4). This is of particular importance, since we have found functional

knowledge not to be standing in isolation but to be related to non-functional knowledge. OF is

designed as a module of GFO and the category of function is incorporated into GFO as an

intentional entity, being a part of mental strata. This solution keeps the notion of function out

Conclusions

206

of processual and behavioral bias. On the basis of the developed framework we have provided

three classifications of functions, which serve as the basis for the development of a taxonomy

of top-level functions. Additionally, three classifications of functions based on their

realizations, called external classifications, have been introduced.

The ontology is organized into a modularized architecture which, on the one hand,

separates the pure functional knowledge from the non-functional one, and on the other hand

enables to relate them by the realization and function ascriptions. The modularized architecture

enables to apply OF into current ontologies which lack functional knowledge or comprise

functional and non-functional knowledge in loose integration only without significant changes

to them as will be demonstrated in the coming section.

9.4 Applications

9.4.1 Conceptual Modeling

It has been demonstrated by Guizzardi in [Guizzardi, 2005] that the top-level ontologies can

provide sound and formal foundations for the structural conceptual models. Our intention is to

apply OF together with the underlying GFO as a general, formal and precise language for

functional modeling. In particular we are interested in extending UML - the current de facto

standard in OO conceptual modeling, which has recently been proposed by many authors to be

used also for ontological engineering.

UML as it was recognized in section 2.2.2 has some limitations in representing

functions and functional knowledge. In particular UML permits to represent functions only in

terms of behavior: “each use case specifies some behavior, possibly including variants, that the

subject can perform in collaboration with one or more actors”([OMG, 2004], p. 578). From

this follows that if use cases are to be considered as functions, then in fact they are restricted

only to behavioral functions, i.e. functions realized by some behavior (process).

UML 2.0 is composed of two main views: structural and behavioral, and lacks an

independent functional view. Although, such a functional view is perhaps not required in the

context of object-oriented modeling, it is however necessary if UML is supposed to be used as

a general language for conceptual modeling applicable also in ontology modeling. Thus, we

proposed in chapter 8 to introduce to UML a third, functional view, based on the developed

OF and the underlying it GFO. The proposed extension is of particular importance for enabling

modeling of domain ontologies, which require functional concepts.

For extending UML with a functional view founded on OF we developed a UML profile

in which the notions of OF are introduced as stereotypes with their own graphical notations

Applications

207

enabling the graphical visualization of functional models. Figure 15 as well as figure 31

illustrating the application of OF in bio-ontologies make use of some of those stereotypes.

The developed UML profile serves on the one hand as a formalism for modeling

functional knowledge and on the other hand it may be applied as a guide-post for specifying

functions in conceptual modeling.

9.4.2 Biological Ontologies

The developed ontology of functions is intended to be domain independent and thus applicable

in a number of domains. So far, the first attempts of applying it to bio-ontologies, and in

particular to the Open Biomedical Ontologies (OBO), has been presented in [Burek et al.,

2006]. The Open Biomedical Ontologies project (OBO) [OBO, 2005] serves as an umbrella

organization providing some basic criteria and guidelines for the standardization of biomedical

ontologies. It includes a large number of domain specific ontologies such as the Gene

Ontology (GO) [Ashburner et al. 2000] – which provides information about processes,

molecular functions and sub-cellular locations of genes and gene products – and anatomical

and developmental ontologies available for specific species. In [Burek et al., 2006] OF has

been recognized to be beneficial for OBO, in particular it helps in the identification and

explanation of relations between processes and functions and the identification of implicit

functions and processes.

Identification of Links between Processes and Functions

There has been some controversy and discussion about whether the “Molecular Function”

taxonomy of the Gene Ontology describes functions or activities, and how functions are

related to processes [Smith et al., 2003]. To our knowledge, no practical or theoretical solution

has yet been proposed. Functions and activities are usually considered different entities, and

actions or activities may realize certain functions. Therefore, while the function of an enzyme

may be to catalyze a reaction, the activity performed by the enzyme is the catalysis

itself, which may be embedded in another process. We assume that at least parts of the

Molecular Function taxonomy refer to genuine functions in the sense of OF, and the annotation

relation for some of the gene products annotated to these terms corresponds to the has-function

relation. A general example is GO:0005215 (transporter activity), which we

understand as referring to the function to transport. A more specific example is

GO:0051119 (sugar transporter activity), which can be understood as the

function to transport sugar and can be modeled in the framework of OF:

Conclusions

208

− As requirements, we assume that a sugar-molecule (CHEBI:25407 or

CHEBI:25679) is located at some location.

− The goal is the location of the sugar molecule at a different location.

− The functional item is a universal role which we call sugar transporter.

<<req>>

Sugar present AND

Sugar located_in A

<<goal>>

Sugar located_in B

F

MAL21

to transport Sugar

(MF GO:0051119)

<<fi>>

Sugar Transporter

Carbohydrate

transport

(BP GO:0008643)

MAL21 qua sugar

transporter

<<realization>>

<<role-in>>

<<has-role>>

<<req>>

Oxygen present AND

Cell present AND

NOT Oxygen contained_in Cell

<<goal>>

Oxygen contained_in Cell

F

Erythocyte

(CL:0000232)

to accumulate Oxygen

<<fi>>

Oxygen Accumulator

Oxygen

Accumulation

Process

Erythrocyte qua

Oxygen Accumulator

<<realization>>

<<role-in>>

<<has-role>>

Figure 31. Two exemplary models employing OF constructed by means of the UML profile for OF.

On the left-hand side, a schematic version of the function to transport sugar is shown together

with its realization. Processes of the type carbohydrate transport realize this function, and an

entity, in this case MAL21 (maltose permease), has ascribed the function to transport

sugar. Whenever applicable, the identifiers from the GO are used (for the function and process).

MAL21 is currently annotated to the function and the process in the GO. In this model, the annotation

relation is replaced by the has-function relation. On the right-hand side, the function to accumulate

oxygen is modeled. This is a function taken from the Celltype Ontology. Except for erythrocyte,

the entities involved in this model are not present in any of the OBO ontologies but are identified by

means of OF.

We find that many of the gene products annotated with the sugar transporter

activity in GO’s Molecular function taxonomy are also annotated with some sub-category

of the transport (GO:0006810) or carbohydrate transport (GO:0008643)

categories in GO’s Biological Process taxonomy. Also the names of the categories indicate a

link, and of course there is an obvious one: gene products which have a function to

transport may participate in a transport process. With the help of OF, we can make

explicit some links between categories in GO’s Molecular Function and Biological Process

taxonomies: Processes of type carbohydrate transport (GO:0008643) are

Applications

209

realizations of the function to transport sugar; many of the gene products annotated

with either carbohydrate transport or sugar transporter activity, such as

MAL21 (maltose permease), can stand in the has-function relation to to transport

sugar; new categories appear, namely gene products acting as (or “qua”) transporter, e.g.

MAL21 qua transporter which is a role of MAL21 and a realizer of the function to

transport sugar. The left-hand side of figure 31 demonstrates the full interconnections

of this example by means of OF. In terms of the relations we introduced this is captured by

Execute(MAL21, GO:0008643, GO:0051119), which has the reading that MAL21

executes the process of carbohydrate transport which is a realization of the function

to transport sugar. What could be directly added to GO are links of realization and

has-function: UniRlMin(GO:0008643, GO:0051119) and UniHasFu(MAL21,

GO:0051119) saying that process GO:0008643 is the realization of function

GO:0051119 and that MAL21 has a function GO:0051119.

Identification of Implicit Functions and Processes

The Ontology of Functions can be applied to existing taxonomies in order to make explicit

functions and processes which are currently implied but not separately defined. This kind of

use of the concept of function occurs in the Celltype Ontology [Bard et al., 2005] (CL) and the

Ontology of Chemical Entities of Biological Interest [Brooksbank et al., 2005] (ChEBI). Here,

we will only explore the Celltype Ontology, but the same argument can be applied to ChEBI.

CL uses the term function in the sub-tree cell by function which classifies cell

types by the functions which they perform. A general example is stuff accumulating

cell (CL:0000325), and more specifically oxygen accumulating cell

(CL:0000329), of which a red blood cell or erythrocyte (CL:0000232) is a

sub-category. The function to accumulate oxygen (by a cell) would be

modeled as shown in the right-hand side of figure 31:

− The presence of oxygen (ChEBI:25805) outside of a cell (CL:0000000) is the

requirement of the function.

− The goal of the function is the cell’s accumulation of oxygen: The oxygen is contained

in the cell.

− The functional item is called oxygen accumulator.

The subsumption of erythrocyte under oxygen accumulating cell in CL reflects

the fact that erythrocytes have the function to accumulate oxygen, UniHasFu

(CL:0000232, to accumulate oxygen). Further, they may act as oxygen

Conclusions

210

accumulators, a new category for CL, in the process of oxygen accumulation,

UniRlMin(oxygen accumulation, to accumulate oxygen). The execute relation

captures all these new relations appropriately: Execute(CL:0000232, oxygen

accumulation, to accumulate oxygen). The analysis of erythrocyte in CL has led to

the discovery of entities which are not yet part of CL or any other OBO ontology, but which

contribute to the understanding of interactions among ontologies in cellular biology, and

therefore making them amenable to automated reasoning. Additionally, we can now define

oxygen accumulating cell as a cell which has the function to accumulate

oxygen.

From the above we conclude that OF can be used to provide additional information for

existing biomedical ontologies such as the Gene Ontology (GO), without the need for

modification of the existing structure of these ontologies. In general, it provides a framework

for defining functions and relating them to various other entities, such as processes, roles and

even genes and gene products. This framework may benefit the annotation and curation

process of domain ontologies and lead to improved definitions and completeness. The

advantage of the OF is enhanced expressivity. For example, the curators of GO, when

annotating a gene product with the appropriate terms from GO, will have the information

available that a certain protein is involved in some process and how it is related to a certain

molecular function. They may also have more information about the protein, for example the

conditions under which it operates and other requirements which need to be satisfied for the

protein to be active. By means of OF, this information can be made explicit, and will not be

lost as is currently the case. OF further allows for a refinement or replacement of the

annotation relation in a number of cases by means of the has-function relation. Note that the

latter is an ontological relation, in contrast to the annotation relation, which is currently a

database relation. Refined annotations do not only provide more information within ontologies

themselves, but also with respect to the relation between categories of biomedical ontologies

and genomic knowledge about biological reality. Both additional information due to enhanced

expressivity and refined annotations may prove useful for the various statistical methods which

have been applied to biomedical ontologies in order to detect biological correlations, such as

[Beissbarth, Speed, 2004; Berriz et al., 2003; Subramanian et al., 2005].

