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Abstract 

In many domains entities are considered in terms of their functions, starting with the design of 

artifacts, through natural and social sciences and ending with folk theories and common sense 

knowledge. However, there is a lack of a domain-independent ontological framework for 

representing and modeling functions. Such a framework could be given by top-level 

ontologies, providing the specification of the most general, domain-independent concepts, in 

contrast to domain ontologies which describe conceptualizations of particular domains. 

However, current top-level ontologies such as DOLCE, SUMO or GFO either do not include 

the notion of function or handle it scantily. 

The objective of this work is to develop a formal top-level ontology of functions (OF), 

applicable across various domains, and to incorporate it into a broader ontological framework. 

OF is concerned with five main issues, namely the representation of the structure of functions 

and their interrelations, the realization of functions, function ascription, and the incorporation 

of OF into the top-level ontology GFO. The first two issues are of relevance in functional 

modeling, where it is required to represent functions independently of the particular ways of 

their realization. Secondly, we find it important to provide the ontological foundations for the 

evaluation of entities against their capabilities of realizing functions. Thirdly, since the 

functional description is often a part of the knowledge about entities, it is important to provide 

conditions for assigning functions to entities. Finally, OF is incorporated into the wider 

framework of GFO which provides the means for a cohesive representation of both functional 

and non-functional knowledge. 

The developed solution is intended to be applied in domain ontologies and conceptual 

models. For example, OF has been recognized to be beneficial for the Open Biomedical 

Ontologies (OBO) as a general framework for representing biological functions and together 

with GFO it is used as the foundation for a Biological Core Ontology. In addition, OF provides 

the basis on which an extension to the Unified Modeling Language (UML) has been proposed, 

the current de facto standard in object-oriented conceptual modeling, that is recently also 

proposed for ontological engineering. The extension is introduced to UML in the form of a 

profile, enabling the construction of functional models. The profile, among others, introduces 

graphical notations which allow for the visualization of functional models. 
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1 Introduction 

 

This work is concerned with the representation of functions and functional knowledge in 

ontologies, in particular in top-level ontologies. In the current section we give the 

preliminaries, motivations and objectives of our work. In section 1.1 we introduce our 

understanding of the notions of function and functional knowledge, and demonstrate their 

relevance across various domains. Section 1.2 briefly refers the issue of ontologies and in 

particular top-level ontologies.  In section 1.3 the motivations and objectives of the work are 

discussed. Finally, section 1.4 provides an overview of the structure of this work. 

1.1 Functions and Functional Knowledge  

The current work is concerned primarily with the notion of function. However, our interests do 

not concern the mathematical understanding of function as the binary relation, such that for 

every element x the element y is uniquely determined. Rather we are interested in the common-

sense usage of the term. 

To illustrate our understanding of the notions of functions and functional knowledge we 

will consider the example of a house. Different views of a house can be taken. One could 

consider a house from the perspective of its history asking about the origins of the house, the 

circumstances of its construction, the history of people living in it etc. In another view of a 

house one could focus on the physical features like height, shape or the color of elevation. 

Additionally, a house could be decomposed to components like foundations, walls and roof. 

The interior of a house can be partitioned into a cellar, staircases and rooms, which in turn can 

be specified as dining rooms, bedrooms etc. Finally, a house can be decomposed into its 

subsystems e.g. a ventilation system or a heating system. The view of the house in which we 

are here interested is a functional one. Roughly speaking, the functional view of some item is 

oriented at representing functions, taken as purposes or goals associated with this item, instead 

of representing other aspects of the item, such as the physical structure or history.  

An item as a whole may be interpreted in functional terms, i.e. a house may be 

understood as a physical object that has the function of providing shelter against precipitation, 

wind, heat, cold and intruding humans and animals. But also parts of an item may be explained 

functionally, e.g. a staircase may be defined as an indoor space having the function of enabling 
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transportation between floors, a sleeping room as a room to sleep in. In fact, items are often 

decomposed into parts due to the function those parts play. Whereas a staircase and a sleeping 

room are distinguished due to their function and their physical composition (both are kinds of 

indoor space) some parts are distinguished exclusively on the basis of their function. Such 

parts are often called systems and subsystems. For example, the reason for perceiving a net of 

devices generating fresh air, ventilators, tunnels, windows and doors as a whole (as a 

ventilation system), is the function to which all those entities contribute, namely the function 

of  the maintenance of the acceptable indoor air quality. 

It is not only the parts of an item that may be functionally described and explained, but 

also its properties and the properties of its parts, e.g. the thickness and the material of the 

external walls is chosen, among other things, in order to avoid the waste of heat.  

The knowledge referring to functions, rather than to other aspects like physical features, 

structure or behavior, is called the functional knowledge.  It is clearly observable that 

functional knowledge is present in all domains of our life. In the first, place all artifacts are 

described in functional terms. It is common to understand both simple and complex technical 

artifacts not in terms of their physical properties, like structure or behavior, but in terms of the 

functions they have. Functional knowledge has been recognized as useful at least at three 

stages of the process of design and redesign of artifacts [Shimomura et al., 1995]: 

1. Requirements specification. A part of device requirements is specified in terms of 

functional concepts. In fact, functional requirements at the initial state of design play a 

crucial role, since at that stage non-functional requirements are often not taken into 

consideration yet. 

2. Designed object representation. Functional knowledge provides an alternative to the 

physical description of a device. An association of a physical description with a functional 

description helps in understanding the former. Functional models explain the structure and 

the behavior of an object: they record and communicate the designer’s intentions ([Stone, 

Wood, 2000], p. 359) and bridge them with the physical structure and the behavior of the 

object [Umeda, Tomiyama, 1995], p. 71). Explicitly stated functions help to understand 

the modularization of the structure of a device, since it is often driven by the functional 

decomposition ([Stone, Wood, 2000] p. 359). 

3. Evaluation. The design of an artifact is evaluated from the functional point of view and 

thus verification of an artifact against the intended functions is the foundation of the 

evaluation. In simulation and diagnosis an explicit functional knowledge permits to check 

whether the objectives are achieved. Moreover, the comparison of artifacts is commonly 

based on the comparison of functionality ([Stone, Wood, 2000] p. 359). 
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As [Rosenman, Gero, 1999] observe, the importance of functions increases even more in the 

multidisciplinary design. If many domains are involved in the design, it may be difficult or 

even impossible to grasp the whole design in its technical complexity, but often it is enough to 

understand the intuitions about the functions of an artifact and its components.  

Although the above benefits of functions and of the functional knowledge have been 

discussed primary in the area of technical artifact modeling, they concern all types of artifacts. 

Let us consider here two additional cases: business system design and software engineering. 

In business modeling it is commonly agreed to distinguish between an enterprise’s 

business function (i.e. what it does in order to achieve its objective) and business process (i.e. 

the activities performed by an enterprise in order to realize its business functions).  In business 

system design business functions play an analogous role to the functions in technical design. 

They provide the means to specify requirements and play a crucial role in the first phases of 

system design. The modeling of functions is also of use in software engineering, in particular 

in structured system analysis, where functional decompositions and functional dependencies 

are modeled.  

In fact, functional knowledge is not only of importance in the context of artifact design. 

Also natural and social science use functions to describe the phenomena in their domains of 

interest. A well known example of functional explanation in the field of biology is that given 

by the British ecologist H. B. D. Kettlewell concerning the peppered moth living on the trees 

in the area of Liverpool. During the industrial revolution the pollution darkened the naturally 

light bark of the trees. The color of the peppered moth that populated the trees darkened as 

well. When the pollution was reduced and the bark of the trees lightened again, the peppered 

moth went back to its previous color as well. An intuitive explanation of that phenomenon, 

followed by many evolutionary biologists, is that the color of the peppered moth serves as a 

camouflage against predators. In this sense the explanation of the change of color is given in 

functional terms, i.e. by the reference to the function it should realize – the protection from 

predators1.  

Reference to function can often also explain the presence of an organ or a trait. For 

instance the presence of the hemoglobin in blood or the presence of the heart in mammal 

organisms can be justified by their functions, that is transporting oxygen from the lungs to 

other parts of the body and pumping blood, respectively. Both functions are essential for the 

survival of an organism, and thus the presence of the organs and substances realizing them is 

justified.  

                                                      

1 Functional explanation in biology is not free from difficulties. The functional explanation concerning 

the peppered moth given by Kettlewell is subject to some criticism, e.g. in [Majerus, 1998]. 
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Functional explanation is present also in biochemistry, e.g.t he actions of 

macromolecules are described functionally and intentionally - macromolecules build, repair, 

recognize, and make errors: all these characteristics have functional and even intentional  

nature. 

Last not least, functions play an important role not only in engineering and natural 

science but also in common sense knowledge. The structure of common sense knowledge and 

the principles of human categorizations have been the subject of cognitive science and 

experimental psychology for decades. A significant role of functions in human categorization 

has been found especially in the context of psychological essentialism. Psychological 

essentialism is the result of a series of experiments (including [Keil, 1989; Gelman, Wellman, 

1991]) which have shown that human concepts are not mere composites of necessary and 

sufficient characteristics but instead posses a particular structure. According to this approach 

people act as if concepts have some “essential” properties that are both criterial for category 

membership and responsible for other “surface” features of concepts [Medin, Ortony, 1989]. 

According to psychological essentialism essential features drive human categorization and are 

believed to determine the rest of the features. Among the candidates for essential features, 

especially in the context of the categorization of artifacts, are functional features. A number of 

experiments (e.g. [Barton, Komatsu, 1989; [Gelman, Bloom, 2000; Matan, Carey, 2001; 

Keleman, 1999]) seem to provide the evidence that what guides people’s intuitions about 

artifact category membership is intended function, which is thus the essence of artifact 

concepts. It is claimed that people categorize artifacts with respect to their function. For 

example, [Barton, Komatsu, 1989] as a result of their experiments found out that the objects 

which are not able to perform their functions are not considered by people to continue being 

the same kind of artifact.  For example a mirror that did not reflect an image was not 

considered by the subjects of the experiments as a mirror. In addition, the experiments of 

Barton and Komatsu have shown that function is a sufficient condition for the categorization 

of objects as kinds of the same artifact. The object which was neither hard nor made of glass 

but did reflect an image was considered as a mirror. 

Function not only determines the kind of an artifact, but also its properties, its actual 

usage and the classification of artifacts. For example, the function of a knife, to cut, dictates 

both the shape and the actual usage of knifes. Moreover, variation of the functions of a knife 

results in different kinds of knifes, e.g. bread knife, hunting knife or scalpel.  
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Although functionally interpreted essence is not free from difficulties2 it nevertheless 

provides a strong evidence for the significance of the notion of function in human 

categorization, as well as in folk theories. 

In conclusion we can see that functions and functional knowledge are present across a 

vast spectrum of our knowledge, starting with design of artifacts, through natural science, and 

ending with folk theories and common sense knowledge. Functional knowledge not only 

provides an answer to the question of what purpose a given entity serves; in addition, function 

often explains the presence of an entity, its structure and behavior.   

1.2 Ontologies  

After demonstrating briefly our understanding of functions and their relevance across domains 

now we are about to give a short introduction to ontologies, particularly to top-level 

ontologies.  

1.2.1 Definition and Classification  

Although the term ontology, with its origins in philosophy, is hardly new, in computer science 

it has gained a widespread popularity over about the last two decades. One of the first attempts 

to define the term came from [Neches et al., 1991; Gruber, 1993]. Although until today there is 

no universally accepted definition (for discussion see [Guarino, Giaretta, 1995; Guarino, 

1997a]), a popularly cited definition is Gruber’s: “an otology is an explicit specification of a 

conceptualization” [Gruber, 1993]. Here conceptualization, according to [Studer et al., 1998], 

should be understood as an abstract model of some phenomenon, which provides the relevant 

concepts. [Guarino, 1998] argues against understanding conceptualization in purely 

extensional terms and stresses its intensional character. The term explicit refers to the fact that 

the concepts used in the ontology are explicitly defined. 

Ontologies are also considered to have the properties of being formal and shared (e.g. 

[Gruber, 1994; Borst, 1997]). The former refers to the fact that ontologies are represented by 

means of some formal language which makes them machine-readable. The latter refers to the 

fact that ontologies are not private but they are the result of an agreement or some common 

understanding of the phenomena.  

                                                      

2 See section 2.3.2 for Keil’s [Keil, 2003] argumentation against essence considered as an intended 

function. 
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The term ontology gained an increasing popularity, which resulted in applying it to 

various information systems ranging from simple catalogs, through glossaries, thesauruses, 

taxonomies and collections of frames to formal logical theories [Smith, Welty, 2000]. This 

mishmash called for a systematization, and the introduction of various flavors of ontologies.  