Currently, by the effort of the Ontologies in Biomedicine Group [OBG, 2006] OF has

been implemented in OWL DL and together with GFO provides the foundation of

BioCoreOntology. In addition OF has been partially mapped to the molecular function

taxonomy and biological process taxonomy of OBO. The mapping identifying, among others,

two thousands appearances of the realization relation relies on the statistical methods and is

intended to be verified by help of the appropriate curation tools being under development

Future Work

211

9.5 Future Work

The current work presents the formal top-level ontology of functions, applicable in domain

ontologies and conceptual modeling. However, the work cannot be seen as complete. Instead

we recognize a number of future research directions. Firstly, several issues concerning the

theoretical aspects of functions should be further analyzed; in particular evolutionary functions

and etiological interpretation of function should be included into OF. Evolutionary functions

are of particular importance in biology, and as the brief summary of the related work in section

2.3.2 has shown, many problems concern them. Although some aspects of etiological theories

have been adopted in our framework, i.e. the intended has-function or the malfunctions with

respect to the item’s history, the development of the applicable notion of evolutionary function

still requires much scientific effort.

The second direction of the future work concerns the interdependencies between

functions and roles. The Ontology of Functions refers often to the theory of roles, especially in

the context of the notions of functional item and realizer. Moreover, the notions of role and of

function seem to be closely related and in fact in everyday language both notions are often

used convertibly. For example, it seems that both of the following phrases share the same

intuitions: “the role of teaching students”, “the function of teaching students”. Also the

function ascription is often equivalent to the role ascription, e.g. compare “John has a role of

teacher” with “John has a function of teaching”.

The next important direction of future research in our opinion concerns the correlation

of the ontology of roles and the ontology of functions. In particular the results presented in the

current work can be used for the extension of the ontology of roles incorporated into GFO

[Loebe, 2006]. For instance, functional items as roles defined in purely functional terms could

be considered as an additional, beside processual, social and relational, type of role.

Additional direction of future research involves the evaluation and application of the

developed framework. We believe that a good evaluation method of the developed ontology is

its application to the current domain ontologies of functions. We have investigated the

applicability of OF in bio-ontologies as well as the partial mappings between OF and a

restricted fragment of OBO has been provided and the first results seem to be promising. Now,

by help of curation tools those mappings should be examined and if necessary improved. In

addition we plan to introduce more notions of OF to bio-ontologies, in particular malfunction.

 Moreover, it should be investigated how far OF permits to underpin other domain

function ontologies, such as e.g. business function ontologies. In this sense the taxonomies of

Conclusions

212

functions developed in section 7.4 can be considered as most general functions underpinning

the domain specific functions.

OF could be used as the methodological framework for the development of the domain

function ontologies from scratch, which however requires the development of the methodology

for the specification of domain functions based on OF. Among other things, of help in this task

may be the techniques of functional design outlined in section 2.1. Some of the general

principles can already be gained from the developed ontology, such as the architectural

principles of delimiting function from realization or those concerning the determination of the

structure of functions.

In the context of the last two issues mentioned above of particular importance is the

development of appropriate tools which permit to create domain ontologies of functions, refine

the current ontologies as well as support some of the methodological principles for functional

modeling imposed by OF. The first of the family of such tools is a wiki-based curation system

for OF [Hoehndorf et al., 2006], being under development at the Ontologies in Biomedicine

Group. It is specially suited for the annotation of gene functions by means of the relations of

OF, and for enablement of the collaborative curation of the Ontology of Functions and the bio-

ontologies founded on it.

Finally, the tools for graphical representation and modeling of functions can be

constructed upon the UML profile introduced, which however should be developed further. In

particular, in order to provide a cohesive UML-based ontological framework for modeling

functions axioms of OF should be at least partially translated into Object Constraint Language.

213

Appendix A: GFO Terms and

Definitions

The present appendix provides the reference list of the basic notions of GFO used in the thesis. Some of

the notions are slightly modified and/or simplified for the purpose of the current study. The notions

concerning causality are not incorporated in the current version of GFO [Heller, et al., 2006] but are

published elsewhere [Michalek, 2005; Michalek, 2006]. In the below list they are labeled with OC

(Ontology of Causality). The list is organized in the alphabetical order. For each notion a name, a GFO

symbol and the description, optionally with selected axioms, are provided.

Name Symbol Description

Category See Universal

Cause

(from OC)

Cause(x,y) A causal relation between a cause and an effect. In

[Michalek, 2005] this relation implies the following

conditions:

(1) a statistical dependency (regularity) between the existence

of a cause and an effect, denoted by Reg(x,y): Cause(x,y)

→ Reg(x,y);

(2) the effect must be manipulable by the cause.

Man(x,Qx,y,Qy) is the relation mediating a presential x and its

property Qx with a presential y and its property Qy, such that

manipulation of the value of Qx changes the value of Qy:

Cause(x,y) → ∃Qx Qy(Man(x,Qx, y,Qy)).

In OF the predicate Cause(x,y) underpins all types of

causations introduced.

Cause,

instantaneous

Causeinst(x,y) The causal relation between presentials located at the same

time boundary.

Causeinst(x,y) ↔ Pres(x) ∧ Pres(y) ∧ Reg(x,y) ∧

∃qw(Man(x,q, y,w)) ∧ ∃t(At(x,t) ∧ At(y,t)).

Cause,

cohesive

 See Process Causally Cohesive.

Cause,

adhesive

 See Process Casually Adhesive.

Appendix A: GFO Terms and Definitions

214

Change Change(e1, e2,

u1, u2, u)

Extrinsic changes are represented by Change(e1, e2, u1, u2,

u), where e1 and e2 capture the pair of process boundaries and

u1 and u2 are disjoint sub-universals of u, such that e1 and e2

instantiate u1 and u2, respectively.

Extrinsic change holds between coinciding boundaries e1 and

e2, whereas in intrinsic change boundaries e1 and e2 are at the

opposite ends of a process of arbitrary extension

Chronoid Chron(x) A temporal interval with boundaries. Chronoids are not

considered in GFO as mere sets of points, but as entities sui

generis.

Coincidence Coinc(x,y) Coincidence is a relationship between space- (spatial

coincidence) and time-boundaries (temporal coincidence).

Intuitively, two such boundaries are coincident if and only if

they occupy “the same” space or time, but they are still

different entities, e.g. in a sense that they bound different

entities. For instance only a right and a left time boundary can

temporally coincidence.

TCoinc(x,y) → ∃uv ((Rb(x,u) ∧ (Lb(y,v)) ∨ ((Lb(x,u) ∧

Rb(y,v)))

Configuration

Config(x) A presential which is a collection of presential facts existing

at the same time-boundary i.e., it is a conglomeration of

physical structures, properties and relators.

Configuroid Configu(x) An occurrence whose boundaries are configurations.

Configu(y) → ∀x (Procbd(x,y) → Config(x))

Entity Entity(x) A general notion comprising all items of GFO.

Fact Fact(x) A complex entity comprising a relator together with its relata

considered as a whole.

Facti(x) ↔ ∃uy1…yn(i) (reli(u, y1, …, yn(i), x)

Immanent

Universal

 See Universal.

Individual

Ind(x) A single entity which cannot be instantiated but itself is an

instance of a universal.

Instantiation :: A basic binary relation, whose second argument is a universal

and the first, called instance, is an individual or a universal.

The relation x :: y has the intuitive meaning that an instance x

215

is of kind y. In a sense, instantiation is the intensional

counterpart of the membership relation.

Level See Stratum.

Occurrent Occ(x) An individual extended in time.

Ontological

connectedness

Ontic(x, y) The relation Ontic(x,y) connects presentials x and y by an

integrated system of spatio-temporal and causal relationships

which give rise to persistants.

Part, Process

Layer

LayerPart(x,y) A process layer of a process p is a process which is framed by

the same chronoid as p, and is a processual part of p.

Part Part(x,y)

Basic relation between entities with the intuitive meaning that

x is a part of y. Part-of relation comes in the number of

specialized relations, these are: categorial part, constituent

part, physical part, process part, proper part, spatial and

temporal part.

 Part, categorial CatPart(x,y) CatPart(x,y) =df “x is a categorial part of y”, where x and y

are categories. It directly reflects dependencies among

categories and uncovers how one category may be

constructed out of others.

Part,

constituent

CPart(x, y) CPart(x, y) =df “x is a proper constituent part of a complex

entity y considered as a whole, e.g. a configuration”. Note

that here we use an extended understanding of the GFO

Cpart relation which originally holds only for situations and

situoids.

Part, physical PhPart(x,y) PhPart(x,y) =df “x is a physical part of y”, where x and y are

physical structures.

Part, processual ProcPart(x,y) ProcPart(x,y) =df “x is a processual part of y”, where x and y

are processes.

Part, Proper PPart(x,y) Non-reflexive part-of relation.

Part, spatial SPart(x,y) SPart(x,y)=df “x is a proper spatial part of y”, where x and y

are space entities.

Part, temporal TPart(x,y) TPart(x,y) =df “x is a proper temporal part of y”, where x and

y are time entities.

Persistant

Perst(x) An individual extended in time but distinct from process. A

persistant can be seen as a construct which binds presentials

Appendix A: GFO Terms and Definitions

216

with the same identity, though located at different time

boundaries67, into one entity persisting through time.

Physical

Structure

Phys(x) An individual extended in space which is a bearer of

properties (see property), and such that other entities cannot

have it as a property.

Presential Pres(x) An individual existing wholly at a time-boundary. Every

presential exists at exactly one time boundary and is called a

process boundary of some process projected on the time

boundary (see projection).

Process Proc(x) An individual extended in time. Processes in contrast to

presentials are not located at a single time boundary but on a

chronoid.

Process

boundary

ProcBd(x,y) If a process p is projected onto a chronoid c in terms of

Prt(p,c), then each boundary b of c refers to a presential e

which is called the boundary of the process, denoted by

Prb(p, b, e), which further implies At(e, b):

ProcBd(x,y) ↔∃t(Prb(y,t,x)).

Process

boundary, left

ProcLBd(x,y) It is the presential located at the left boundary l(c) of the

chronoid c framing the process:

ProcLBd(x,y) ↔ ∃c(Prt(y,c) ∧ Prb(y, l(c), x)).

Process

boundary, right

ProcRbd(x,y)

It is the presential located at the right boundary r(c) of the

chronoid c framing the process.

ProcRBd(x,y) ↔ ∃c (Prt(y,c) ∧ Prb(y, r(c), x))

Process,

causally

cohesive

(from OC)

Causecoh(x) It is a process of a particular causal structure, namely every

pair of coinciding (inner) time-boundaries contains

presentials connected by the basic causal relation.

67 It should be mentioned that the presented account of persistants is a simplified variant of GFO [Heller

et al., 2006]. Originally, persistants are not individuals but universals instantiated by ontically connected

individual presentials, and are introduced to GFO as a response to the problems yielded by the typical

understanding of endurants as the entities enduring in time and wholly present at every moment of their

existence. For further discussion see ([Heller et al., 2006], p. 25).

217

Processes,

causally

adhesive

(from OC)

Causeadh(q,w) A pair of temporally overlapping processes, that are causally

connected throughout this overlap.

At every pair of coinciding time-boundaries t and t’, such

that t is the boundary of x and t’ is a boundary of y, exist

causally connected presentials p and p’ such that p is the

boundary of the process x and p’ is the boundary of the

process y.

Projection Prt(x,c)

At(y,t)

Prb(x,t,y)

It is a group of relations embedding individuals to time. We

distinguish several cases of projections, denoted by At(e, t),

Prt(p, c) and Prb(p,t,e).

The relation At(e,t) assigns a presential e to a time boundary t

and is read “a presential e is located at t”.

The relation Prt(p,c) assigns a process p to framing it

chronoid c and is read “a process p is framed by a chronoid

c”.

If a process is projected onto a chronoid in terms of Prt(p,c),

each time-boundary b of c refers to a presential e which is

called the boundary of the process, denoted by Prb(p,b,e),

which further implies At(e, b).

Property Prop(x) A facet of an entity inherited by it:

Prop(x) ↔ ∃yz(Entity(x) ∧ Inh(x,z)).

Property Value Propv(x) An individual value of an individual property

Relator An individual entity connecting other entities (of any kind)

called relates. An instance of relation.

Role Role(x) An entity played by some role-player in some role-context.

A role is closely related to properties, but in contrast to those

it mediates a bearer with an external context:

Role(x) ↔ ∃yz(HasRole(y,x) ∧ RoleIn(x,z))

Situation Sit(x) A configuration which can be comprehended as a whole and

satisfies certain conditions of unity, which are imposed by

relations and categories associated with the situation. Herein,

we consider situations to be the most complex kind of

presentials.

Situoid Situ(x) An occurrence whose boundaries are situations and which

satisfies certain principles of coherence, comprehensibility,

and continuity. Intuitively, it is a part of the world which is a

coherent and comprehensible whole and does not need other

Appendix A: GFO Terms and Definitions

218

entities in order to exist. Every situoid has a temporal extent

and is framed by a topoid.

Stratum,

 Material

 Mental

 Social

MatL(x)

MentL(x)

SocL(x)

A subsystem of GFO categories implying certain granularity.

All categories of GFO are organized in three strata (called

also levels): material, mental, and social. Material stratum

captures categories referring to objects of physical world

denoted by MatL(x). Mental stratum comprises most of what

is studied by cognitive science (perception, memory,

reasoning, etc) and the categories referring to will denoted by

MentL(x). Social stratum covers such categories as agents

and institutions. Items of social strata are denoted by

SocL(x).

Among these levels specific forms of categorial and

existential dependencies hold. For example, a mental entity

requires an animate physical object as its existential bearer.

Time boundary

 Left,

 right,

 inner.

Tb(x),

Lb(x,c),

Rb(y,c)

Time entities distinct from chronoids. Every chronoid c has

exactly two extremal boundaries – a left boundary denoted by

Lb(x,c) and a right boundary denoted by Rb(y,c). Moreover,

it has infinitely many inner time boundaries. The boundaries

depend on a chronoid, i.e. they have no independent

existence. Moreover, the boundaries can coincide (see

Coincidence).

TB(x) ↔ ∃y Tb(x,y).

Time entity Te(x) Te(x) ↔ TB(x) ∨ Chron(x).

Universal

 Primitive,

 Immanent,

 Conceptual

 Structure.

Uni(x) An entity which may be predicated of or instantiated by other

entities. Universals whose all instances are individuals are

called primitive universals. In addition, at least two kinds of

universals can be distinguished: immanent universals and

conceptual structures.

The immanent universals are assumed to exist in the

individuals (in re) but not independently from them. On the

other hand, humans as cognitive subjects conceive of

universals of any sort by means of concepts that are in their

minds. Those are called conceptual structures.

Universals can be classified also in accordance with the

classification of corresponding individuals, e.g. process

universals.

219

Complex

Whole

Whole(x) The general notion underpinning all complex entities and

their universals, i.e. fact, configuration, configuroid, situation

and situoid.

Coherent Entity

(extends GFO)

 A complex entity (a whole), that all its constituent parts are

interrelated.

Coh(x) ↔ ∀yz(CPart(y,x) ∧ CPart(z,x) ∧ z ≠ y ∧ x = y + z

→ Rel(y,z))

Process

common start

ProcStarts(x,y) Two processes having the common beginnings:

ProcStarts(x, y) ↔ ∃uv (Prt(x,u) ∧ Prt(y,v) ∧ Starts(u,v)),

 where Starts(u,v) is the relation between two chronoids

having the same left boundary.

Process

common end

ProcEnds(x, y) Two processes having the common endings:

ProcEnds(x,y) ↔ ∃uv (Prt(x,u) ∧ Prt(y,v) ∧ Ends(u,v)),

where Ends(u,v) is the relation between two chronoids

having the same right boundary.

Table 8. The reference list of GFO terms and definitions.

220

References

[Abdullah et al., 2004] Abdullah, M.S., Kimble, C., Paige, R., Benest, I., Evans, A.:

Developing a UML Profile for Modelling Knowledge-Based Systems. MDAFA 2004, p.

220-233, 2004.

[Akman, Surav, 1996] Akman, V., Surav, M.: Steps toward formalizing context. AI Magazine,

17(3):55–72, 1996.

[Allemang, 1991] Allemang, D.: Using functional models in automatic debugging. IEEE

Expert, 6(6):13-18, 1991.

[Allemang, Chandrasekaran, 1991] Allemang, D., Chandrasekaran, B.: Functional

representation and program debugging. Proceedings of the 6th Annual Knowledge-Based

Software Engineering Conference, p. 136-152, IEEE Computer Society Press, 1991.

[Allen, 1984] Allen, J.: Towards a general theory of action and time. Artificial Intelligence,

23:123-154, 1984.

[Ashburner et al., 2000] Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H.,

Cherry, J.M., Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D.

P. , Issel-Tarver, L., Kasarskis, A., Lewis, J S.. Matese, C., Richardson, J. E., Ringwald,

M., Rubin, G. M., Sherlock, G.: Gene ontology: tool for the unification of biology. The

Gene Ontology Consortium. Nat Genet, 25(1):25–29, May, 2000.

[Ashworth, Goodland, 1990] Ashworth, C.,Goodland, M.: SSADM A Practical Approach.

McGraw-Hill, 1990.

[Baclawski et al., 2001] Baclawski, K., Kokar, M. M., Kogut, P. A., Hart, L., Smith, J. E.,

Holmes, W. S., Letkowski, J., and Aronson, M. L.: Extending UML to Support Ontology

Engineering for the Semantic Web. In Gogolla, M., Kobryn, C. (eds) Proceedings of the

4th international Conference on the Unified Modeling Language, Modeling Languages,

Concepts, and Tools, October 01 - 05, 2001, p. 342-360, Lecture Notes In Computer

Science, Vol. 2185, Springer Verlag, London, 2001.

[Bard et al., 2005] Bard, J., Rhee, S. Y., Ashburner, M.: An ontology for cell types. Genome

Biol, 6(2):R21, 2005.

[Barker, 1990a] Barker, R.: CASE*Method: Tasks and Deliverables. Oracle Corporation UK

221

Limited, Addison-Wesley, Wokingham, England, 1990.

[Barker, 1990b] Barker, R.: CASE Method: Entity Relationships Modelling. Oracle

Corporation UK Limited, Addison-Wesley, Wokingham, England, 1990.

[Barker, Longman, 1992] Barker, R., Longman, C.: CASE*Method: Function and Process

Modeling. Oracle Corporation UK Limited, Addison-Wesley, Wokingham, England, 1992.

[Barton, Komatsu, 1989] Barton, M.E., Komatsu, L.K.: Defining features of natural kinds and

artifacts. Journal of Psycholinguistic Research, 18(5), 443-447, 1989.

[Beissbarth, Speed, 2004] Beissbarth, T., Speed, T. P.: GOstat: find statistically

overrepresented Gene Ontologies within a group of genes. Bioinformatics, 20(9):1464–

1465, June, 2004.

[Bergenti, Poggi, 2000] Bergenti, F., Poggi, A.: Exploiting UML in the design of multi-agent

systems. In Omicini, A., Tolksdorf, R., Zambonelli, F. (eds.) Engineering Societies in the

Agents World, p. 106–113, Lecture Notes in Computer Science, vol. 1972, Springer

Verlag, 2000.

[Berriz et al., 2003] Berriz, G. F., King, O. D., Bryant, B., Sander, C., Roth, F. P.:

Characterizing gene sets with FuncAssociate. Bioinformatics, 19(18):2502–2504,

December, 2003.

[Bloom, 1996] Bloom, P.: Intention, History, and Artifact Concepts. Cognition 60:1-29, 1996.

[Bo, Salustri, 1999] Bo, Y., Salustri, F.: Function Modeling Based on Interactions of Mass,

Energy and Information. FLAIRS Conference 1999: 384-388, 1999.

[Bonnet, 1992] Bonnet, J. C.: Towards a formal representation of device functionality. TR 92-

54, Knowledge Systems Laboratory, Stanford University, 1992.

[Booch, 1993] Booch G.: Object-oriented Analysis and Design with Applications, 2nd edition.

Benjamin Cummings, Redwood City, CA, 1993.