A number of such systematizations have been proposed (for an overview see [Gomez 

Perez et al. 2004]). Particularly two criteria for systematizing ontologies are taken into 

consideration by [Gomez Perez et al., 2004]: (1) the richness of the internal structure of the 

ontology (2) the subject of conceptualization. The first criterion introduced by [Lassila, 

McGuinness, 2001] systematizes the wide range of systems discussed by [Smith, Welty, 2000] 

(see figure 1) and shows that nowadays the degree of formality varies significantly across 

different ontology types. Most informal ontologies are the controlled vocabularies which are 

mere catalogs of terms, and glossaries which additionally provide natural language 

specifications of terms.  To be the most formal are considered ontologies which permit to 

specify first-order logic constraints such as disjointness or inverse. The second criterion 

permits to distinguish among others [Guarino, 1997b]:  

− Top-level ontologies describing the most general concepts present across domains 

under which the more specific concepts can be underpinned. Typical concepts of a 

top-level ontology are process, object, or role. 

− Domain ontologies specifying the conceptualization of particular domains (e.g. 

enterprise, service, chemistry, etc). The concepts of domain ontologies are the 

specializations of the concepts of top-level ontologies (e.g. employee is a 

specialization of role) 

− Task ontologies specify the conceptualization related to a given task or activity (e.g. 

diagnosing, selling, etc.). 

− Application ontologies are application dependent specializations of task and domain 

ontologies.  

 

Figure 1.  Categorization of ontologies (from [Lassila, McGuinness, 2001]). 
 

In the present work we are concerned with ontologies which are considered by Lassila, 

McGuinness, 2001 to be the most formal namely the ontologies having the form of logical 

theories permitting to express general logical constraints and providing specifications of most 

general concepts. A formal ontology we understand as follows:  
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“it (formal ontology) consists of a structured vocabulary V(Ont), called ontological signature, 

and a set of axioms Ax(Ont) about V(Ont) which are formulated in a formal language L(Ont). 

Hence, an ontology (understood as a formal object) is then a system Ont = (L,V,Ax); the 

symbols of V denote categories and relations between categories or between their instances. L 

can be understood as an operator which associates to a vocabulary V a set L(V) of expressions 

which are usually declarative formulas.”([Heller et al., 2005], p. 8) 

 

In accordance with the above we understand an ontology as the computer-based artifact, i.e. a 

formal model or a theory applicable in computer systems all of whose elements are artifacts 

referring to the objects of the real world and/or conceptualizations of those objects shared by a 

group of people. It is important to note that all ontological categories and individuals (later 

referred to as entities) are not considered here as the entities of the world, but as artifacts 

(elements of an ontological model) which describe/refer to the world.  This understanding of 

an ontology is far from the philosophical sense of the term in which Ontology is considered as 

the discipline studying existence and being. 

Defining ontologies in terms of formal models referring to some conceptualization 

makes them similar to database schemas, which can be understood as particular models of 

conceptualizations of some domain of interest. However, some authors find ontologies to be 

different from database schemas. For instance, [Spyns et al., 2002] observe that ontologies are 

domain-oriented while the database schemas are application-oriented. In this sense, ontologies 

ought to be reusable across different application in a given domain, whereas database schemas 

are not necessarily so. Following that line we could delimit ontologies from database schemas 

as the models oriented more on the actual organization of things in the world or the currently 

accepted conceptualizations, rather than on the temporary application needs.  

1.2.2 Top-level Ontologies 

In the current work we are interested in particular in top-level ontologies, also called 

foundational or upper-level ontologies (ULO). Top-level ontologies are not concerned with 

providing a complete description of everything, which is a doomed enterprise. As mentioned 

above they are concerned with the formal specification of most generic categories such as 

process, object, time or space, which provide the backbone of specific domain ontologies and 

are reusable across a broad range of domains. The generic character of the categories defined 

in ULO makes the development of those ontologies a cross domain effort of engineers, 

computer scientists, philosophers, library scientists and linguists. ULOs do not contain 

concepts specific to particular domains but instead provide a foundation, upon which domain 



Introduction 

 

8 

ontologies can be constructed. For instance on the basis of the general concept of process the 

domains dependent notions of business process or biological process may be introduced. 

Several top-level ontologies have been developed in recent years. Some of them are 

developed as stand-alone ontologies, e.g. that of J.F. Sowa [Sowa, 2000], or the upper 

ontology of Russell and Norvig [Russell, Norvig, 1995]. Some are modules of bigger projects 

and are often aligned with domain ontologies, e.g. Suggested Upper Merged Ontology 

(SUMO) [Niles, Pease, 2001; Pease, Niles, 2002] developed by the Standard Upper Ontology 

Working Group at IEEE [SUO, 2005], Descriptive Ontology for Linguistic and Cognitive 

Engineering (DOLCE) [Masolo et al., 2003; Masolo et al., 2003] being a module of the 

WonderWeb Foundational Ontologies Library (WFOL)  [WonderWeb, 2005], upper-ontology 

developed within the Smartkom Project [Smartkom Project, 2005],  General Formal Ontology 

(GFO), being a component of the Integrated System of Foundational Ontologies (ISFO), which 

in turn is a part of the Integrated Framework for the Development and Application of 

Ontologies (IFDAO), the upper-level part of  the ontology used in the MultiNet semantic 

network [Helbig, 2001], or the upper-level of the Cyc Project ontology [Cyc Project, 2005]. 

Below we give a short informal overview of the selection of the above ontologies, 

namely of Sowa’s ontology, SUMO, DOLCE and in particular GFO, which the present work 

refers to. We present the most top-level categories and track the most significant ontological 

choices done in those ontologies. 

Sowa’s Ontology  

Sowa’s upper-level ontology was strongly influenced by the philosophical works of Peirce, 

Plato and Whitehead. The lattice of categories was developed pursuing a combinatorial 

approach based on three orthogonal distinctions: (1) physical vs. abstract, (2) firstness, 

secondness, thirdness, (3) continuant vs. occurrent. 

Concerning the first distinction Sowa understands abstract entities, in the spirit of Plato 

and Whitehead, as eternal, mathematical objects, which do not have a location in space or in 

time. In contrast to this, physical entities are located in space and time. The relation that holds 

between physical and abstract entities is that of characterization/ representation. An abstract 

entity characterizes, and is represented, in zero or more physical entities.  

Concerning the second distinction Sowa’s ontology is founded on Peircean notions of 

firstness, secondness and thirdness. Firstness is an Independent category which is represented 

in logic by a monadic predicate P(x), “which describes an entity x by its inherent qualities, 

independent of anything external to x” ([Sowa, 2000], p. 61). Secondness is a Relative 

category, which can be represented as a dyadic predicate. The Relative grasps the external 
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relationship to some other entity. Thirdness is a mediating category that can be represented by 

means of a triadic predicate. The Mediating binds together the Independent and the Relative. 

Finally, continuants are contrasted to occurrent on the basis of their relation to time. “A 

continuant has stable attributes or characteristics that enable its various appearances at 

different times to be recognized as the same individual. An occurrent is in a state of flux that 

prevents it from being recognized by a stable set of attributes. Instead, it can only be identified 

by its location in some region of space-time.” ([Sowa, 2000], p. 71) 

The application of those three orthogonal distinctions results in 27 basic categories, 

which in turn are specialized further into more specific categories. Sowa provides a textual and 

a semi-formal specification of all of the categories of his ontology. Moreover he provides a 

pictorial language called Conceptual Graphs (CG) for representing ontologies, which is a 

system of logic based on the existential graphs of Charles Sanders Peirce and the semantic 

networks of artificial intelligence. CG are intended to merge logical precision and human 

readable form. 

SUMO 

Suggested Upper Merged Ontology (SUMO) [Niles, Pease, 2001; Pease, Niles, 2002], created 

at the Teknowledge Corporation, was intended to merge upper-level ontologies of Sowa, 

Russel and Norvig, Allen’s temporal axioms [Allen, 1984], the theory of holes by Casati and 

Varzi [Casati, Varzi, 1995], Smith’s ontology of boundaries [Smith, 1996; Smith, 1994], 

formal mereotopology developed in [Borgo et al., 1996; Borgo et al., 1997], and several 

representations of plans and processes, including Core Plan Representation [Pease, Carrico, 

1997] and Process Specification Language [Schlenoff et al., 2000]. SUMO is developed in a 

variant of KIF called SUO-KIF and has been translated into various representation formalisms, 

including OWL and LOOM.  

 

      

 

Figure 2. Taxonomy of SUMO most top level categories. 
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Categories of SUMO are organized into a taxonomy (figure 2), where the root category entity 

is subsumed by abstract and physical entities, just as it is the case in Sowa’s ontology. 

Physical entities are divided into processes and objects, which is an adoption of the 3D view3 

and resembles Sowa’s distinction between continuant and occurrent. Abstract entities are in 

turn divided into (1) a class understood as a set together with its intensional condition of 

membership, (2) a proposition, which represents the notion of semantic or informational 

content, (3) an attribute covering all qualities, properties which are not reified as objects, and 

(4) a quantity covering physical quantities and numbers.  

DOLCE 

Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE) is introduced as a 

first module of the WonderWeb foundational ontologies library developed within the 

WonderWeb Project. The aim of that ontology, as the authors admit in ([Masolo et al. 2002], 

p.8) is not to develop a universal standard ontology but rather give a starting point for 

comparison and making explicit the assumptions of other modules of WFOL. The 

axiomatization is given in modal first order logic and was translated into KIF, DAML+OIL, 

RDFS and OWL. DOLCE was integrated with methodologies for ontology building e.g. 

OntoSpec [Kassel, 2005] and was applied in the development and alignment of a number of 

ontologies and glossaries, e.g. WordNet [Gangemi et al., 2003]. 

The basic distinction of ontological categories in DOLCE is made between endurants, 

perdurants, qualities, and abstract entities. The distinction between endurants and perdurants 

is the adoption of the 3D view and, similarly to Sowa’s ontology, refers to the behavior of an 

entity in time: (1) endurants are entirely present at any time of their existence, perdurants are 

only partially present at any time of their existence; (2) endurants are in time, whereas 

perdurants happen in time, (3) endurants can genuinely change in time, perdurants cannot 

undergo a change. The relation that holds between endurants and perdurants is the relation of 

participation - endurants participate in perdurants.  

 

 

                                                      

3
 The 3D view postulates a basic ontological distinction between entities that are completely present at 

any moment of their existence, called objects or endurants, and entities that are not, called processes. 

The 3D view is contrasted to the 4D view regarding both objects and processes as four dimensional 

entities extended in time and space.  
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Figure 3. Taxonomy of DOLCE topmost level categories (from [Masolo et al., 2003], p. 14) 

 

Qualities are the entities that we can perceive and measure. They are inherited to the 

entities they describe: every entity has some qualities with which it comes. Qualities are 

related to so-called quality spaces which correspond to qualitative sensorial experiences of 

humans [Gärdenfors, P. 2000]. Abstract entities are contrasted to perdurants and endurants as 

the entities located neither in space nor in time. 

Perdurants, endurants, qualities and abstract entities are further decomposed by means 

of subsumption to more detailed categories (figure 3). 

GFO 

In the current section we give the overview of the General Formal Ontology (GFO), which the 

current work is built upon. GFO is the first ontology of the Integrated System of 

Foundational Ontologies (ISFO) being developed at the University of Leipzig by the research 

group Onto-Med [OntoMed, 2006]. ISFO is a part of an Integrated Framework for the 

Development and Application of Ontologies (IFDAO) whose predecessor was the GOL project 

[Degen et al., 2001; Heller, Herre, 2004; Heller et al., 2005] launched in 1999 as a 

collaborative research effort of the Institute for Medical Informatics, Statistics and 

Epidemiology (IMISE) and the Institute for Informatics (IfI) at the University of Leipzig. 

IFDAO covers not only the area of foundational ontologies but also the meta-ontological 

analysis.  In particular, the topics of conceptual structures and principles of category building 

are discussed in [Herre, Loebe, 2005; Burek, 2004; Burek, 2005; Burek, Grabos, 2005].  

GFO provides a taxonomy of entities, a taxonomy of relations, and the set of axioms 

describing them in FOL. Entities of GFO are organized into three levels of the description of 
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reality, namely material, mental and social level, in such a way that every entity of GFO 

participates in at least one of those levels (for further discussion of levels of reality see [Poli, 

2001; Poli, 2002]). The material level comprises the perspective taken in biology, chemistry or 

physics. The mental level is organized around the representation of the psychological 

phenomenon and comprises most of what is studied in cognitive science. The social level, in 

turn, groups all entities referring to the social phenomenon, such as agent, organization, or 

society.   