[Borgo et al., 1996] Borgo, S., Guarino, N., and Masolo, C.: A Pointless Theory of Space

Based on Strong Connection and Congruence. In Aiello, L. C., Doyle, J. (eds.) Principles

of Knowledge Representation and Reasoning (KR96), Morgan Kaufmann, 1996.

[Borgo et al., 1997] Borgo, S., Guarino, N., Masolo, C.: An Ontological Theory of Physical

Objects. In Ironi L. (ed.) Proceedings of Eleventh International Workshop on Qualitative

Reasoning (QR'97), p. 223-231, Italy, 1997.

[Borgo, Leitão, 2004] Borgo, S., Leitão, P.: The Role of Foundational Ontologies in

Manufacturing Domain Applications. In Meersman, R., Tari, Z. et al. (eds.) OTM

References

222

Confederated International Conferences, ODBASE 2004, Ayia Napa, Cyprus, October 29,

2004, p. 670-688, Lecture Notes in Computer Science, Vol. 3290, Springer Verlag, 2004.

[Borst, 1997] Borst, W.N.: Construction of Engineering Ontologies for knowledge sharing

and reuse. Centre for Telematica and Information Technology, University of Tweenty,

Enschede, The Netherlands, 1997.

[Bracewell, Sharpe, 1996] Bracewell R.H., Sharpe, J.: Functional Descriptions Used in

Computer Support for Qualitative Scheme Generation— Schemebuilder. AIEDAM,

(10)4:333–346,1996.

[Brachman, 1983] Brachman, R.J.: What is-a is and isn't: an analysis of taxonomic links in

semantic networks. IEEE Computer, 16(10):30-36, October 1983.

[Brachman, 1985] Brachman, R.J.: I Lied About the Trees, Or, Defaults and Definitions in

Knowledge Representation. AI Magazine, 6(3): 80-93, 1985.

[Bratman, 1987] Bratman, M. E.: Intentions, Plans, and Practical Reason. Harvard University

Press, 1987.

[Britton et al., 2000] Britton G, Yimin D, Beng T. S.: Functional Design: a system viewpoint.

School of Mechanical and Production Engineering, Nanyang Technological University,

Singapure, 2000.

[Brockmans et al., 2004] Brockmans, S., Volz, R., Eberhart, A., and Loeffler, P.: Visual

Modeling of OWL DL Ontologies using UML. In van Harmelen et al. (eds.) ISWC 2004,

p. 198- 213, Lecture Notes in Computer Science, Vol. 3298, Springer Verlag, 2004.

[Brooksbank et al., 2005] Brooksbank, C., Cameron, G., Thornton, J.: The European

Bioinformatics Institute’s data resources: towards systems biology. Nucleic Acids Res,

33(Database issue):D46–D53, January, 2005.

[Brown, Blessing, 2005] Brown, D.C, Blessing, L.: The relationship between function and

affordance. Proceedings of IDETC/CIE 2005:ASME 2005 International Design

Engineering Technical Conferences & Computers and Information in Engineering

Conference, California, USA, 2005.

[Buller, 1998] Buller, D.: Etiological Theories of Function: A Geographical Survey. Biology

and Philosophy, 13:505–527, Kluwer Academic Publishers, The Netherlands, 1998.

[Burek et al., 2006] Burek, P., Hoehendorf, R., Loebe, F., Visagie, J., Kelso, J., Herre, H.: A

top-level ontology of functions and its application in Open Biomedical Ontologies.

[Accepted for ISMB 2006, to appear in Bioinformatics].

223

[Burek, 2004] Burek, P.: Adoption of the Classical Theory of Definition to Ontology

Modeling. In Bussler, C., Fensel, D. (eds.) Artificial Intelligence: Methodology, Systems,

and Applications. Proceedings of the 11th International Conference, AIMSA 2004, Sep 2-

4, Varna, Bulgaria, p. 1-10, Lecture Notes in Computer Science, Vol. 3192, Springer

Verlag, Berlin, 2004.

[Burek, 2005] Burek, P.: Essentialized Conceptual Structures in Ontology Modeling. In

Khosla, R., Howlett, R.J., Jain, L.C. (ed.) Knowledge-Based Intelligent Information and

Engineering Systems: Proceedings of the 9th International Conference, KES 2005,

Melbourne, Australia, Sep 14-16, Part II, p. 880-886, Lecture Notes in Computer Science,

Vol. 3682, Springer Verlag, Berlin, 2005.

[Burek, Grabos, 2005] Burek, P., Grabos, R.: Dually Structured Concepts in the Semantic

Web: Answer Set Programming Approach. In Gómez-Pérez, A., Euzenat, J. (eds.) The

Semantic Web: Research and Applications. p. 377-391, Lecture Notes in Computer

Science, Vol. 3532, Springer Verlag, 2005.

[Casati, Varzi, 1995] Casati, R., Varzi, A.: Holes and Other Superficialities, MIT Press,

Cambridge, MA, 1995.

[Casati, Varzi, 2002] Casati, R., Varzi, A.: Events. In Edward N. Zalta (eds.) The Stanford

Encyclopedia of Philosophy (Fall 2002 Edition), Available at:

http://plato.stanford.edu/archives/fall2002/entries/events/, 2002.

[Chandrasekaran et al., 1993]Chandrasekaran, B., Goel, A., Iwasaki Y.: Functional

Representation as Design Rationale. IEEE Computer, 26(1): 48-56, 1993.

[Chandrasekaran, 1994a] Chandrasekaran B.: Functional representation: A brief historical

perspective. Applied Artificial Intelligence, 8(2): 173-197, 1994.

[Chandrasekaran, 1994b] Chandrasekaran B.: Functional Representation and Causal Processes.

Advances in Computers, 38: 73-143, 1994.

[Chandrasekaran, Josephson, 1997] Chandrasekaran, B., Josephson, J.R.: Representing

Function as Effect. Proceedings of the Functional Modeling Workshop, Paris, France,

1997.

[Chandrasekaran, Josephson, 2000] Chandrasekaran, B., Josephson, J. R. : Function in Device

Representation. Engineering with Computers, Special Issue on Computer Aided

Engineering, 16:162-177, 2000.

[Chen, 1976] Chen, P.: The Entity-Relationship Model: Toward a Unified View of Data. ACM

Transactions on Database Systems, 1(1):9-36,1976.

References

224

[Coad, Yourdon, 1991] Coad, P., Yourdon, E.: Object-Oriented Design. Yourdon Press

Computing Series Prentice-Hall, Englewood Cliffs, NJ, 1991.

[Cohen , 2002] Cohen, S. M.: Lecture on the Four Causes. University of Washington.

Available at: http://faculty.washington.edu/smcohen/320/4causes.htm, 2002.

[Corcho et al., 2001] Corcho, O., Fernández-López, M., Gómez Pérez,. A.:

OntoWeb:Technical Roadmap v1.0 30.11.01. Universidad Politécnica de Madrid, Madrid,

Spain, 2001.

[Corcho, Gomez-Perez, 2000] Corcho, O., Gomez-Perez, A.: A Roadmap to Ontology

Specification Languages. In Dieng R. Corby O. (eds.) 12th International Conference on

Knowledge Acquisition, Modeling and Management, EKAW 2000, Juan-les-Pins, France,

October 2-6, 2000, p. 80-96, Lecture Notes in Computer Science, Vol. 1937, Springer

Verlag, 2000.

[Cranefield et al., 2001] Cranefield, S., Haustein, S., Purvis, M.: UML-based ontology

modelling for software agents. Proceedings of Ontologies in Agent Systems Workshop,

Agents 2001, Montreal, Canada, 2001.

[Cranefield, Purvis, 1999] Cranefield, S., Purvis, M.K.: UML as an Ontology Modelling

Language. Proceedings of the Workshop on Intelligent Information Integration, volume 23

of CEUR Workshop Proceedings, Stockholm, Sweden, July 1999.

[Cummins, 1975] Cummins, R.: Functional Analysis. Journal of Philosophy 72:741–765,

1975.

[Cummins, 2002] Cummins, R.: Neo-Teleology. In Ariew, Perlman (eds) Functions: New

Essays in The Philosophy of Psychology and Biology, p. 157-173, Oxford University

Press, Oxford, 2002.

[Cyc Project, 2005] Cyc Project [homepage]. Available from: http://www.cyc.org. Cited 2005.

[Davies, 2000a] Davies, P.S.: The Nature of Natural Norms: Why Selected Functions are

Systemic Capacity Functions. Noûs, (34)1: 85-107, 2000.

[Davies, 2000b] Davies, P.S.: Norms of Nature: Naturalism and the Nature of Functions. MIT

Press Cambridge, Massachusetts and London, England, 2000.

[Davies, 2000c] Davies, P.S.: Malfunctions. Biology and Philosophy, 15:19-38, 2000.

[Degen et al., 2001] Degen, W., Heller, B., Herre, H., Smith, B.: GOL: A General Ontological

Language. In Welty C., Smith B., (eds.) Proceedings of the International Conference on

Formal Ontology in Information Systems, (FOIS 2001), p. 34-46, Ogunquit, Main, ACM

225

Press, New York, Oct 2001.

[Dermuth, Hussmann, 1999] Dermuth, B., Hussmann, H.: Using UML/OCL Constraints for

Relational Database Design. Proceedings <<UML>>'99, Fort Collings, Colorado, 1999.

[Djurić et al., 2004] Djurić , D., Gašević , D., Devedžić, V. , Damjanović , V.: UML Profile for

OWL. In Aßmann, U., Aksit, M., Rensink, A. (eds.) Model Driven Architecture. European

MDA Workshops: Foundations and Applications, MDAFA 2003 and MDAFA 2004,

Twente, The Netherlands, 2003

[Domingue et al., 1999] Domingue, J., Motta, E., Corcho, O.: Knowledge Modelling in

WebOnto and OCML: A User Guide. Available from:

http://kmi.open.ac.uk/projects/ocml/ocml-webonto-guide.zip, 1999.

[Dori, 2002] Dori, D.: Object Process Methodology: A Holistic Systems Paradigm. Springer

Verlag, Heidelberg, New York, 2002.

[Eriksson, Penker, 2000] Eriksson, H., Penker, M.: Business Modeling with UML - Business

Patterns at Work. OMG Press, Wiley, John and Sons, 2000.

[Falkovych et al., 2003] Falkovych, K., Sabou, M., Stuckenschmidt, H.: UML for the Semantic

Web: Transformation-Based Approaches. In Omelayenko, B., Klein, M. (eds.) Knowledge

Transformation for the Semantic Web, p. 92-106. IOS Press, 2003.

[Fernandes, 2003] Fernandes, J.M.: Functional and Object-Oriented Modeling of Embedded

Software. TUCS Techincal Reports, No 512, Turku Centre for Computer Science, Feb

2003.

[Gane, Sarson, 1979] Gane, C., Sarson T.: Structured Systems Analysis: Tools and Techniques.

Englewood Cliffs, N. J., Prentice-Hall, 1979.

[Gangemi et al., 2003] Gangemi, A., Guarino, N., Masolo, C., Oltramari, O.: Sweetening

WORDNET with DOLCE. AI Magazine 24(3): 13-24, 2003.

[Gärdenfors, P. 2000] Gärdenfors, P.:Conceptual Spaces: The Geometry of Thought. A

Bradford Book, MIT Press, Cambridge, Massachusetts, 2000.

[Gelman, Bloom, 2000] Gelman, S.A., Bloom, P.: Young children are sensitive to how an

object was created when deciding what to name it. Cognition 76:91-103, 2000.

[Gelman, Wellman, 1991] Gelman, S. A., Wellman, H. M.: Insides and essences: early

understandings of the nonobvious. Cognition 38:213–244, 1991.

[Gero, 1990] Gero, J.S.: Design prototypes: a knowledge representation schema for design. AI

Magazine, 11(4): 26-36, 1990.

References

226

[Gero, Kannengiesser, 2004] Gero, J.S., Kannengiesser, U.: The situated Function-Behaviour-

Structure framework. Design Studies 25(4): 373-391, 2004.

[Glass, 2002] Glass, R. L.: The Naturalness of Object Orientation: Beating a Dead Horse?

IEEE Software, 19(3):103–104, 2002.

[Godfrey-Smith, 1993] GodfreySmith, P.: Functions: Consensus Without Unity. Pacific

Philosophical Quarterly, 74: 196–208, 1993.

[Gomez Perez et al., 2004] Gomez Perez, A., Fernandez Lopez, M., Corcho Garcia, O.,

Corcho-Garcia, O., Fernandez-Lopez, M., Corcho, O.: Ontological Engineering : with

examples from the areas of Knowledge Management, e-Commerce and the Semantic Web.

Advanced Information and Knowledge Processing, Springer Verlag, 2004.

[Gornik, 2003] Gornik, D. UML Data Modeling Profile. IBM Rational Software Whitepaper

TP 162 05/02, 2003.

[Gould, Lewontin, 1979] Gould, S.J., Lewontin R.: The spandrels of San Marco and the

Panglossion paradigm: a critique of the adaptationist programme. Proc. of the Royal

Society of London, Series B, Biological Sciences, 205 (1161): 581-598, 1979.

[Griffiths, 1993] Griffiths, P.: Functional Analysis and Proper Function. British Journal for the

Philosophy of Science, 44:409–422, 1993.

[Gruber, 1993] Gruber, T. R.: A Translation Approach to Portable Ontology Specifications.

Knowledge Acquisition, 5(2):199-220, 1993.

[Gruber,1994] Gruber, T.: Toward Principles for the Design of Ontologies Used for

Knowledge Sharing. International Journal of Human and Computer Studies, 43(5/6): 907-

928, 1994.

[Guarino, 1997a] Guarino N.: Understanding, Building, and Using Ontologies. International

Journal of Human-Computer Studies, 46(2):293-310, 1997.

[Guarino, 1997b] Guarino N.: Semantic Matching: Formal Ontological Distinctions for

Information Organization, Extraction, and Integration. In Pazienza, M.T. (ed.) Information

Extraction: A Multidisciplinary Approach to an Emerging Information Technology, p.139-

170, Springer Verlag, 1997.

[Guarino, 1998] Guarino N.: Formal Ontology in Information Systems. Proceedings of the

Conference On Formal Ontology In Information Systems (FOIS-98), p.3-15, IOS Press,

Amsterdam, 1998.

[Guarino, Giaretta, 1995] Guarino, N., Giaretta, P.: Ontologies and Knowledge Bases:

227

Towards a Terminological Clarification. In Mars N.(ed.) Towards Very Large Knowledge

Bases: Knowledge Building and Knowledge Sharing, p. 25-32, IOS Press, Amsterdam,

1995.

[Guarino, Welty, 2000] Guarino, N., Welty, C.: A Formal Ontology of Properties. In R. Dieng,

O. Corby (eds.) Knowledge Engineering and Knowledge Management: Methods, Models

and Tools. 12th International Conference, EKAW2000, p. 97-112, Springer Verlag, 2000.

[Guarino, Welty, 2004] Guarino, N., Welty, C.: An Overview of OntoClean. In Staab, S.,

Studer, R. (eds.) Handbook on Ontologies, p. 151-159, Springer Verlag, 2004.

[Guizzardi et al., 2002a] Guizzardi, G., Herre, H., Wagner, G.: On the General Ontological

Foundations of Conceptual Modeling. Proceedings of 21th International Conference on

Conceptual Modeling (ER2002), Tampere, Finland, Oct 2002, p. 97-112, Lecture Notes in

Computer Science, Springer Verlag, Berlin, 2002.

[Guizzardi et al., 2002b] Guizzardi, G., Herre, H., Wagner, G.: Towards Ontological

Foundations for Conceptual UML Models. In Meersman R, Tari Z. et al. (eds.) On the

Move to Meaningful Internet Systems 2002: CoopIS, DOA, and ODBASE. Proceedings of

the International Conference on Ontologies, Databases and Applications of Semantics,

(ODBASE), 2002 Okt 29-31. Irvine, California, p. 1100-1117, Springer Verlag, 2002.

[Guizzardi et al., 2004a] Guizzardi, G., Wagner, G., Herre, H. 2004. On the Foundations of

UML as an Ontology Representation Language. In Motta, E., Shadbolt, N., Stutt, A.,

Gibbins, N. (eds.) Engineering Knowledge in the Age of the Semantic Web: Proceedings of

the 14th International Conference (EKAW 2004), Whittlebury Hall, UK, Oct 2004, p. 47-

62, Lecture Notes in Computer Science, Vol. 3257, Springer Verlag, 2004.

[Guizzardi, 2005] Guizzardi, G.: Ontological Foundations for Conceptual Models. PhD

Thesis, Telematics Instituut fundamental Research Series, No. 015, Telematics Instituut,

Enschede, The Netherlands, 2005.

[Guizzardi, et. al., 2004b] Guizzardi, G., Wagner G., Guarino, N., van Sinderen, M.: An

Ontologically Well-Founded profile for UML Conceptual Models. CAiSE 2004, p. 112-

126, Springer Verlag, 2004.

[Guizzardi, Wagner, 2002] Guizzardi, G., Wagner G.: Using Formal Ontologies to define

Real-World Semantics for UML Conceptual Models. First Workshop on Application of

Ontologies to Biology, European Media Laboratory, Heildelberg, Germany, 2002.

[Halpin, 1997] Halpin, T.: Object Role Modeling: an overview. Electronic paper available at:

www.orm.net/pdf/ORMwhitePaper.pdf, 1997.

References

228

[Helbig, 2001] Helbig, H.: Die semantische Struktur natürlicher Sprache:

Wissensrepräsentation mit MultiNet. Springer Verlag, Berlin, 2001.

[Heller et al., 2005] Heller, B., Herre, H., Burek, P., Loebe, F., Michalek, H.: General Formal

Ontology (GFO): A Foundational Ontology Integrating Objects and Processes (Version

1.0 D1). Onto-Med Report Nr. 8, Research Group Ontologies in Medicine (Onto-Med),

Leipzig University, Germany, 2005.

[Heller et al., 2006] Heller, B., Herre, H., Burek, P., Hoehndorf R., Loebe F., Michalek, H.:

General Formal Ontology: A Foundational Ontology Integrating Objects and Processes.

Onto-Med Report 8, Univeristy of Leipzig, 2006.

[Heller, Herre, 2004] Heller, B., Herre, H. 2004. Ontological Categories in GOL. Axiomathes

14(1):57-76.

[Herre, Loebe, 2005] Herre, H., Loebe, F.: A Meta-ontological Architecture for Foundational

Ontologies. In Meersman, R., Tari, Z. (eds.) On the Move to Meaningful Internet Systems

2005: CoopIS, DOA, and ODBASE: Proceedings of the OTM Confederated International

Conferences, CoopIS, DOA, and ODBASE 2005, Agia Napa, Cyprus, Oct 31 - Nov 4,

2005, Part II, p. 1398-1415, Lecture Notes in Computer Science, Vol. 3761, Springer

Verlag, Berlin, 2005.

[Hoehndorf et al., 2006] Hoehndorf, R., Prüfer, K., Backhaus, M., Visagie, J., Kelso, J.: The

design of a wiki-based curation system for the Ontology of Functions. The Joint BioLINK

and 9
th
 Bio-Ontologies Meeting, 2006.

[Hubka, Eder, 1998] Hubka V, Eder W.: Theory of Technical Systems. Springer Verlag, Berlin,

1998.

[Hughes, Cresswell, 1996] Hughes, G. E. and Cresswell, M. J. 1996. A New Introduction to

Modal Logic. Routledge, London, 1996.

[IBM, Sandpiper, 2005] IBM, Sandpiper Software, Inc.: Ontology Definition Metamodel.

Fourth Revised Submission to OMG/ RFP ad/2003-03-40. Available from:

http://www.omg.org/docs/ad/05-09-08.pdf, 2005.

[Irwin, Turk, 2005] Irwin, G., Turk, D.: An Ontological Analysis of Use Case Modeling

Grammar. Journal of the Association for Information Systems, 6(1): 1-36, January 2005.

[Iwasaki et al., 1993] Iwasaki, Y., Fikes, R., Vescovi, M., and Chandrasekaran B. (1993).

How Things Are Intended to Work: Capturing functional knowledge in device design.

Proceedings of the 13th International Joint Conference on Artificial Intelligence, p. 1516-

1522, Morgan Kanaufmn, Mountain View, CA, 1993.

229

[Iwasaki et al., 1995] Iwasaki, Y., Vescovi, M., Fikes, R., Chandrasekaran, B.: A Causal

functional representation language with behavior-based semantics. Applied Artificial

Intelligence, 9(1):5-31, 1995.