The root element in the GFO taxonomy is entity
4  (figure 4) Entities are the basic 

elements of the ontology which refer to the items of reality. Three general kinds of entities are 

considered in GFO, namely sets, categories, and individuals.  

Categories, also called universals, are intensional counterparts of classes. They are such 

entities that may be predicated of other entities and may be expressed and represented in terms 

of language. Moreover, they may be instantiated by other categories or by individuals. 

Individuals instantiate categories but cannot be instantiated themselves. The distinction 

between individuals and universals can be seen by the analysis of the number of items of the 

real world they refer to. Universals may refer to more than one item of the world, whereas 

individuals refer to exactly one item of the world. Thus, the ontological distinction between 

universals and individuals should not be identified with the distinction between objects and 

classes of object-oriented paradigms, since not every object must refer to exactly one item of 

reality, e.g. ape:species, refers to all apes. 

The main branch of the GFO taxonomy concerns individuals, but one should notice that 

primitive categories can be organized in the isomorphic taxonomy by means of individuals 

instantiating them. Individuals are organized into entities of space and time (time entities and 

space entities), abstract and concrete individuals.  

GFO provides a build-in representation of time and space. Both time and space are 

organized into regions with explicit boundaries, called spatial regions (specialized to topoids), 

and time regions (specialized to chronoids) respectively. Temporal relations of before, after 

etc. are represented by the relations between the boundaries of time regions occupied by 

entities.  

 

                                                      

4 Table 1 provides the list of examples of GFO entities and appendix A - the list of all GFO constructs 

used in the current work, their definitions and corresponding axioms. The account of the GFO entities 

given here slightly differs, mostly terminologically (although see footnote 5) from the most current 

specification of GFO [Heller et al., 2006], which was under construction during the time of writing of 

the present work. Moreover, due to the topic of the present study, which does not require an introduction 

of GFO in all its complexity, some of the notions of GFO are simplified here. 
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Figure 4. Taxonomy of GFO topmost-level categories. This tree is a simplified and modified 

variant of  ([Heller et al., 2005], p. 145-147).   

  
Concrete individuals, in contrast to abstract individuals, are the individuals located in 

time and space. The main distinction is made between occurrents and presentials. The former 

include processes being entities that are extended in time and resemble processes in SUMO 

and Sowa’s ontology, or occurrences in DOLCE, whereas the latter are not extended in time, 

and in contrast to endurants, they do not persist through time but are time-flat. They can be 

considered as time slices of processes. Persistence is accounted in GFO by means of 

persistants, which are entities extended in time but distinct from processes. A persistant can be 

seen as a construct which binds presentials having the same identity, though located at 

different time boundaries5, into one entity persisting through time. 

 

GFO construct Example 

Universal Human being 

Individual John 

Chronoid Time of duration of a soccer match 

Chronoid boundary Time of the end of the match 

Topoid 3D location occupied by John 

                                                      

5 It should be mentioned that the presented account of persistants is a simplified variant of GFO [Heller 

et al., 2006]. Originally, persistants are not individuals but universals instantiated by ontically connected 

individual presentials, and are introduced to GFO as a response to the problems yielded by the typical 

understanding of endurants as the entities enduring in time and wholly present at every moment of their 

existence. For further discussion see ([Heller et al., 2006], p. 25). 
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Process Movement of the ball 

Presential The ball at the beginning of the match 

Persistant The ball 

Property The color of the ball 

Property value White 

Role John as an attacker in the soccer match 

Fact John hitting the ball 

Situoid Soccer match 

Table 1.  Examples of GFO entities. 

 

More complex entities composed of collections of presentials and their interrelations are 

handled by the notions of facts, configurations and situations. The time-extended counterparts 

of the latter two are called configuroids and situoids, respectively6.  

Individuals of all kinds may have assigned properties and property values which are 

considered to be dependent on their bearers. Similarly roles are considered to be entities 

dependent on their role fillers and the context in which they are played by the role fillers7. 

Entities of GFO are related by a net of ontological relations, including instantiation, 

has-quality, part-of, occupation, and others. Several other relations, including causality, are 

still under development [Michalek, 2005; Michalek, 2006]. 

1.2.3 Representation Formalisms 

Various types of logics have commonly been used for representing ontologies, e.g. FOL in the 

case of GFO and Sowa’s ontology or modal logic [Hughes, Cresswell, 1996] in DOLE. 

However, representing ontologies in a purely logical manner is not a straight task, especially 

for untrained domain experts, who are often involved  in ontology development process. To 

simplify ontology design a number of ontology specification languages have been developed, 

merging familiar frame-oriented and object-oriented paradigms with logic, for example F-

Logic [Kifer, 1995], OCML [Domingue et al., 1999], or LOOM [Loom, 1995].  

Those languages are sometimes referred to as traditional ontology representation 

languages, and are contrasted with web based languages, which are dedicated to ontology 

                                                      

6 Complex entites are discussed in more detail in section 3.3.7.   

7 Roles are discussed in more detail in section 3.6.1.   
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representation in the context of the Semantic Web [Corcho, 2001; Corcho, Gomez-Perez, 

2000]. Web-based ontology languages are intended to provide machine-readable semantics of 

the content on the web. Those languages are either HTML- based, e.g. SHOE, or XML-, RDF- 

and RDF(S)- based, e.g. OIL, DAML +OIL or OWL. The current World Wide Web 

Consortium [W3C, 2006] recommendation for an ontology specification language on the Web 

is the Web Ontology Language (OWL) [OWL, 2004], which comes in three increasingly-

expressive sublanguages: OWL Lite, OWL DL, and OWL Full. The first two sublanguages 

have the formal semantics of SHIF(D) and SHOIN(D) description logics, respectively. OWL 

Full uses all OWL language primitives and permits arbitrary combination of those with RDF 

and RDF(S). However, the high expressivity of OWL Full is achieved at the cost of its 

computational intractability, which is a serious shortcoming especially in the light of the aim 

of the Semantic Web. 

Yet another group of the languages for representing ontologies are the languages 

constructed for the development of (and based on) particular ontologies, e.g. CycL developed 

in the context of the Cyc project.  Those languages often have some build in ontology. 

Finally, there are also proposals to use as ontology specification languages the graphical 

modeling languages from outside of the ontology community. For example, it is suggested in 

e.g. [Baclawski et al., 2001; Kogut et al., 2002] to apply the Unified Modeling Language 

(UML) [Rumbaugh et al., 1999], developed and successfully applied in the software 

engineering area, into ontological engineering. The issue of combining ontologies with 

conceptual modeling languages, in particular with UML, is discussed in chapter 8. Moreover, 

chapter 8 contains a specification of the UML profile constructed by means of the developed 

ontology applicable to functional modeling. 

1.2.4 Applications 

The list of application areas of ontologies has increased in recent years. [Guarino, 1998; 

Corcho et al., 2001] report a few of them, including: knowledge engineering, knowledge 

management and knowledge representation, qualitative modeling, language engineering, 

database design, e-commerce and e-services, information modeling and integration, database 

design, natural language processing, knowledge reuse and of special impact today the 

Semantic Web. The upper-level ontologies in turn bring profit in particular to integration of 

information, reuse of knowledge, domain ontology engineering, and conceptual modeling.  

Concerning the first, since ULOs provide the specification of the most common 

categories their application is not limited to particular applications, tasks or domains but can be 

used and shared in various different information systems. This permits to apply ULOs for 
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information integration, providing a commonly used set of the most basic notions. Domain 

ontologies may be merged and integrated by virtue of commonly shared top-level concepts.  

Secondly, top-level ontologies reduce the time and effort of the domain ontology design 

and alignment.  Instead of developing a structure of most top-level categories and relations 

individually for each domain ontology one may use an available top-level ontology. In this 

sense, a top-level ontology can be used as a framework for developing domain ontologies. 

Moreover, ULOs applied as the foundations of domain ontologies improve their quality and 

help in their formalization. As reported in [Borgo, Leitão, 2004] domain ontologies developed 

in frames of ULOs gain the benefit of strong formal and semantic foundations. We see 

therefore that the use of ULOs not only precipitates and simplifies the process of the creation 

(and the maintenance) of domain ontologies but also leads to fewer errors and a better 

understanding of the domain concepts. 

Thirdly, and particularly importantly for our work, ontologies have been recognized to 

be adequate for providing sound foundations for conceptual modeling. Conceptual modeling is 

concerned with the construction of computer-based semi-formal or formal abstractions of part 

of the world. In particular, conceptual modeling is used in software engineering for the 

purpose of depicting both the domain of interest - the information structure on which the 

system under development is intended to operate, i.e. the data model, and the components of 

the system itself. In software engineering conceptual models are developed by means of so-

called conceptual modeling languages which are typically formal or semi-formal diagrammatic 

languages or notations, such as Unified Modeling Language [OMG, 2005],  Entity 

Relationship diagrams [Chen, 1976], or Object Role Modeling notation [Halpin, 1997]. 

Usually those languages are based on a limited number of constructs, which are sometimes 

defined in the form of a meta-language, e.g. UML.  

Many conceptual languages, although successfully used in common-day practice of 

software engineering, lack a rigorous definition of used constructs, and often their ontological 

correctness is doubted (see e.g.[Wand, 1999; Guizzardi et al., 2002a; Guizzardi et al., 2002b; 

Guizzardi et al., 2004]). Those limitations may result in the ambiguities and even incorrectness 

of the conceptual models developed by means of such languages. It seems that top-level 

ontologies, which are formal axiomatic theories can provide sound foundations for conceptual 

modeling languages. ULOs provide both formally defined and semantically justified 

categories, which can serve as the foundation for the definitions of conceptual modeling 

languages constructs.  

 

In addition, one could observe that ULOs resemble conceptual modeling languages 

when comparing the categories of the former with the constructs of the latter. For example, the 

common ontological categories shared by many ULOs (see section 1.2.2) such as object, 
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process, time, activity, role are the constructs of conceptual modeling languages, e.g. UML or 

Object Process Methodology (OPM) [Dori, 2002]. In this sense ULOs could not only be 

applied as the foundations of the conceptual modeling languages, but they can themselves be 

directly applied as conceptual modeling languages of high formal and ontological precision.  

Today’s obstacle in applying top-level ontologies directly as conceptual modeling 

languages is the lack of an appropriate representation. Conceptual modeling languages are 

mostly pictorial representations, which are intuitive not only for modelers but also for domain 

experts involved in the process of conceptual modeling. Top-level ontologies, on the other 

hand, are formal logical theories, not easily comprehensible for untrained users, i.e. for domain 

experts involved in the process of conceptual modeling. Thus, it seems profitable to develop 

pictorial (and simple) representations of top-level ontologies which may be used as the tools 

for conceptual modeling. For that purpose one could for instance extend the current modeling 

languages by means of build-in extension mechanisms, such as UML Profiles [OMG, 2004]. 

This technique was applied in [Guizzardi et. al., 2002; Guizzardi, 2005] where GFO and UFO 

were used for the extension of the UML structural meta-model. Extending UML with a top-

level ontology gains the twofold benefit of providing a pictorial representation of top-level 

categories based on the well known syntax of UML, and secondly of bringing  formal and 

ontological sound foundations for UML.  

Note that the idea of developing a UML profile for a top-level ontology should not be 

confused with the initiative of developing a UML profile for ontology development, as it is 

proposed in example  in [Kogut et al., 2002]. In the latter UML is intended to be used as a 

language for modeling ontologies, whereas the former is aimed to extend UML with (top-

level) ontologies. 

1.3 Objectives  

Now, after the preliminary remarks concerning our understanding of function and the outline 

of top-level ontologies we are ready to introduce the problem and the objectives of the current 

work.  

 

Problem: Function is an important cross-domain notion and there is a lack of a domain 

independent framework for representing and modeling functions. 

 

The examples presented at the beginning of this chapter show that the notion of function is of 

importance in various domains. However, as we will demonstrate in the next chapter, most of 

the research done in AI and computer science in recent years seems to be concerned with the 
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representation of functions in the context of the design of technical devices and computer 

systems only.  

There has been a recognized need to provide a general framework for representing 

functions especially in the context of a multidisciplinary design [Chandrasekaran, Josephson, 

2000; Rosenman, Gero, 1999]. As Chandrasekaran and Josephson point out, the lack of such a 

framework causes that “the representation of function in one domain, say chemical 

engineering, may not be compatible with the definition, say, in electrical 

engineering”([Chandrasekaran, Josephson, 2000],  p. 1). 

We follow the idea of a generally applicable notion of function, but we extend it beyond 

the technical device design. We think that the notion of function can be extended in such a way 

that it coherently covers not only the design of non-technical artifacts, i.e. in the field of 

business modeling, but moreover it is applicable to describing non-artifacts, e.g. biological 

organisms or social entities. In our opinion such a general approach would permit a true 

multidisciplinary functional knowledge representation. For example, if by means of the same 

formalism one can represent the functionality of the human organism and the functionality of 

technical artifacts, then the multidisciplinary design of implants could be simplified. In the 

same way, one common representation of the functions of software, technical artifacts and the 

business systems composed of them would simplify the business modeling and the integration 

of all three. The current work is aimed at solving the defined problem by reaching two 

objectives:  

 

Objective 1. To develop a formal top level ontology of functions applicable across various 

domains. 

 

In the current work we propose to consider the notion of function not as a domain notion of 

technical artifact design, but instead as a top-level category analogous as time, space, process, 

object etc. Thus, in our understanding the ontology of function is not considered as a kind of 

mediating ontology between top-level and domain level, as is proposed for example in 

[Kitamura, Mizoguchi, 2004]. Nor is it considered as a domain ontology for technical 

engineering as in [Chandrasekaran, Josephson, 2000], but it is understood as a top-level 

ontology instead (see figure 5 for comparison).  

However, the current top-level ontologies do not include the notion of function, or treat 

it cursorily. For example DOLCE, GFO and Sowa’s ontology lack the notion of function or 

any correlated notion. SUMO introduces the hasPurpose relation, which has the meaning that 

a physical thing has a desired or expected purpose. The notion of a purpose is distinguished 

from the notion of an outcome, which does not need to be expected or desired. The intended 

purpose in SUMO could be interpreted as a function of an entity. However, purposes in SUMO 
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are assigned to physical objects only, whereas it seems that non-physical entities may have 

functions ascribed as well. In Sowa’s ontology the concept of purpose is also present, however 

it is not considered as a function but as the relation gluing an agent, his act and his intention 

concerning that act.  

Concluding, we see that the need for supporting functions and functional modeling by 

the currently developed top-level ontologies is not satisfied. Thus, the aim of this work is to 

provide the domain-independent, top-level ontological framework for function representation. 

Such a framework in our opinion is not limited to providing the standalone category of 

functions but is rather concerned with the exploration of the conceptual structure of functions, 

which includes the web of categories and their interrelations.  

However, our aim should not be seen as the replacement of the domain-specific notions 

of functions but rather as an attempt to develop a general notion covering the greatest number 

of specific cases. A list of detailed requirements of the function ontology is composed on the 

basis of an analysis of the current state of the art and is presented in section 2.4. 

 

Objective 2. To incorporate the top level ontology of functions into a wider ontological 

framework. 

 

A functional knowledge seldom stands in isolation, but mostly it is combined with a non-

functional knowledge. Thus we find it important not to develop the isolated representation of 

functions, but to embody it in a wider ontological framework. Hence, the functional ontology 

is designed as a module of GFO and is formalized in formalized in first-order logic, in 

conformance with the existing axiomatization of GFO presented in [Heller et al., 2005].

Additionally we think that the ontology of functions can provide sound foundations for 

conceptual languages for function modeling. Therefore we recognize an additional objective 

which is considered rather as a by-product of the developed ontology: 

 

Objective 3: To provide a ready-to-use modeling formalism permitting the ontologically-

driven conceptual modeling of functional knowledge.  
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Figure 5. Three architectures of the functional ontology. The top left part of the figure 

represents the architecture underlying the approach of [Chandrasekaran, Josephson, 

2000], where the ontology of functions is considered as (a module of) a domain ontology 

for technical engineering. The top right of the figure represents the architecture 

underlying the approach of [Kitamura, Mizoguchi, 2004]. The functional concepts are 

defined in the Extended Device Ontology, which is a specialization of Top-level 

Ontology from the device-centered view, and the Functional Concept Ontology specifies 

functional concepts as an instance of the concept of “function” defined in the Device 

Ontology [Kitamura, Mizoguchi, 2004]. The above diagram is the interpretation of the 

architecture, the original diagram of this architecture is depicted in figure 6 of the current 

work. The bottom part of the figure presents the architecture underlying our approach. 

Here, in contrast to the two previous architectures the ontology of functions (OF) is 

neither considered as the domain ontology nor as the fundamental (but nevertheless 

domain) ontology of devices. Instead it is a top-level ontology, being a module of a wider 

ontological framework. Domain function ontologies are considered as specializations of 

OF.    

 

In our opinion the current formal top-level ontologies could be used for the purpose of 

conceptual modeling as formal, precise and well-founded modeling languages. However, they 

lack an appropriate graphical representation which is a typical part of conceptual modeling 

languages nowadays. We aim to provide the graphical representation of the developed 

ontology of functions. In particular, on the basis of the developed ontology we construct a 

UML profile for function modeling. Using a UML profile which is an extension mechanism of 

UML not only serves this purpose but it also makes the developed representation compatible 

with the current de facto standard for conceptual modeling. 
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1.4 Structure 

The remaining part of the current work is structured into eight chapters. In chapter 2 we 

analyze the notion of function across domains and formalisms. In particular we investigate AI 

approaches from the field of functional device modeling, as well as the conceptual modeling 

paradigms. In addition we briefly outline the discussion concerning functions in the field of 

philosophy, especially in the context of the philosophy of biology. The results of those 

analyses are used to shape the list of the issues which the ontology of functions in our opinion 

should address. 

Chapters 3 to 7 present the Ontology of Functions. Chapter 3 specifies the structure of 

function, lists function determinants and introduces most fundamental kinds of functions. In 

addition, it addresses the issues of a function’s side effects and restrictions on functions. In 

chapter 4 several relations by which functions can be glued into functional models are defined. 

Some of those relations are typical ontological relations such as subsumption, or partonomy, 

adopted for functions; some others are specific for functions relations. The issue of function 

realization is discussed in chapter 5. It contains the specification of different modes or 

realizations, which exceeds most typical cases of processual realization. The results of chapter 

5 serve as the basis for the distinction of various types of function ascription addressed in 

chapter 6.  Moreover, chapter 6 introduces the notion of malfunction, crucial in the context of 

artifact evaluation. Chapter 7 contains a discussion on the ontological status of functions, in 

which the characteristics of functions as well as some of the candidates for function definition 

are considered. In addition, it provides the most top-level categorization of functions 

constructed on the basis of the developed framework. Finally, it specifies a modularization of 

the developed ontology.  

Chapter 8 provides a specification of the UML profile constructed on the basis of the 

developed ontology and suited for functional modeling. 

The study ends with conclusions containing the identification of the advantages of the 

developed framework, its applications in domain ontologies and conceptual modeling as well 

as suggestions for future work. In turn, definitions and symbols of the GFO notions used in the 

text are provided in appendix A. 
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2 Related Works 

The purpose of the current chapter is double. On the one hand we give an overview of the 

notion of function across domains. In particular in section 2.1 we investigate functions in areas 

of computer science such as device representations and design, in section 2.2 software 

engineering and business modeling. In addition, in section 2.3 we briefly survey philosophical 

discussion over functions. On the other hand, on the basis of the state of the art discussed we 

provide in section 2.4 a list of requirements which in our opinion a top-level ontology of 

functions should meet.  

2.1 Functional Device Representations 

In AI there is a vast area of research concerned with the functional representation in the 

context of technical artifact design. The design is concerned not only with the problems of 

structural and behavioral organization of artifacts, but with the intentions of designers 

concerning the functionality of artifacts, i.e. those concerning the problems of ‘why a given 

component is here, and why the artifact behaves in a certain way?’. [Iwasaki, Chandrasekaran, 

1992] distinguish a function-oriented and a behavior-oriented approach to modeling. The 

former is focused on the question of what a device is supposed to do, i.e. its function, whereas 

the latter is concerned with the expected behavior of a device and deals with the question of 

how a device is supposed to achieve an intended function.  

There are a number of approaches in artifact modeling that handle functional 

knowledge. They differ from one another not only due to their interpretation of the notion of 

function, for which a universally accepted definition has not been developed so far, but also in 

their underlying purposes, ranging from design verification, e.g. [Iwasaki, Chandrasekaran, 

1992] to automatic functionality identification [Kitamura et al., 2002]. Despite those 

differences in the current work we will consider them all under one common notion of the 

functional device representations (FDR). A typical feature of FDR approaches is that functions 

are considered in the context of devices and are contrasted with the behavior and structure of a 

device. 

In the coming sections we will review the main interpretations of the notion of function 

introduced in the field of FDR. These are: 

− Function as the input-output pair. 
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− Function in the context of behavior. 

− Function as the intended role. 

− Function as the effect. 

 

Although the list of references is not exhaustive, yet to our knowledge most of the approaches 

in the FDR field can be classified under at least one of the above interpretations.  

2.1.1 Functions as Input-Output Pairs 

In design research and in functional device representations the input-output approaches have a 

long tradition, see e.g. [Rodenacker, 1971]. As reported in [Britton et al., 2000] the input-

output approaches define functions by means of rigorous mathematical description e.g. 

[Schmekel, 1989; Welch, Dixon, 1992]. Here, however, we are more interested in the 

underlying conceptual model. Let us consider two examples: [Rodenacker, 1971] defines a 

function as a relationship between input and output of energy, material and information, while 

in [Wirth, O’Rorke, 1993] function is defined by the input flux, the output flux, the source 

component, the destination component and the function carrier. For example, the function of a 

hot-cold water faucet can be understood in those terms as follows: the input fluxes are hot and 

cold water, while the mixture of both is the output flux. The person controlling the water flow 

is the source component. The destination component reflects the purpose for which the output 

flux serves. In case the output flux is used for washing hands, the hands are the destination 

component. The faucet is the function carrier8.  

Among the limitations of the input-output approaches, according to [Britton et al. 2000], 

is the fact that mostly they focus only on useful outcomes and ignore negative side effects. In 

turn, [Rosenman, Gero, 1998] admit the applicability of that solution for the purpose of 

mechanistic aspects of functions, however they argue that it does not fit well with the social 

view of functions. The authors write: “there is confusion when function is used at one time to 

describe ‘telling the time’ and ‘transforming an analog signal into digital signal’” ([Rosenman, 

Gero, 1998], p. 170). Moreover, it is questionable whether for all functions such a mechanical 

transformation can be found, e.g. it is hard to find mechanical transformation between the 

input and the output in the function of a bolt and a nut which is to fix parts [Umeda et al., 

1990]. 

                                                      

8 The example cited after [Qian, Gero, 1996]. 
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2.1.2 Function and Behavior 

In FDR functions are often considered in reference to behavior. Here, we overview several 

approaches which consider functions in the context of behavior, namely: Functional Concept 

Ontology [Kitamura et al., 2002] (called also a Functional Ontology [Kitamura, Mizoguchi, 

1998]), Functional Representation [Sembugamoorthy, Chandrasekaran, 1986; Chandrasekaran 

et al., 1993; Chandrasekaran, 1994a; Chandrasekaran, 1994b], Causal Functional 

Representational Language [Iwasaki et al., 1995], Function Behavior State [Umeda et al., 

1990; Umeda, Tomiyama, 1995], and finally Bonnet’s [Bonnet, 1992] and Salustri’s 

approaches  [Salustri, 1998; Bo, Salustri, 1999]. We give a short overview of those approaches 

with a special emphasis of the understanding of the notion of a function.  

Functional Concept Ontology 

Kitamura et al. developed a framework for modeling functional knowledge comprising the 

hierarchy of functional knowledge [Kitamura, Mizoguchi, 2004] and the language  for 

modeling functions and behaviors of a device called the Function and Behavior Representation 

Language (FBRL) [Sasajima et al., 1995]. For our interests, crucial in this hierarchy are the 

Top-level Ontology, the Functional Concept Ontology and the Extended Device Ontology 

(figure 6).  

 

 

Figure 6. Part of the hierarchy of functional knowledge (from [Kitamura, Mizoguchi, 

2004]). 

 

The Top-level Ontology, which is currently under development, is intended to provide the 

fundamental vocabulary, which in turn is specialized to Extended Device Ontology. Extended 
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Device Ontology provides a common device-centric viewpoint for representing artifacts, it 

also defines the concept of function. The Functional Concept Ontology specifies functional 

concepts and depends on the Extended Device Ontology. Thus, already the architecture of the 

hierarchy shows that the notion of function is not a top-level concept but is dependent on (and 

restricted to) the notion of a device. The knowledge about a device is organized in three levels 

([Kitamura et al., 2002] p. 146-8): 

1. Behavioral layer   

2. Base-function layer  

3. Meta-function layer 

The behavioral layer is provided by the Device Ontology and provides the objective 

description of the structure and behavior of a device. The functional levels (base-function layer 

and meta-function layer) provided by the Functional Concept Ontology are founded on the 

notion of behavior. 