[Iwasaki, Chandrasekaran, 1992] Iwasaki, Y., Chandrasekaran, B.: Design verification through

function- and behavior-oriented representations: Bridging the gap between function and

behavior. In Gero, J.S. (ed.) Artificial Intelligence in Design '92, p. 597-616, Kluwer

Academic Publishers, 1992.

[Johansson, 2004] Johansson, I.: Functions, Function Concepts, and Scales. The Monist,

87(1):96-114, 2004.

[Kassel, 2005] Kassel, G.:Integration of the DOLCE top-level ontology into the OntoSpec

methodology. LaRIA Research Report: LRR 2005-08, 2005.

[Keil, 1989] Keil, F.: Concepts, kinds, and cognitive development. MIT Press, Cambridge,

MA, 1989.

[Keil, 2003] Keil, F.: Categorization, Causation and the Limits of Understanding. Language

and Cognitive Processes, 18:663-69, 2003.

[Keleman, 1999] Keleman, D.: Function, goals, and intention: Children’s teleological

reasoning about objects. Trends in Cognitive Sciences, 3:461-468, 1999.

[Keuneke, 1989] Keuneke, A.: Machine Understanding of Devices: Causal Explanation of

Diagnostic Conclusions. PhD thesis, The Ohio State University, 1989.

[Keuneke, 1991] Keuneke, A.: Device Representation: The Significance of Functional

Knowledge. IEEE Expert, 6(2):22-25, 1991.

[Kifer et al., 1995] Kifer, M., Lausen, G., Wu, J.: Logical Foundations of Object-Oriented and

Frame-Based Languages. Journal of the ACM, 1995.

[Kitamura et al., 2002] Kitamura, Y., Sano, T., Namba, K., and Mizoguchi, R.: A Functional

Concept Ontology and Its Application to Automatic Identification of Functional

Structures. Advanced Engineering Informatics,16(2):145-163, 2002.

[Kitamura et al., 2004] Kitamura Y, Kashiwase M., Fuse, M., Mizoguchi, R.: Deployment of

an ontological framework of functional design knowledge. Advanced Engineering

Informatics, 18:115-127, 2004.

[Kitamura, Mizoguchi, 1998] Kitamura, Y., Mizoguchi, R.: Functional ontology for functional

understanding. Papers of Twelfth Inter-national Workshop on Qualitative Reasoning (QR-

98), Cape Cod, USA, May 26-29, p. 77-87, AAAI Press, 1998.

References

230

[Kitamura, Mizoguchi, 1999] Kitamura, Y., Mizoguchi, R.:. Metafunctions of artifacts, Papers

of 13th International Workshop on Qualitative Reasoning (QR-99), p.136-145, 1999.

[Kitamura, Mizoguchi, 2004] Kitamura, Y., Mizoguchi, R.: Ontology-based systematization of

functional knowledge. Journal of Engineering Design, 15(4):327-351, August 2004.

[Kitcher, 1993] Kitcher, P.: Function and Design. Midwest Studies in Philosophy,18:379-397,

1993.

[Kogut et al., 2002] Kogut, P. A., Cranefield, S., Hart, L., Dutra, M., Baclawski, K.,Kokar, M.

M.,Smith, J. E.: UML for Ontology Development. The Knowledge Engineering Review,

17(1):61–64, 2002.

[Kreos, 2001] Kreos, P.: Technical Functions as Dispositions: a Critical Assessment. Techné,

5(3), Spring 2001.

[Lassila, McGuinness, 2001] Lassila, O., McGuinness, D.L.: The Role of Frame-Based

Representation on the Semantic Web. Knowledge Systems Laboratory Report KSL-01-02,

Stanford University, 2001.

[Laurence, Margolis, 1999] Laurence, S., Margolis. E. (eds.): Concepts - Core Readings. MIT

Press, 1999.

[Lind, 1990] Lind, M. (1990): Representing Goals and Functions of Complex Systems.

Technical Report 90-D-381, Department of Automation, Lyngby, Denmark, 1990.

[Lind, 1994] Lind, M.: Modeling Goals and Functions of Complex Industrial Plants. Applied

Artificial Intelligence, 8: 259-283, 1994.

[Lind, 1999] Lind, M.: Plant Modeling for Human Supervisory Control. Transactions of the

Institute of Measurement and Control, 21(4/5):171-180, 1999.

[Loebe, 2003] Loebe, F.: An Analysis of Roles. Onto-Med Report Nr. 6. Research Group

Ontologies in Medicine (Onto-Med), Leipzig University, Germany, 2003.

[Loebe, 2005] Loebe, F. 2005. Abstract vs. Social Roles: A Refined Top-Level Ontological

Analysis. In Boella, G., Odell, J., van der Torre, L., Verhagen, H. (eds.) Proceedings of the

2005 AAAI Fall Symposium 'Roles, an Interdisciplinary Perspective: Ontologies,

Languages, and Multiagent Systems', p. 93-100, Menlo Park, California, 2005.

[LOOM, 1995] Tutorial for Loom version 2.1. Available at:

http://www.isi.edu/isd/LOOM/documentation/tutorial2.1.html, May 1995.

[Majerus, 1998] Majerus M.: Melanism: Evolution in Action. Oxford University Press, USA,

1998.

231

[Masolo et al., 2002] Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.,

Schneider, L.: Wonderweb Deliverable D17. Preliminary Report. Version 2.0. 15.08.2002.

Laboratory For Applied Ontology, ISTC-CNR, Padova, Italy, 2002.

[Masolo et al., 2003] Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.:

WonderWeb Deliverable D18. Ontology Library (final). Version 1.0. 31.12.2003.

Laboratory For Applied Ontology, ISTC-CNR, Trento, Italy, 2003.

[Matan, Carey, 2001] Matan, A., Carey, S.: Developmental changes within the core of artifact

concepts. Cognition, 78:1-26, 2001.

[McCarthy, Buvač, 1998] McCarthy, J., Buvač, S.: Formalizing context (expanded notes). In

Aliseda, A.., van Glabbeek, R. J., Westerståhl, D. (eds.) Computing Natural Language,

volume 81 of CSLI Lecture Notes, p.13–50, Center for the Study of Language and

Information (CSLI), Stanford University, Stanford, 1998.

[McDowell et al., 1996] McDowell, J. et al.: Conceptual Design for Polymer Composite

Assemblies. In Sharpe, J. (ed.) AI System Support for Conceptual Design, p. 377–389,

Springer-Verlag, 1996.

[Medin, Ortony, 1989] Medin, D. L., Ortony, A.: Psychological essentialism. In Vosniadou, S.,

Ortony, A. (eds.) Similarity and analogical reasoning, p. 179–196, Cambridge University

Press, New York, 1989.

[Michalek, 2005] Michalek, H.: A Causal Relation Based on Regularity and Manupilability. In

Guizzardi, G.,Wagner, G. (eds.) Proceedings of the EDOC International Workshop on

Vocabularies, Ontologies and Rules for the Enterprise (VORTE'05), Enschede, The

Netherlands, Sep 20. CTIT Workshops Proceedings. Enschede (Netherlands): CTIT, 2005.

[Michalek, 2006] Michalek, H.: Causality: A Formal Ontological Account within the Top-level

Ontology of GFO. [forthcoming] PhD thesis, University of Leipzig, 2006.

[Millikan 1989a] Millikan, R.G.: An Ambiguity in the Notion “Function”. Biology and

Philosophy, 4:172–176, 1989.

[Millikan 1989b] Millikan, R.G.: In Defense of Proper Functions. Philosophy of Science

56:288–302, 1989.

[Millikan, 2002] Millikan R. G.: Biofunctions: two paradigms. In Cummins, R., Ariew, A.,

Perlmaneds, R. (eds.) Functions: New Readings in the Philosophy of Psychology and

Biology, 113-143, Oxford University Press, Oxford, 2002.

[Millikan,1984] Millikan, R.G.: Language, Thought, and Other Biological Categories, MIT

Press, Cambridge, MA, 1984.

References

232

[Neander, 1991a] Neander, K.: The Teleological Notion of “Function”. Australasian Journal

of Philosophy, 69:454–468, 1991.

[Neander, 1991b] Neander, K.: Functions as Selected Effects: The Conceptual Analyst’s

Defense. Philosophy of Science, 58:168–184, 1991.

[Neches et al., 1991] Neches, R., Fikes, R.E., Finin, T., Gruber, T.R., Senator, T., Swartout,

W.R.: Enabling Technology for Knowledge Sharing. AI Magazine, 12(3):36-56, 1991.

[Niles, Pease, 2001] Niles, I., Pease, A..: Towards a Standard Upper Ontology. In Welty, C.,

Smith, B. (eds.) Formal Ontology in Information Systems: Collected Papers from the

Second International Conference, p. 2-9, ACM Press, New York, October, 2001.

[OBG, 2006] Ontologies in Biomedicine Graoup [hompage]. http://onto.eva.mpg.de/, cited

2006.

[OBO, 2005] Open Biomedical Ontologies [homepage]. http://obo.sourceforge.net/, cited

2005.

[OMG, 2002] Object Management Group: Meta Object Facility (MOF) Specification. Version

1.4, OMG Document formal/2002-04-03. Available from: http://www.omg.org/cgi-

bin/doc?formal/02-04-03.pdf, April 2002.

[OMG, 2003a] Object Management Group: Ontology Definition Metamodel - Request For

Proposals. March 2003.

[OMG, 2003b] Object Management Group: UML 2. 0 Infrastructure Specification. OMG

Adopted Specification. ptc/03-09-15. Available from: www.omg.org/docs/ptc/03-09-

15.pdf, 2003.

[OMG, 2004] Object Management Group: Unified Modeling Language (UML) Specification:

Infrastructure. Version 2.0. ptc/04-10-14. Available from: http://www.omg.org/docs/ptc/

04-10-14.pdf, 2004.

[OMG, 2005] Object Management Group: Unified Modeling Language: Superstructure.

Version 2.0. formal/05-07-04. Available from: http://www.omg.org/docs/formal/05-07-

04.pdf, 2004.

[OMG, 2006] Object Management Group[homepage]. Available from: http://www.omg.org.

Cited 2006.

[OntoMed, 2006] OntoMed Research Group. Ontologies in Medicine. Foundations,

Development and Computer-based Applications [homepage]. Available from: http://onto-

med.de. Cited 2006.

233

[OWL, 2004] OWL Specifications. World Wide Web Consortium (W3C). Available from:

http:// http://www.w3.org/2004/OWL/.