A base-function is defined as a teleological interpretation of B1 behavior, whereas B1 

behavior is considered as a change of an attribute value of an operand from that at the input 

port of a device to that at the output port of the device [Sasajima et al., 1995]. We see that on 

the one hand a function is distinguished from the structure and behavior of a device, but on the 

other hand it is restricted to a particular behavior, namely B1 behavior, and is secondary to it.  

A base-function is associated with the behavior realizing it by the mapping primitives 

called the Functional Toppings. Four kinds of functional toppings are distinguished: Obj-

Focus, O-Focus, P-Focus, and Necessity. They represent respectively the object, its attributes 

and its ports, on which a function focuses. In this sense a function is the change of the value of 

a focused attribute in given input and output ports of a given object. The Necessity specifies 

whether a focused object is used in another component of a device.  

Functional toppings show that the specification of a function is grounded both on the 

behavior and the structure and the environment of a device. 

Base-functions are glued by several kinds of relation, among them is-a and part-of. The 

is-a relation is considered in terms of the intensional subsumption, e.g. the function to 

remove is defined as the function to take plus the condition heat is unnecessary 

([Kitamura et al., 2002], p. 149) and thus it is a specialization of to take.  The criteria for 

delimiting the sub-function are explicit and are given by the functional toppings. 

The second kind of relation introduced into FCO is called a method of function 

achievement and is understood as a part-of relation between functions. One function, called a 

macro-function, is said to be achieved by its micro-functions. Micro-functions are considered 

to be parts of macro-functions, in this sense a method of function achievement  corresponds to 
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the functional decomposition [Pahl, Beitz, 1988],   the degree of complexity in [Hubka, Eder, 

1998], and the part-whole relation in Multilevel Flow Modeling [Lind, 1994]. 

The third kind of relation involving functions in FCO is called the is-achieved-by 

relation (or the way of function achievement) and relates a base-function with the essential 

property of a structure and a behavior that achieves that function. Thus the is-achieved-by 

relation mediates, just as functional toppings the behavioral with the functional layer.  

Apart from base-functions FCO introduces meta-functions representing a role of base-

function, called an agent-function, for another base-function, called a target function 

([Kitamura et al., 2002],  p. 149).  Meta-functions are organized on the third layer of 

functional knowledge.  

The FCO framework has a wide scope of applications in the context of device modeling 

ranging from the explanation generation to the automatic identification of functionality of a 

device. However, we find several limitations of the framework when applied in a wider 

context.  

Firstly, it does not support functions concerned with non physical entities. Since this 

approach is a domain approach for technical artifacts design, it does not consider functions not 

related to physical entities, such as cognitive or social functions.  

Secondly, it does not support the functions of all types of physical objects but is 

restricted to technical devices only. Functional Concept Ontology specifying functional 

knowledge is not a top-level ontology but is dependent on the domain ontology of technical 

devices (see figure 6). That architecture itself imposes the domain restricted character of the 

notion of function in FCO.  

Thirdly, even in the case of functions operating on physical objects it seems that not all 

function types are supported, in particular such that do not involve change. The notion of 

function in FCO is restricted to dynamic functions involving a change of physical attributes 

only. For example, if the  function of a warehouse to store goods is considered, one 

would see that there is no B1 behavior involved in this function, since there is no change of the 

attributes of goods kept in the warehouse. In this sense a function of a warehouse cannot be 

represented as a teleological interpretation of behavior involving a change of an entity on 

which it operates. Thus we see that the framework is rather domain-oriented – it supports 

modeling only of dynamic functions involving changes of physical operands. 

Fourthly, it seems that the distinction between base- and meta-functions is also dictated 

by the domain of application. The framework as it is presented by the authors enables the 

representation of functionality of devices; but it is not a framework for representing functions 

in general. Therefore  of primary relevance are the functions assigned to devices or their 

components, whereas functions assigned to base-functions are considered on the meta-level. 
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FR and CFRL 

In [Sembugamoorthy, Chandrasekaran, 1986] authors introduced the Functional 

Representation framework (FR) which was elaborated in a number of papers [Chandrasekaran 

et al., 1993; Chandrasekaran, 1994a; Chandrasekaran, 1994b] and was extended in [Iwasaki et 

al., 1995]  to the Causal Functional Representational Language (CFRL). Both formalisms have 

been applied to a number of tasks, which is reported in [Chandrasekaran, 1994a], including 

device design [Chandrasekaran et al., 1993], design and redesign verification [Iwasaki, 

Chandrasekaran, 1992], diagnostic reasoning, computer program debugging [Allemang, 1991; 

Allemang, Chandrasekaran, 1991]   and simulation [Pegah et al., 1993]. 

In FR a function is defined as a quintuple {TypeF, PF, DevF, CF, GF}, where: 

− TypeF is one of the function types introduced in [Keuneke, 1991]: ToMake, 

ToMaintain, ToPrevent, ToControl.  

− PF is the functional goal. 

− DevF is the device that the function is a function of. 

− CF are the conditions which specify when the function must be achieved;  

− GF is the set of Causal Process Descriptions (CPD) describing the causal mechanism 

achieving a function ([Iwasaki, Chandrasekaran, 1992], p. 6). 

 

This definition evolved in CFRL where a function F is defined as a quadruple {EF, DF, CF, GF} 

where: 

− EF is the name of the function which F elaborates. 

− DF is the description of the device of which F is a function  

− CF is the description of the context in which the device is to function. 

− GF is the description of the functional goal to be achieved ([Iwasaki et al., 1995], p.12). 

 

The functional goal GF of the latter definition is the combination of the functional goal PF 

together with the set of Causal Process Descriptions GF from the former definition. Thus, both 

definitions represent the function by references to the Causal Process Description (CPD). CPD 

is a directed graph with two distinguished node types, Ninit and Nfin [Chandrasekaran, 1994b]. 

Each node of the graph represents a partial state of a device. Ninit corresponds to the partial 

state of the device when the conditions of the function are satisfied. Nfin corresponds to the 

state, in which the goal of the function is achieved. The edges of the graph represent causal or 

temporal connections between the states.  

CPD is an abstract description of a device’s expected behavior in terms of a sequence of 

events. For example the CFRL definition of the function of an electrical power system in an 
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Earth orbiting satellite contains a very simple CPD (figure 7), composed of three nodes related 

by causal links. If the voltage exceeds 33.8, the relay is opened by the controller which causes 

a decrease of the battery’s stored charge. In addition, qualifiers and annotations attached to the 

edges indicate the conditions under which the transition takes place as well as the type of the 

causal explanation of the transition. Here, the transition from n1 to n2 is causal and is 

achieved by the function of the controller component. 

 

 

D
F
: ?eps: Electrical-power-system

C
F
: Object-set: ?sun Sun, Condition: T

G
F
: (ALWAYS

       (IF(AND(>(Electromotive-force

                  (Battery-component ?eps))

                 33.8)

              (Closed-p (Relay-component ?eps)))

        THEN CPD3))

CPD3:

n2: (Open-p (Relay-component ?eps))

causal,<   (by-function-of (Controller-component ?eps))

n1: (>(Electromotive-force (Battery-component ?eps)) 33.8)

n3: (<(d(Stored-charge (Battery-component ?eps))/dt)0)

causal,<

 

Figure 7. CFRL definition of function of an electrical power system ‘to prevent the 

battery from overcharging’(from [Iwasaki et al., 1993]). DF specifies the device - the 

electrical power system, CF - the context of the device, i.e. the Sun and Conditions, GF - 

the goal to be achieved, which is a conditional statement here saying that if the battery 

voltage exceeds 33.8 and the relay is closed then CPD3 should be executed. Finally 

CPD3 provides the chain of causal processes realizing the function. 

 

The definitions of function both in FR and in CFRL involve the causal description of the 

behavior of a device, which is a mechanism of the function’s realization. Umeda in ([Umeda, 

Tomiyama, 1997], p. 44) observed that in fact CFRL (and so FR) does not involve the explicit 

specification of what the system is intended to do, but instead it specifies only how it realizes 

its function, i.e. the intended function of the electrical power system to prevent the 

battery from overcharging is not included in the functional specification.  

Moreover, since FR and CFRL relate function to behavior, it makes it problematic, just 

as in the case of FCO, to represent by their means functions not involving a behavior. Not all 

functions are explained in terms of behavior, e.g. the function of the external wall of the 

building to support roof is not considered in terms of its behavior, i.e. by the 

description of the state changes the wall is involved in. Instead, the wall’s function is typically 
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explained by the structure of the wall. Functions of that kind are not a result of behavioral 

features, but rather follow directly from the structural properties. They are called “passive” in 

contrast to the behavioral, “active” functions [Keuneke, 1989] 9.  

Finally, FR and CFRL, just as FCO, define functions by means of devices. It restricts 

the definition of function to the definition of the function of a particular device and does not 

permit to model functions independently of the realizing them entities. 

Bonnet’s Approach  

Bonnet in [Bonnet, 1992] proposes to define functions as intended activities. He defines 

function in the following way:  

  

“’According to person P (designer or user) the function of device D in system ST is to do A’ is 

interpreted as: 

− P has a goal G 

− P believes that: 

b1: D will perform activity A in the future 

b2: A⇒TG, which reads: activity A causally entails the attainment of G according to 

theory T.”([Bonnet, 1992], p. 2) 

 

According to Bonnet a function of device D is a subjective notion of some person P, who is the 

designer or the user of device D. Moreover a function of D is relativized to the system in the 

context of which D is viewed. It resembles Mode of Deployment (MoD) in [Chandrasekaran, 

Josephson, 1997], which is discussed in section 2.1.4 and correspond to the approach of 

Cummins discussed in section 2.3.1.   

A function is represented by the form to do A where A is an activity contributing to the 

achievement of an intended goal. In this sense a function is identified with an activity 

(behavior). This approach is thus even more radical in identifying function with behavior than 

that of Kitamura, who considered a function to be an abstraction of behavior.  

The reduction of a function to an activity, or to a certain belief about an activity, makes 

it impossible to represent passive functions, just as in the previously discussed approaches. 

The inclusion of a person’s beliefs stresses the subjective and intentional character of a 

function. On the other hand it raises two questions: 

                                                      

9 Chandrasekaran in [Chandrasekaran, 1994b] does admit that passive function can have a behavioral 

descriptions but points out that they are normally not explained that way but by reference to their 

structure.    
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1. Should only the intentions of a designer or a user be considered? It seems that not only 

those two persons influence the function of an artifact, but also e.g.  stakeholders 

dictating requirements or researchers exploring the artifacts could also be taken into 

account. 

2. If a function is understood in terms of designer/user intentions it raises problems in 

understanding functions of non-artifacts, which lack a designer and often also a user. 

A similar problem concerns the ontology of Chandrasekaran and Josephson 

[Chandrasekaran, Josephson, 1997] discussed below (see section 2.1.4). 

Function Behavior State 

Umeda and colleagues [Umeda et al., 1990; Umeda, Tomiyama, 1995] developed a framework 

for representing functions called Function Behavior State modeling (FBSstate
10). FBSstate was 

implemented in a tool called FBS Modeler, which is reported to be successfully applied in the 

practice of device design [Umeda, Tomiyama, 1997].  

In FBSstate a function is defined as “a description of behavior recognized by a human 

through abstraction in order to utilize it” ([Umeda, Tomiyama, 1995], p. 271). This resembles 

the definition of function adopted in FCO. However, the representation of function in FBSstate 

is different then in FCO. Here, a function is represented as a tuple (fsymbol,b) where  fsymbol 

denotes a functional symbol in the form of  the natural language expression “to do something” 

and b denotes behavior that realizes that function. 

The representation of function in the form “to do something” is a common practice in 

Value Engineering, which however, does not permit to give a clear semantics of functions. 

That in FBSstate  is given by  behavior b. Behavior in FBSstate is defined by sequential changes 

of states over time and is always considered in some context (called aspect), which comprises 

entities, attributes, relations, physical phenomena and time of the current interest. 

Although FBSstate is intended to represent functions independently of behavior the 

semantics of functions is given by the description of behavior. A function is defined as a 

relation between a functional symbol (a function) and a behavior realizing it. For example, the 

relation of functional decomposition of a given function f0 as introduced in ([Umeda, 

Tomiyama, 1995], p. 275) involves not only the functional symbol of f0 but also the 

corresponding behavior b0. Thus the function f0 is decomposed into subfunctions f1, f2,…,fn and 

                                                      

10 The Function Behavior State framework has the same abbreviation as the Function Behavior Structure 

framework discussed later. In order not to confuse the reader in the current work we abbreviate the 

former to FBSstate while the latter to FBSstructure.  
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embedding them behaviors b1, b2,…, bn. In this sense functions in FBSstate are inseparable from 

behaviors realizing them. 

Since a function is represented as a relation between the functional symbol f and 

behavior b, it raises the question about the nature of the functional symbol: what does the 

functional symbol represent if not a function? On the other hand when considering the isolated 

functional symbol as a representation of function (which however violates the above definition 

of function) then a function is reduced to the natural language expression form and does not 

give any insight into its nature. It seems that FBSstate relates intensionally considered functions 

represented by their functional symbols to behavior, rather then representing the structure of 

function as such. 

Function Behavior State with Modifier 

In [Takeda et al., 1996; Shimomura et al., 1995] FBSstate is extended to FBSstate/m (‘m’ stands 

for a modifier). In FBSstate/m functions are not represented by a pair (fsymbol, b) but instead only 

by the functional symbol, extended by three additional notions: function body, function 

modifier and objective entity.  

A function body is a symbol which carries the meaning of the function, typically it is a 

verb. For example, in the function to attach firmly backpack to a bike, the 

function body is to attach. An objective entity is an entity, which the function occurs on 

or to. Typically it is represented by a noun, here these are device, backpack and bike. A 

functional modifier is a symbol that restricts a function in order to match the functionality with 

designer’s intentions. A typical functional modifier is an adverb, in our example these are 

precisely and firmly. A function body has no degree of satisfaction - it can be either 

satisfied or not. In contrast a functional modifier has degrees of satisfaction. For example, 

attach firmly may be achieved to different extents. Functional modifiers characterize 

how a function is achieved. Moreover, FBSstate/m introduces several relations between 

functions, including the relation of function decomposition. 

In FBSstate/m the function is represented only by the functional symbol without reference 

to the behavior realizing. Thus, we see that the functional representation of FBSstate/m, in 

contrast to FBSstate is realization-free, but on the other hand lacks any formal representation. 

FBSstate/m provides an insight into the structure of function by the analysis of the natural 

language form representing a function.  



Related Works  

 

 

32 

Salustri’s Approach 

The notion of function is introduced in the context of behavior also by Salustri in [Salustri, 

1998]. Salustri, however, in contrast to the formalisms reported above, does not define a 

function as a type or an abstraction of behavior, but instead he contrasts those two notions.  

Interestingly, contrary to FR, he defines behavior as what a device does and the function as 

how the behavior is achieved.  He applies the analysis of why- and what-questions in order to 

delimit function from behavior. Salustri argues that, although the above understanding of 

function and behavior is at odds with the common intuitions in AI and software engineering 

literature, it is however consistent with the intuitions of many typical electro-mechanical 

designers. As an example he refers to the behavior of a mechanical part, which is commonly 

considered as its outward, measurable response to e.g. mechanical loads ([Salustri, 1998], p. 

339). In Salustri’s approach, as in FBSstate, functions are represented by means of verb object 

pairs. On the other hand he observes that behavior is represented analogously. This, in his 

opinion, is the reason for the frequent confusion of the two notions 11.  

On the basis of the developed notion of function Bo and Salustri [Bo, Salustri, 1999] 

introduce a set of primitive functions understood in terms of basic interactions between mass, 

energy and information. 

Conclusions 

All the above-mentioned works show a strong correlation between the notions of function and 

behavior. In FR, CFRL, FCO, FBSstate, and Bonnet’s approach the notion of function is 

grounded in the notion of behavior which makes it impossible to speak about functions 

independently of the behavior realizing it. Salustri, on the other hand, shows the contextuality 

of both and contrasts them on the basis of the analysis of what- and how-questions.  

In our opinion the notion of function defined in the context of behavior reduces its scope 

to so-called dynamic functions, which involve actions and change the object on which they 

operate. Moreover, it does not permit to speak about functions independently of their 

behavioral realizations, which, however, is required in many situations, e.g. in the early phases 

of the design.  Finally, functions defined in terms of behavior impose a particular behavioral 

realization, which make them realization-dependent and prevent from handling alternative 

realizations.  

                                                      

11 We adopt the analysis of Salustri in chapter 5, where the relation of realization holding between 

functions is introduced. 
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In addition in FCO, FR, and CFRL functions are considered in the context of devices 

only, thus functions of non-devices, e.g. functions of organisms or organs, are per definition 

not handled. This cannot be considered a disadvantage of the device domain ontology but 

clearly it becomes one if one would like to consider it as a top-level solution. 

2.1.3 Functions as Intended Roles 

Another notion, beside behavior, in the context of which the notion of function is defined, is 

role. This  viewpoint is represented, among the others, in Multilevel Flow Modeling (MFM) 

developed by Lind [Lind, 1990; Lind, 1994; Lind, 1999]. 

Multilevel Flow Modeling 

Multilevel Flow Modeling (MFM) is a modeling methodology developed for the purpose of 

representation of structures, behaviors, goals and functions of complex plants. The 

representation of plants in MFM is based on decomposition principles established on the 

means-ends and whole-part relations (see figure 8). The distinction between means and ends 

permits to represent a system in terms of its components (structure, behavior), functions and 

goals. The structure and the behavior capture the causality of the system, whereas the function 

and the goal capture the intentional character of a system. Functions are thus not defined in the 

context of behavior or structure, but are purely intentional concepts that belong not to natural, 

but to social science.  

According to the definition given in ([Lind, 1994]) functions represent the roles the 

designer intended a system to have in the achievement of the goals of the system(s) of which it 

is a part. Several types of flow functions have been distinguished: mass and energy functions 

specialized into source, sink, storage, balance, transport and barrier, and information and 

action functions specialized into maintain, produce, destroy and suppress. The classification of 

action functions is founded on the classification of basic actions by von Wright [VonWright, 

1963].  

Components and their behaviors realize functions, which in turn contribute to 

achievement of goals. In this sense components are means and the goals are the ends of a 

system. As Lind argues the ascription of function cannot be separated from the selection of 

goals. Beside the achieve relation ascribing functions to goals, and the realization relations 

between  functions and the physical components realizing them,  several other MFM  relations 

are introduced, e.g. condition, the goal-objective relation or the goal-subgoal relation. 
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Figure 8. Types of plant decomposition used in 

MFM (from [Lind, 1994]). 

 

Concerning the definition of function we first see that intentions of only the designer are taken 

into consideration, even though in the process of design not only designers are involved. For 

example in the process of software engineering requirements seldom come from a designer, 

but often from stakeholders or users. Therefore, as in the case of Bonnet’s approach, one could 

perhaps think about other persons relevant for determining functions. 

Secondly, in MFM the function of a system is always considered in the context of the 

whole, of which the system is a part. However, there are standalone systems which seem to 

have their functions independent of the whole they may be a part of. For example, the function 

of a car to transport people seems to be independent of any whole of which a car can 

be considered to be a part. 

Thirdly, MFM stresses the difference between goals and functions. In the example given 

in [Lind, 1994] the components of circulation system realize the following functions: 

transport of water from supply to expansion tank, circulation of 

water, transport of energy from boiler to radiator. Those functions 

contribute to the following goals respectively: maintain water level within safe 

limits, maintain condition for energy transport, and keep room 

temperature within limits. In this sense a goal answers the question why a function 

is performed. The goal, however, does not determine the function, i.e. the water level within 

safe limits can be maintained also by other functions than transport of water from supply to 

expansion tank, say by evaporation. Thus the function in MFM not only says what is done, but 

also how the goal is achieved. In this sense a function in MFM involves a particular way of 

realization and resembles the function described by CPD in FR and CFRL. Moreover, it seems 

that the notions of  goal and function are used convertibly in some cases, e.g. although 

maintain is a function type, maintain water within safe limits is considered as 

a goal, not as a function.    
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2.1.4 Functions as Effects 

Function is identified with the effect a device has in a given environment by a number of 

researchers e.g. by Chandrasekaran and Josephson, Brown and Blessing or in the Function-

Behavior-Structure approach. This view is close to the view of the function as the role of an 

object. Here, an effect of a device is often understood as the role an object has in a given 

environment.  

Ontological Framework of Chandrasekaran and  Josephson 

In [Chandrasekaran, Josephson, 1997; Chandrasekaran, Josephson, 2000] the authors sought 

the smallest ontological framework sufficient for developing a notion of function. In those 

works the intention of authors was not to legislate how the term ‘function’ should be used, but 

to provide a descriptive theory of how functions are represented by people. This framework, in 

contrast to previous works of Chandrasekaran discussed above avoids representing functions 

by references to the behavior.  

In the framework the object O is defined to have a role F in the world W iff O causes F 

to be satisfied in W. If F is intended or desired by agent A, who is a designer or a user of O, 

then it is said that  O has or performs the function F in W for A.  

An object is always considered in W in some context (view) called the mode of 

deployment (MoD). Thus, a function is always relativized to some mode of deployment.  For 

example the function of a battery is to provide voltage is relativized to the MoD1: 

battery is electrically connected to electrical terminals of a given object. The same battery has 

a function to support paper under the MoD2: bottom surface of battery is on top of the 

object paper.  

In accordance to the above definition a function is contextual - depends on MoD, 

intentional - depends on the intentions of a designer or a user, and is identified with the causal 

effect of a device.   Since a function is not ascribed to devices only, as it was the case in FR, 

but is a role of an arbitrary object the framework is intended to be applied not only in the 

context of artifacts, but also e.g. in functional biology. For that purpose however the 

framework requires to interpret the evolution as the agentive designer, who intends the 

biological functions. This, however, may be seen as a too strong simplification (for discussion 

see section 6.3). 

According to authors the approach, handles multiple function realizations, since the 

function does not involve the specification of the mechanism of realization. Moreover, it 

permits to handle passive functions, which do not involve behavior. 
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Extension of Brown and Blessing 

Brown and Blessing in [Brown, Blessing, 2005] extend the above model of function with the 

notion of a goal. They observe that the key component of the definition of function is that a 

function is a desired role. They argue in turn that for each function, there must be some reason 

why it is desired. In other words there must be some goal that is intended by an agent, who 

desires the function. A goal is defined as a desired state of the world, and the intention - as a 

description of how to reach that goal. For all or a part of the intention there may be constructed 

a plan, which is a sequence of operations corresponding to the intentions.  The plan should 

either reduce the complexity of the intention or reach the goal. In this sense intention and plan 

resemble CPD’s describing the causal mechanism that realizes a function. Both, a plan in 

Brown’s terms and CPD in FR, provide a mechanism of how the function is realized. Function 

description in Brown’s meaning provides the answer for both questions concerning what is 

intended (a goal) and how (what is the plan) it is intended to be achieved. 

Additionally, Brown distinguishes the function from the affordance, which is a possible 

action of an object, as well as the function intended by the designer, the function desired by a 

user and the one actually provided by the device. He observes that those three kinds of 

functions do not necessarily come together. It may happen that the user desires and uses a 

device differently than it was intended by a designer, or the desired and intended functions 

may be the same but due to the inappropriate construction the device does not deliver them. 

Finally, the designed functions and the actual ones resulting from them may not be what a user 

needs. This analysis is especially interesting in the context of malfunction. 

Function-Behavior-Structure  

Gero and colleagues [Gero, 1990; Qian, Gero, 1996] developed a framework called Function-

Behavior-Structure (FBSstructure), which was aimed to represent functional knowledge 

supporting the multidisciplinary design by analogy. FBSstructure, just as a number of approaches 

discussed above, is based on the distinction between the notions of an artifact’s structure, 

behavior and function. 

The structural description includes only the physical, topological and geometrical 

properties of an object. Behavior is the description of an object’s actions or processes in given 

circumstances. It is represented by qualitatively distinct states of an object connected by causal 

dependencies. In this sense it resembles CPD describing the mechanism of function 

realization. Function, in turn, is considered as the result of behavior, its effect or product. Thus, 

a function is still closely related to a behavior, but is not identified with it. Moreover, 

FBSstructure does not suffer from problems with representing functions which do not change 
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anything, as was the case in FCO. FBSstructure does not only consider behaviors changing 

something (B1 behaviors in terms of [Sasajima et al., 1995]) but also static behaviors, which 

do not involve a change over time.  