[Pahl, Beitz, 1988] Pahl, G., Beitz, W.: Engineering design - a systematic approach. The

Design Council, 1988.

[Pease, Carrico, 1997] Pease, A., Carrico.: JTF-ATD Core Plan Representation: A Progress

Report. Proceedings of the AAAI-97 Spring Symposium on Ontological Engineering, 1997.

[Pease, Niles, 2002] Pease, A., Niles, I.: IEEE Standard Upper Ontology: A Progress Report.

The Knowledge Engineering Review, 17(1):65-70, 2002.

[Pegah et al., 1993] Pegah, M., Sticklen, J., Bond, W.: Functional Representation and

Reasoning About the F/A-18 Aircraft Fuel System. IEEE Expert, 8(2): 65-71, 1993.

[Poli, 2001] Poli, R.: The Basic Problem of the Theory of Levels of Reality. Axiomathes, 12(3-

4):261-283, 2001.

[Poli, 2002] Poli, R.: Ontological Methodology. International Journal of Human-Computer

Studies, 56(6):639–664, 2002.

[Preston, 1998] Preston, B.: Why is a wing like a spoon? A pluralist theory of function. The

Journal of Philosophy, 95(5):215-254, 1998.

[pUML, 2005] The precise UML group [home page]. Available at:

http://www.cs.york.ac.uk/puml/. Cited 2005.

[Qian, Gero, 1996] Qian, L., Gero, J.S.: Function-behaviour-structure paths and their role in

analogy-based design. AIEDAM 10:289-312, 1996.

[Quang, Chartier-Kastler, 1991] Quang, P.T., Chartier-Kastler, C.: MERISE in

practice. MacMillan, London, 1991.

[Rodenacker, 1971] Rodenacker, W.: Methodisches Konstruieren. Springer Verlag, Berlin,

1971.

[Rosch, Mervis, 1975] Rosch, E., Mervis, C.: Family Resemblances: Studies in the Internal

Structure of Categories. Cognitive Psychology, 7:573-605, 1975.

[Rosenman, Gero, 1998] Rosenman, M. A., Gero, J. S.: Purpose and function in design,

Design Studies, 19(2):161-186, 1998.

[Rosenman, Gero, 1999] Rosenman, M., Gero, J. S.: Purpose and function in collaborative

CAD environment. Reliability Engineering and System Safety, 64, p. 167-179, Elsevier,

1999.

[Rumbaugh et al., 1991] Rumbaugh, J., Blaha, M. , Premerlani, W. , Eddy, F. , Lorensen, W.:

References

234

Object-Oriented Modeling and Design. Prentice Hall International, 1991.

[Rumbaugh et al., 1999] Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling

Language Reference Manual. Object Technology Series, Addison-Wesley, Reasing, MA,

1999.

[Russell, Norvig, 1995] Russell, S.J., Norvig. P.: Artifical Intelligence: A Modern Approach.

Prentice Hall, Englewood Cliffs, New York, 1995.

[Salustri, 1998] Salustri, F.: Function Modeling for an Integrated Framework: A Progress

Report. FLAIRS Conference 1998, p. 339-343, 1998.

[Sasajima et al., 1995] Sasajima, M., Kitamura, Y., Ikeda, M., Mizoguchi, R.: FBRL: A

Function and Behavior Representation Language. Proceedings of IJCAI-95, p. 1830-1836,

1995.

[Schlenoff et al., 2000] Schlenoff, C., Gruninger M., Tissot, F., Valois, J., Lubell, J., and Lee,

J.: The Process Specification Language (PSL): Overview and Version 1.0 Specification.

NISTIR 6459, National Institute of Standards and Technology, Gaithersburg, MD, 2000.

[Schmekel, 1989] Schmekel H.: Functional models and design solutions. Annals of the CIRP,

38(1): 129-132., 1989.

[Searle, 1995] Searle, J.R.: The Construction of Social Reality. Free Press. N.Y., 1995.

[Sembugamoorthy, Chandrasekaran, 1986] Sembugamoorthy, V., Chandrasekaran, B.:

Functional Representation of Devices and Compilation of Diagnostic Problem-Solving

Systems. In Kolodner J., Riesbeck, C.K. (eds.) Experience, Memory, and Reasoning, p.

47–53, Lawrence Erlbaum Associates, Hillsdale, NJ, 1986.

[Shimomura et al., 1995] Shimomura, Y., Takeda, H., Yoshioka, M., Umeda, Y., Tomiyama,

T.: Representation of design objects based on the functional evaluation process model.

Proceedings of Design Theory and Methodology, ASME-95, p. 351–360, 1995.

[Shlaer, Mellor, 1988] Shlaer, S., Mellor, S.: Object-Oriented Systems Analysis. Yourdon

Press, 1988.

[Smartkom Project, 2005] Smartkom Project [homepage]. Available from:

http://www.smartkom.org, cited 2005.

[Smith et al., 2003] Smith, B., Williams, J., Schulze-Kremer S.: The ontology of the gene

ontology. AMIA Annu Symp Proc, p. 609–613, 2003.

[Smith, 1994] Smith, B.: Fiat Objects. In Guarino, N., Vieu, L. Pribbenow, S. (eds.) Parts and

Wholes: Conceptual Part-Whole Relations and Formal Mereology, 11th European

235

Conference on Artificial Intelligence, p. 15–23, Amsterdam, August, 1994.

[Smith, 1996] Smith, B.: Mereotopology: A Theory of Parts and Boundaries. Data and

Knowledge Engineering 20:287–303, 1996.

[Smith, Welty, 2001] Smith, B., Welty, C.: Ontology: Towards a New Synthesis. In Welty, C.,

Smith, B. (eds.) Formal Ontology in Information Systems. p.3-10, Ongunquit, Maine:

ACM Press, 2001.

[Sowa, 2000] Sowa J.: Knowledge representation - Logical, Philosophical and Conceptual

Foundations. Brooks/Coole, Pacivic Grove, USA, 2000.

[Spyns et al., 2002] Spyns, P., Meersman, R., Jarrar, M. : Data Modelling versus Ontology

Engineering. SIGMOD Record, 31(4): 12-17, 2002.

[Stone, Wood, 2000] Stone, R., Wood, K.: Development of a Functional Basis for Design.

Journal of Mechanical Design, 122(4): 359-370, 2000.

[Studer et al., 1998] Studer, R., Benjamins, R., Fensel, D.: Knowledge Engineering: Principles

and Methods. Data & Knowledge Engineering, 25(1-2): 161-197, 1998.

[Subramanian, at al., 2005] Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S.,

Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S.,

Mesirov, J. P.: Gene set enrichment analysis: a knowledge-based approach for interpreting

genome-wide expression profiles. Proc Natl Acad Sci USA, 102(43):15545–15550,

October, 2005.

[SUO, 2005] IEEE P1600.1 Standard Upper Ontology Working Group (SUO WG)

[homepage]. Available from: http://suo.ieee.org, cited 2004.

[Takeda et al., 1996] Takeda, H., Yoshioka, M., Tomiyama, T., Shimomura, Y.: Analysis of

Design Process by Function, Behavior and Structure. In Cross, N., Christiaans, H., Dorst,

K. (eds.) Analysing Design Activity, p. 187–209, Chichester, John Wiley & Sons, 1996.

[Umeda et al., 1990] Umeda, Y., Takeda H., Tomiyama T., Yoshikawa H.: Function, Behavior

and Structure. Applications of AI in Engineering, AIENG’90, p. 177-193, Computational

Mechanic Publications and Springer Verlag, 1990.

[Umeda et al.,1996] Umeda, Y. et al.: Supporting Conceptual Design Based on the Function-

Behavior-StateModeler. AIEDAM, (10)4:275–288, Sept 1996.

[Umeda, Tomiyama, 1995] Umeda, Y., Tomiyama, T.: FBS Modeling: Modeling scheme of

function for conceptual design. International Qualitative Reasoning Workshop

Proceedings, p. 71-77, University of Amsterdam, the Netherlands, 1995.

References

236

[Umeda, Tomiyama, 1997] Umeda, Y., Tomiyama, T. (1997). Functional Reasoning in

Design. IEEE Expert, 12(2): 42-48, 1997.

[Upton, 2004] Upton C.L.: Book Review: Norms of Nature: Naturalism and the Nature of

Functions, by Paul Sheldon Davies. Essays in Philosophy – A Biannual Journal, 5(1),

January 2004.

[Vermaas, Houkes, 2003] Vermaas, P.E., Houkes, W.: Ascribing Functions to Technical

Artefacts: A Challenge to Etiological Accounts of Functions. British Journal for the

Philosophy of Science, 54:261-289, 2003.

[Vieu, Aurnague, 2005] Vieu, L., Aurnague, M. : Part-of Relations, Functionality and

Dependence. In Aurnague, M., Hickmann, M., Vieu, L. (eds.) Categorization of Spatial

Entities in Language and Cognition, John Benjamins, Amsterdam, 2005.

[VonWright, 1963] VonWright, G. H.: Norm and Action - A Logical Enquiry. Routledge &

Kegan Paul, New York, 1963.

[W3C, 2006] World Wide Web Consortium (W3C). [homepage]. Available from:

http://www.w3.org. Cited 2006.

[Wagner, 2002] Wagner, G.: A Uml Profile for External Agent-Object-Relationship (AOR)

Models. In Giunchiglia, F., Odell, J., Weiß, G. (eds.) Agent-Oriented Software

Engineering, p. 138–149, Lecture Notes in Computer Science, Vol. 2585, Springer Verlag,

2003.

[Wand, 1999] Wand, Y., Storey, V. C., Weber, R.: An ontological analysis of the relationship

construct in conceptual modeling. ACM Transactions on Database Systems, 24(4):494-

528, 1999.

[Welch, Dixon, 1992] Welch, R.V., Dixon, J. R.: Representing Functions, Behavior and

Structure During Conceptual Design. Design Theory and Methodology - DTM'92, 42:11-

18, ASME, 1992.

[Welty, Guarino, 2001] Welty, C., Guarino, N.: Supporting Ontological Analysis of

Taxonomic Relationships. Data and Knowledge Engineering, 39(1):51-74, 2001.

[Wilkerson, 1995] Wilkerson, T.E.: Natural Kinds. Avebury Series in Philosophy, Aldershot,

UK, 1995.