In recent works the FBSstructure framework is extended, e.g. in [Gero, Kannengiesser, 

2004] by the notion of situatedness and in [Rosenman, Gero, 1998] by the notion of purpose, 

which, similarly to MFM, is located on top of the function layer. Gero argues that artifacts 

have ascribed purposes not only when considered in techno-physical but also in socio-cultural 

environment, involving human concepts and intentions. Purposes represent the intentions 

behind an artifact and are the reasons for which an artifact exists. Thus a purpose is considered 

to be an intended function of an artifact.  

In FBSstructure in contrast to FCO, FBSstate or Bonnet’s approach, functions are treated as 

the objective effects of an object, and not as subjective and intentional ones. Moreover, since 

all effects of an object’s behavior are considered to be functions, then e.g. the functions of cars 

include such effects as space occupation, noise and pollution production. Those, however, do 

not seem to be considered commonly as functions of a car. This distinguishes the FBS 

approach from Chandrasekaran’s ontology, where not all effects of an object are considered to 

be functions but only those, which are intended by a designer (thus only purposes in Gero’s 

terminology). That, on the other hand, seems to be too restrictive, since there is a big group of 

functions, which are not intended by a designer or user but follow from the actual capabilities 

of objects.  

2.1.5 Conclusions 

Above we have presented and classified the selected AI approaches to functional 

representation in area of technical device modeling. The list of the works presented cannot be 

considered complete and a number of approaches have been omitted due to the rigor of space. 

To our knowledge, however, they subsume the general views on functional representations 

distinguished above. 

Many of the approaches in this field come not only within theoretical investigation but 

provide tools supporting device engineering, like e.g. FBS Modeler [Umeda et al.,1996] or 

Schemabuilder [Bracewell, Sharpe, 1996].  

The overview presented demonstrates the difficulties and problem areas that arise when 

representing functional knowledge and defining the notion of function. Let us now summarize 

them briefly: 
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− The common problem is the distinction of function from behavior and structure on the one 

hand and from purpose and goal on the other hand. The discussion involves the functional 

explanation types related to the above notions: 

1. Why an object exists?  

2. What  an object does?  

3. Why an object is constructed in a given manner?  

4. Why an object does what it does?  

5. How an object does what it does? 

In the ontology of Chandrasekaran and Josephson function is identified with the answer to 

the first question. In MFM it is related to the second question, goal to the third and the 

fourth and behavior to the fifth. In contrast, in  FR, CFRL, and FBSstate function combines 

the answers to both the second and the fifth. Finally, in Salustri’s approach function is 

considered to answer the fifth and a behavior the second question. 

− Function understood in terms of the answer to the what-question (the second question) 

may have several flavors: in Gero’s approach a function is considered as everything an 

object does, in Chandrasekaran and Josephson’s as only that which an object does and is 

intended by a designer or user to do, whereas Brown differentiates designer from user 

function and the actual capabilities of the device. 

−  The strong correlation of function and behavior raises problems with the representation of 

passive functions, not related to dynamic behavior (the exception here is Gero’s approach). 

− The representation of functions in the approaches discussed is heavily biased towards the 

purpose and domain of the application. For instance, in FR function involves a mechanism 

of realization since it important for diagnosis, where a causal process is analyzed in order 

to see why the intended function is not being achieved.  

− In most of the approaches (apart form the ontological framework of Chandrasekaran and 

Josephson) functions are considered only in the context of (technical/mechanical) devices. 

However, the direct application of the notion of function, acceptable in device 

representation, to other domains seems to result in oversimplification (e.g. the ontological 

framework of Chandrasekaran and Josephson). 

− Functions are often contrasted to structure and behavior, as subjective and intentional. 

− Several types of relations between functions are introduced; most commonly these are the 

relations of subsumption and part-of.   

− Functions result not only in intended effects but also in those unwanted and harmful. 

Those effects should be included into functional model but they should not be mixed with 

intended effects, as it is done e.g. in FBSstructure where next to intended effects also 

unwanted effects are considered to be valid functions. 
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− In [Chandrasekaran, Josephson, 1997] authors have pointed out that not only objects but 

also processes may have functions. For example, the process of boiling water may have the 

function to produce steam. However, the approaches discussed consider only 

functions of objects.

2.2 Software Engineering and Business Modeling 

The notion of function is crucial not only in the context of the design of technical/mechanical 

devices but also of other types of artifacts. In the current section we focus on two of them, 

namely on  software and business systems. We analyze the selected approaches in the areas of 

software engineering and business modeling, starting from structured methods, through object-

oriented ones and ending with the heterogeneous methods.  

2.2.1 Structured Methods 

Structured methods date from the mid 1970s when they were invented as the solution for the 

problems met in the development of large-scale business systems, such as inadequate 

requirement elicitation, limited user involvement, ad hoc and ambiguous modeling and design 

techniques. Many structured methodologies and techniques have been developed, including 

Structured Systems Analysis and Design Methodology (SSADM) [Ashworth, Goodland, 

1990], the Yourdon Systems Method [Yourdon, 1993], Gane and Sarson’s approach [Gane, 

Sarson, 1979], MERISE [Quang, Chartier-Kastler, 1991], or the CASE*Method [Barker, 

1990a; [Barker, 1990b; Barker, Longman, 1992]. 

Some of the structured methods involve an aspect of functional modeling, in particular 

the technique of functional decomposition, which is introduced among others in Gane and 

Sarson approach, the Yourdon Systems Method and the CASE*Method. In functional 

decomposition the system’s most general functions are decomposed to the hierarchy of more 

detailed functions. 

We will investigate the functional modeling aspect of the structured methods on the 

example of the CASE*Method (CM) developed by Barker, which underlies the Oracle 

Designer CASE tool. The CM introduces an explicit distinction between behavior (business 

process) and business function. The modeling of functions is the early phrase of a system’s 

design, in which the analysis are concentrated on what an enterprise does, rather than on what 

and how the output software should work.  
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A function in CM represents what an enterprise does, independently of the mechanism 

of its realization. It is depicted with a box containing a natural language expression of the form 

“do something” (figure 9). Functions may be invoked by the events, called triggers and 

represented as labeled arrows, and may generate the events. In this sense the notion of function 

in CM resembles the input-output view, discussed in the previous section.  

 

  

 

 

 

Figure 9. Hierarchy of functions in the CASE*Method. 

 

In the function hierarchy diagrams functions are organized into hierarchy, in which all direct 

subfunctions of a decomposed function F are all the functions necessary for the realization of 

F (figure 9). In this sense the relation between the decomposed function and the set of its direct 

subfunctions is the relation of realization – a superfunction is realized by the set (sequence) of 

its direct subfunctions. Functions which are not decomposable are called leaf functions. In 

addition to the functional hierarchy, functions in CM are organized into Function Dependency 

diagrams, which represent causal dependencies between functions. 

Processes in CM resemble  functions, except that they do not provide the specification 

of  what an enterprise does in order to achieve its goals, but instead they specify what a system 

should do. Moreover, processes include mechanisms of realizations. Thus, the distinction 

between function and process in CM is twofold: 

1. Functions are mechanism-free, whereas processes involve mechanisms. 

2. Functions depict an enterprise, whereas processes – a software. 

 

The second issue we find irrelevant for our purposes, whereas the first reveals the dichotomy 

already discussed in the context of the AI approaches to device design: function answers the 

“what is done?” question while process, answers both the “what is done?” and “how it is 

done?” questions.  
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2.2.2 Object-Oriented Modeling and UML 

Object-orientedness is nowadays a dominant paradigm in software engineering, although as 

some researches observe, there still is no definite proof that it is better than structured methods 

[Glass, 2002]. Object-orientedness started with Simula-67 developed in 1967 and got an 

impact in the 80’s with the availability of Smalltalk and later by C, C++. The first object-

oriented analysis methods were released in the late 1980s and early 1990s e.g. [Shlaer, Mellor, 

1988; Coad, Yourdon, 1991]. 

The current de facto standard of object-oriented analysis is the Unified Modeling 

Language (UML) which initially was intended to unify the Booch [Booch, 1993] and the OMT 

[Rumbaugh et al., 1991] methods. At present UML is developed and maintained by the Object 

Management Group (OMG) [OMG, 2006]. Its current version is UML 2.0 [OMG, 2005].  

UML 2.0 is founded on the explicit distinction of the static and the dynamic view of a 

system; it introduces thirteen diagrams grouped into two sets: structural modeling diagrams 

and behavioral modeling diagrams12.   

Structure diagrams define the static architecture of a model.  They model the 'things' that 

make up a model and the dependencies and the relations between them. They handle both the 

physical and the abstract components (classes, objects, interfaces) of the system. The class 

diagram, which is the object-oriented successor of the entity relationships diagram introduced 

by Chen [Chen, 1976] is the core of the static view. Behavioral modeling diagrams represent 

the behavior of a system over time.  

This architecture reminds of the distinction between structure and behavior adopted by 

several approaches to device design discussed in the previous section, like FBSstructure or MFM. 

But, in contrast to those, UML lacks the separate and independent representation layer for the 

functional modeling. However, some elements of the functional modeling are present in UML 

in the behavioral diagrams, in particular in use case diagrams.  

The use case diagram is aimed to represent the overall functionality of a system, a 

subsystem or a class perceived (and available) by the outside users, called actors. Each use 

case represents a coherent unit of functionality. It represents what a system (or a subsystem, a 

class or an interface) does in interaction with an external actor. A use case is depicted by an 

oval labeled with a short active verb phrase (figure 10). A use case does not specify how the 

system realizes a function. This is specified by corresponding sequences of events. They depict 

                                                      

12 Structural diagrams comprise package diagrams, class diagrams, object diagrams, composite structure 

diagrams, component diagrams and deployment diagrams. Behavioral diagrams comprise activity 

diagrams, state machine diagrams, communication diagrams, sequence diagrams, timing diagrams, 

interaction overview diagrams and use case diagrams.  
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“all the behavior use case entails – the mainline sequence, different variations on normal 

behavior, together with desired response” ([Rumbaugh et al., 1999] p. 64). One use case may 

have more than one sequence realizing it, each called a scenario. Scenarios are called primary 

when defining a main sequence of use case realization or secondary when defining an 

alternative sequence. In the later phases of the design the informal textual scenarios are 

replaced with the behavioral diagrams e.g. activity diagrams. 

 

 

Figure 10. Use Case diagram.  

 

Use case diagrams represent several relation types in which use cases are involved. These are: 

association of a use case to an actor, generalization of use cases, the include and the extend 

relations, indicating the insertion of an additional use case into a given use case. The types of 

relations introduced between use cases resemble the relations between functions introduced in 

device modeling paradigms: 

− The extend and include relations could be understood as a part-of relation, where in 

the former case it is an optional part-of, meaning that a use case may optionally be a 

part of base use case, whereas in the latter a use case is a mandatory part of a base use 

case. 

− Generalization resembles the is-a relation in FCO. 

 

Considering the use case diagram as a formalism for functional modeling also raises several 

issues. Firstly, a use case comprises both the behavior and the function of a classifier. 

Although it is pointed out that the use case does specify what a system does and not how it is 

realized, the explicit difference between the notion of function and behavior is not provided. 

Those two notions are often used convertibly, i.e. the use case is understood on the one hand 

side as a coherent unit of functionality ([Rumbaugh et al., 1999], p. 488) and on the other hand 

as a descriptor of a potential behavior ([Rumbaugh et al., 1999], p. 489).  

Secondly, use cases lack specification beyond natural language label. The only precise 

definition of the use case is given by its behavior in scenario, which however does not specify 

the use case but rather its realization. The use case resembles the function in FBSstate, where 
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functional symbol is a natural language expression, for which semantics is given in terms of 

realizing its behavior.  

Thirdly, as Fernandes in [Fernandes, 2003] observes, use cases are defined in terms of 

interactions between one ore more actors and the system. However, some systems may include 

a substantial percentage of their functionality that is not a reaction to an actor’s input 

([Fernandes, 2003], p. 20). Use cases do not permit to represent those functionalities13.  

Fourthly, since use case diagrams are behavioral diagrams we can see that UML does 

not provide means to model functions beyond behavior. This results not only in the confusion 

of the terms of function and behavior but in fact reduces the former to the later.  

UML Business Patterns 

The applications of UML exceed the area of software engineering. For example Eriksson and 

Penker demonstrates in [Eriksson, Penker, 2000] how to model by means of UML business 

systems. They have provided a set of UML patterns for the purpose of business modeling. Of 

our interest here are especially Goal Patterns, which enable goal and functional modeling. Goal 

Patterns support goal modeling, which is considered to be the critical issue in business 

modeling. There are three Goal Patterns developed: 

1. Business Goal Allocation Pattern, which is used for assigning goals to business 

processes, resources and rules. 