[Wirth, O’Rorke, 1993] Wirth, R., O’Rorke, P.: Representing and reasoning about function for

failure modes and effects analysis. Reasoning about function, Workshop Preprints, p. 188-

194, AAAI-93, Washington DC, 1993.

237

[WonderWeb, 2005] WonderWeb. Ontology Infrastructure for the Semantic Web Project

[homepage]. Available from: http://wonderweb.semanticweb.org, cited 2005.

[Woods, 1991] Woods, W.A.: Understanding subsumption and taxonomy: A framework for

progress. In Sowa, J.F. (ed) Principles of Semantic Networks, Morgan Kaufman

Publishers, 1991.

[Wooldridge, Jennins, 1995] Wooldridge, M., Jennings, N.: Agent theories, architectures, and

languages: A survey. In Wooldridge, M., Jennings, N. (eds.) Intelligent Agents, ECAI-94,

Lecture notes in Artificial Intelligence, Vol. 890, Springer Verlag, 1995.

[Wright, 1973] Wright, L.: Functions. Philosophical Review, 82:139-68, 1973.

[Yourdon, 1993] Yourdon Inc., C.: Yourdon Systems Method: Model-Driven Systems

Development. Yourdon Press, 1993.

238

Index of Symbols

:: Instantiation (from GFO)

At(y,t) Location at time boundary

CatPart(x,y) Part, categorial (from GFO)

Cause(x,y) Cause (from OC)

Causeadh(q,w) Processes, causally adhesive

(from OC)

Causecoh(x) Process, causally cohesive

(from OC)

Causeinst(x,y) Cause, instantaneous

Change(e1, e2,

u1,u2, u)

Change (from GFO)

Chron(x) Chronoid (from GFO)

Coh(x) Coherent Entity (extends GFO)

Coinc(x,y) Coincidence (from GFO)

Config(x) Configuration (from GFO)

Configu(x) Configuroid (from GFO)

Contribute(x,y,z) x contributes to the realization y

of a function z

CPart(x, y) Part, constituent (from GFO)

D(y,x) Determinant of a function x

Enable(x,y) Enable

Entity(x) Entity (from GFO)

Exclude(v,w) Exclude

Execute(x,y,z) x executes the realization y of a

function z

Fact(x) Fact (from GFO)

FI(x,y) Functional item of a function y

FICompl(x,y) Complex functional item of a

function y

FiInd(x,y) Individual functional item of a

function y

FITEM(x) Set of functional items of x

FSt(x,y) x is a final state of y

Fu(x) Function

FuAccompl(x) Accomplishment function

FuBasic (x) Basic function

FuCoh(x) Coherent function

FuCompl(x) Complex function

FuContin(x) Continuous function

FuDyn(x) Dynamic function

FuDynR(x,y) Dynamic function wrt. a

realizer y

FuEnable(x,y) Function enabling y

FuImprove(x,y,z) Function x improving the

realization z achieving the goal

y

FuInstant(x) Instantaneous function

FuMulGoal(x) Multiple-goal function

FuNeutral(x,y) Function neutral for y

FuPass(x) Passive function

FuPassR (x,y) Passive function wrt. a realizer

y

FuPerform(x,y) Function performing y

FuPrevent(x,y) Function preventing y

FuSeq(x) Sequential function

FuSupport(x,y) Function supporting y

Futrigger(x,y,z) Function x triggers the

realization z achieving the goal

y

GOAL(x) Set of goals of function x

Goal(x,y,z) x is a goal of a function y

established by an agent z

GoalFor(x,y) x is a goal for an agent y

GoalOf(u,y) x is a goal of a function y

HasFuAct(x,y,z) Actual function of an item x in

context z

HasFuDesig(x,y,z) Designed function

HasFuDisp(x,y,z) Dispositional function

HasFuInten(x,y,z) Intended function

HasFuReq(x,y,z) Required function

HasFuRes(x,y,z) Researched function

HasFuUser(x,y,z) User function

Improve(x,y,z) Function x improves the

239

realization z of a function y

Ind(x) Individual (from GFO)

IndFu(x) Individual function

Intent(q,v) x intends y

IntCont(i, R,

a1...an)

Content of the intention i

LayerPart(x,y) Part, Process Layer (from GFO)

Lb(x,c) Left boundary (from GFO)

Malfu(x,y,z) Malfunction of x in context z

MalfuHist(x,f,s) Malfunction wrt. to the history

of an item x

MalfuInten(x,f,c) Malfunction wrt. intended

function of x

MalfuKind(x,f,s) Malfunction wrt. to other

instances of a kind of x

MatL(x) x belongs to material stratum

(from GFO)

MeansActRl(x,y) Means of actual realization of a

function y

MentL(x) x belongs to mental stratum

(from GFO)

Occ(x) Occurrent (from GFO)

Ontic(x, y) Ontological connectedness

Part(x,y) Part (from GFO)

PartFu (x,y) Function part-of

PartSeq(x,y) x is a part of the sequence

realizing y

Perst(x) Persistant (from GFO)

PhPart(x,y) Part, physical (from GFO)

Phys(x) Physical Structure (from GFO)

PPart(x,y) Part, Proper (from GFO)

Prb(x,t,y) Presential y being a projection

of a process x to a time

boundary t

Pres(x) Presential (from GFO)

Prevent(x,y) Prevent

Proc(x) Process (from GFO)

ProcBd(x,y) Process boundary (from GFO)

ProcEnds(x,y) Process common end (from

GFO)

ProcLBd(x,y) Process boundary, left (from

GFO)

ProcPart(x,y) Part, processual (from GFO)

ProcRbd(x,y) Process boundary, right (from

ProcStarts(x,y) Process common start (from

GFO)

Prop(x) Property (from GFO)

PropV(x) Property value (from GFO)

Prt(x,c) Projection (from GFO)

R(x,y) Realizer of function y

RAc(x,y) Actual realizer of function y

Rb(y,c) Right boundary (from GFO)

RComplAct(x,y) Complex actual realizer of

function y

RDisp(x,y) Dispositional realizer of

function y

RDispStr(x,y) Dispositional strong realizer

RDyn(x,y) Dynamic realizer of function y

Realize(x,y) Function x realizes function y

REQ(x) Set of requirements of a

function x

Req(x,y) Requirement of a function y

ReqEnv(x,y) Environmental requirement of a

function y

ReqFi(x,y) Functional item’s requirement

of a function y

ReqOp(x,y) Operand requirements of a

function y

RlAct(x,y) Actual realization of a function

y

RlActCulm(x,y) Actual culminative realization

of a function y

RlActMin(x,y) Actual minimal realization of a

function y

RlActNonCulm(x,y) Actual non-culminative

realization of a function y

RlActSit(x,y) Actual situational realization of

a function y

RlDisp(x,y) Dispositional realization of a

function y

Role(x) Role (from GFO)

RPass(x,y) Passive realizer of a function y

SideEf(x,y) Side effects of a function y

Seq(y, L) Sequence realizing a function y

SideEfRl(x,y,z) x is a side effect of realization y

of a function z

Sit(x) Situation (from GFO)

Index of Symbols

240

Situ(x) Situoid (from GFO)

SocL(x) x belongs to social stratum

(from GFO)

SPart(x,y) Part, spatial (from GFO)

Specialize(x,y) Specialization

Subsume(x,x) Subsumption

Support(x,y) Support

Tb(x) Time boundary (from GFO)

Te(x) Time entity (from GFO)

TFRAM(x) Time frame of x

TPart(x,y) Part, temporal (from GFO)

Trig(x,y) x is a trigger of a function y

Trigger(x,y,z) Function x triggers a realization

z of function y

Uni(x) Universal (from GFO)

UniDAb(x,y) Absolute universal determinant

of function y

UniFu(x) Universal function

UniFuAb(x) Absolute universal function

UniFuPrim(x) Universal primitive function

UniHasFu(x,y,z) Universal has-function

UniHasFuAct Universal actual function

UniHasFuDisp(x,y, Universal dispositional function

z)

UniHasFuInten(x,y

,z)

Universal intended function

UniR(x,y) Universal realizer of a function

y

UniRlMin(x,y) Minimal universal realizer of a

function y

Whole(x) Complex Whole (extends GFO)

x ⊂Fu y Function specialization

x ⊆Fu y Function subsumption

x ::FI y Functional item instantiation

x ::Fu y Function instantiation

x ::Gl y Goal instantiation

x ::Req y Requirements instantiation

x @ y x fulfills y

x =Fi y Equivalence of functions wrt.

functional items

x =Fu y Equivalence of functions

x =Gl y equivalence of function wrt.

their goals

x =Req y Equivalence of function wrt.

their requirements

Scientific Career

2003 – 2006

PhD studies in the postgraduate programme Knowledge Representation,

University of Leipzig, Germany.

PhD thesis: Ontology of Functions: A Domain-independent Framework for

Modeling Functions.

Supervisor: Prof. Dr. Heinrich Herre.

2005 – now Member of the Ontologies in Biomedicine Group, University of Leipzig

and Max Planck Institute for Evolutionary Anthropology.

2003 – now Member of the Onto-Med Research Group, University of Leipzig.

2001 - 2003 Business Consultant at Anica System S. A. Lublin, Poland: software

engineering, system analysis and data modeling.

1997 – 2002

Master’s Degree. Chair of Fundamentals of Computer Science, Department

of Philosophy, Catholic University of Lublin, Poland.

Thesis: Application of the Oracle CASE* Method for the analysis of the

information system of the Income Evidence Department at the Catholic

University of Lublin: Modeling of functional and informational

requirements.

2000 – 2002 Institute of Marketing and Management, Department of Economics,

Catholic University of Lublin, Poland (5 semesters).

1997 University-entrance diploma at Zamoyski High school, Lublin, Poland.

Main subjects: Physics and Mathematics.

Selbstständigkeitserklärung

Hiermit erkläre ich, die vorliegende Dissertation selbstständig und ohne unzulässige fremde

Hilfe angefertigt zu haben. Ich habe keine anderen als die zugelassenen Quellen und

Hilfsmittel benutzt und sämtliche Textstellen, die wörtlich oder sinngemäß aus

veröffentlichten oder unveröffentlichten Schriften entnommen wurde als solche kenntlich

gemacht. Ebenfalls sind alle von anderen Personen bereitgestellten Materialien oder erbrachten

Dienstleistungen als solche gekennzeichnet.

Leipzig, 20.7.2006

Patryk Burek