2. Business Goal Decomposition Pattern, which permits to break down goals into 

hierarchies of subgoals. 

3. Business Goal Problem Pattern used for the identification of problems that can hinder 

the achievement of goals. 

 

Of special interest in connection with functional modeling are the first two patterns. According 

to the Business Goal Allocation Pattern every business process should have a goal assigned 

(top part of figure 11). A goal is not considered as the output of a process, but it is introduced 

in terms of a desired state. For example, the process of selling and delivery has the 

output a delivered product, whereas the assigned goal is a high rate of 

return (bottom part of figure11). A goal may be assigned not only to a process, but also to 

other elements of the model. For example, the output of the business process can itself have a 

                                                      

13  This argument is however debatable. In principle actors represent external users of a classifier, 

however “actors of lower-level subsystems may be other classes within the overall system” 

([Rumbaugh, et al., 1999], p. 489 ). 
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goal assigned, e.g. a delivered product, which, as the output of the delivery process, 

could have the goal that a client is satisfied (bottom part of figure 11). 

 

 

 

 <<process>>

Selling and delivery

<<goal>>

High rate of return : Goal

<<resource>>

Delivered product

<<resource>>

Demand

<<achieve>>

<<goal>>

Satisfied client

<<achieve>>

 

Figure 11. Business Goal Allocation Pattern (from [Eriksson, Penker, 2000], p. 278), together 

with an example (extended version of [Eriksson, Penker, 2000], p. 277). 

 

The notion of a goal as defined in the pattern does not permit to distinguish between the states 

intended to be achieved by each individual instance of the processes/outputs and the general 

goals not intended to be achieved by individual processes/outputs. For instance, both types of 

goals are undifferentiated in the example of the sales process, provided by the authors 

([Eriksson, Penker, 2000], p. 280). The goal of the sales process (to meet the annual 

sales budget) is not a goal of an individual process but of a whole set of processes, 

whereas in the same diagram the goal of the outcome of that process (satisfied 

customer) is a goal of each individual process.  

Moreover, the difference between an output and a goal of the  process is not clear. One 

could raise a question why a goal cannot be understood as the additional output of a process. 

By definition, output objects are the objects produced of the process (its results), this however 

holds also for goals. In the above example a satisfied customer, next to a 

delivered product, could be considered as an additional output of the process of selling 

and delivery. It seems of no help here to remark that the goal is an intended result, since 

outputs are intended results as well. 

Overall business goals can be decomposed to subgoals by means of the Business Goal 

Decomposition Pattern, which is of particular help in the identification of business functions. 
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The decomposition of a goal is done by examining how a goal is achieved, whereas the super 

goal provides the reasons for its subgoals and answers  the  why-question.  

In the example provided ([Eriksson, Penker, 2000], p. 286) the overall goal of Internet 

Business Inc. is to attract many customers. This goal is decomposed into three 

subgoals referring to three different customer categories: 

− Many internet visitors 

− Many registered customers 

− Many subscribing customers 

 

Those goals are further decomposed, e.g. the third is decomposed to the following sub-goals: 

− Communicate bonus service for subscribers 

− Active pricing 

− Provide good bonus service  

 

The second decomposition does not rely on the categorization of subscribing customers, just as 

it was done in the case of the decomposition of the most overall goal. Instead, it refers to the 

different ways of achieving the goal. Therefore it seems that in the Business Goal 

Decomposition Pattern two hierarchies are confused: subsumption of goals and the way-of-

realization (see FCO, section 2.1.2).  

Some of the goals are represented as states in which processes result, e.g. many 

internet visitors, whereas others are rather the processes that lead to achieving them, 

e.g. provide good bonus service. Therefore, it seems that the notion of a goal covers 

in Goals Pattern both the result and the process leading to it.  

Concluding, we can say that the business pattern shows an important close relation 

between the notions of a function and the notion of a goal, although the overall pattern is not 

free of problems as discussed above. In this sense it reminds the AI approaches reported in the 

previous section, which interpret function in terms of an effect.  

2.2.3 Object-Process Methodology  

Object-Process Methodology (OPM), developed by Dori [Dori, 2002], is a meta-model for 

conceptual modeling and system engineering, which integrates function, structure and 

behavior of a system. Intended application area of OPM exceeds software engineering and 

covers both technical and natural systems modeling. OPM consists of the Object Process 

Diagrams (OPD), which are the visual formalism that describes the structure and/or behavior 
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of the system or its part ([Dori, 2002], p. 106) and the Object Process Language (OPL), which 

is a semi-natural language for specifying OPD.  

OPM, in contrast to UML or the CASE*Method, provides rich and precise formalism 

for representing functional knowledge. The main components of the system in OPM are 

processes and objects. Dori writes that whereas objects are what a system or product is, 

“processes are what a system does”( [Dori, 2002], foreword). Functions in OPM are 

distinguished from processes and are defined in the following way: 

 

“Function is an attribute of object that describes the rationale behind its existence, the intent 

for which it was built, the purpose  for which it exists, the goal it serves, or the set of 

phenomena or behaviors it exhibits. “([Dori, 2002], p. 251) 

 

This definition, according to Dori, emphasizes the what and the why aspects of function. In 

contrast the dynamics (behavior) is concerned with the how question. Dori argues that function 

and dynamics are often-confused synonyms, while in fact they are distinct concepts. A 

function is about what a system does and why it does it, while dynamics (or a system’s 

behavior) is about how the system acts or operates to attain its function.  

Functions are ascribed to objects; each object having (caring) a significant function is 

called in OPM a system. Not all functions are equally significant for a system. The 

significance of a function depends on its contribution to the desired purpose.  

Functions in OPM are represented by function names phrased in OPL as command 

sentences, which are imperative verbal phrases of the form “do something”. Function names 

are depicted inside dashed boxes called function boxes. A function box encloses at least one 

object and one process. (figure 12). Functions in OPM are context-dependent and subjective; 

they depend on the viewpoint of the beneficiary. Different structure-behavior combinations 

can achieve the same function. For example the function of telling the time of day, 

may be achieved by the sundial, or the mechanical clock architecture. 

The only kind of relation between functions introduced in OPM is the functional 

decomposition. Functional decomposition is the principle of building function hierarchies. 

Intuitively it is the relation of enablement, where each lower function enables the upper one 

and provides the answer how the upper function is achieved. It is represented by means of the 

part-of relation between the objects in the functional boxes (figure 12). For example the 

function generate circular motion is considered to be a subfunction of the function 

enable transition, since the former is the function carried by the internal combustion 

engine, which is a part of the a car whose function is enable translation (figure 12).  
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Figure 12. OPM function representation and function decomposition (from [Dori, 

2002]).  

 

The function hierarchy based on functional decomposition is in fact the hierarchy of function 

realizations not of functions as such, where a function of object O is decomposed to the 

functions of objects being parts of O. As long as functions are not assigned to objects, say in 

the early stages of design, OPM does not permit to decompose them, in contrast to, for 

example, the CASE*Method. 

Function hierarchy in OPM thus resembles rather functional dependence between a part 

and a whole as in [Vieu, Aurnague, 2005] than the part-of relation between functions. It should 

be mentioned, however, that the function hierarchy can not be identified with every part-of 

relation. For instance, although a car can have as its part a cd player, it makes no sense to 

decompose enabling translation into playing cds.  Moreover, relying on part-of 

relation in function hierarchy does not permit to decompose functions achieved by the external 

objects which are not parts of the system realizing the superordinate function. 

The problem with OPM arises when it comes to functions of processes. In 

[Chandrasekaran, Josephson, 1997] the authors have pointed out that not only objects but also 

processes may have functions. This is especially important in the context of services, which 

are often processes and clearly have functions. This, however, cannot be handled in OPM since 

function is defined there as an attribute of an object, and objects are disjoint with processes. 

Moreover, OPM suffers from problems with the notion of service itself. In OPM services are 

considered as products (which are artifact systems) being processes ([Dori, 2002], p. 266). 

However, it remains contradictory with the definition of a system, saying that a system is an 

object caring a significant function ([Dori, 2002], p. 253). Since objects and processes in OPM 

are disjoint, and since products are defined as artificial systems (and thus as peculiar objects), 

they can not be processes.  
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2.2.4 Conclusions 

In the above section we have pursued the notion of function in the areas of software 

engineering and business modeling, starting from structured methods, through object-oriented 

methods and ending with heterogeneous methods. 

The results of this pursuit have shown that, just as in AI approaches to functional 

modeling, on the one hand there the distinction between function and behavior is stressed (e.g. 

OPM) and on the other those notions are mixed or are left inseparable (e.g. UML). All the 

approaches discussed come with means for representing interdependences between functions, 

in particular the is-a and part-of relations. However, the understanding of those significantly 

varies from formalism to formalism. Moreover, those relations are often realization-biased, 

e.g. functional decomposing in OPM, or the underlying principles are not explicit, e.g.  the 

decomposition of goals in Eriksson and Penker’s UML profile. 

2.3 Functions in Philosophy 

The notion of function has recently been broadly discussed in philosophy, although the first 

remarks come already from Aristotle, who among four causes distinguished the final cause, 

and discussed it in the context of functional explanation as “the end (telos), that for the sake of 

which a thing is done” [Cohen, 2002]. Roughly speaking, nowadays in philosophy two main 

ways of understanding functions can be distinguished: one formulated by Cummins in the 

1970s [Cummins, 1975], who discussed the notion of the function in the context of the notion 

of disposition, and the second, called an etiological approach, founded in late 1980s and early 

1990s  by, among others, Millikan  [Millikan, 1989a; Millikan, 1989b], Neander [Neander, 

1991a; Neander, 1991b], Griffiths [Griffiths, 1993] and Godfrey-Smith [Godfrey-Smith, 

1993]. 

In contrast to most of the approaches discussed so far (apart from OPM and the ontology 

of Chandrasekaran and Josephson), philosophical approaches not only account for the 

functions of artifacts but also deal with the functions of biological and social systems. Below 

we present a short overview of two most dominant philosophical approaches. Moreover, we 

will introduce the problem of the ontological status of function, discussed in the context of 

social reality by Searle in [Searle, 1995]. 
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2.3.1 Functions as Dispositions 

The idea of tying the notion of function to the notion of disposition is already present in 

Wright’s article [Wright, 1973]. He defines the expression “the function of x is z” as follows: 

(i) x is there because it does z and (ii) z is a consequence (or result) of x’s being there. To cover 

the cases of malfunction Wright relaxes the condition (i) and interprets it as follows: ”all that 

seems to be required is that x be able to do z under appropriate conditions(..)”([Wright, 1973], 

p. 158)14. In this sense x has a function z if, among others, x is able (has a disposition) to do z. 

Function is explicitly related to disposition (also called capability) by [Cummins, 1975], 

where he defines the has-function in the following way: 

 

“x functions as a φ in s (or: the function of x in s is to φ) relative to an analytical account A of 

s’s capacity to ψ just in case x is capable of φ-ing in s and A appropriately and adequately 

accounts for s’s capacity to ψ by, in part, appealing to the capacity of x to  φ in s.”([Cummins, 

1975], p. 768) 

  

Interestingly, according to this definition the function of x is relativized not only to the 

capacity of some system s to which x is related (just as in Chandrasekaran and Josephson’s 

ontological framework function is relativized to MoD), but it is relativized also to the 

epistemological aspect, namely to the analytical account of this capacity. Thus, it is 

appropriate to say that the function of a heart is to pump blood only when a heart is considered 

in the context of a particular explanation of the circulatory system’s capacity to transport food, 

oxygen and other substances.  

Buller in [Buller, 1998] surveys several objections against Cummins’ theory that 

Millikan raised in a number of papers. First in [Millikan 1989a] she argued that Cummins’ 

theory is too liberal in assigning functions. According to her, for a given entity one can find an 

unlimited number of systems or subsystems in which the entity is involved. This, in turn, 

makes the number of Cummins’ functions unlimited as well, e.g. if the Earth’s water-cycle is 

seen as a system, then clouds by producing rain make vegetation grow, and in this sense 

should have ascribed (in Cummins’ sense) the function of making the vegetation grow in this 

system. However, as Millikan observes, to make vegetation grow is clearly not a purpose of 

clouds. Thus, she observes that Cummins’ function has nothing to do with the purpose of the 

thing in question, whereas in particular in biology having a function is a matter of having a 

purpose. This objection seems to touch more the problem of finding the rules of delimiting the 

                                                      

14 Cited after [Kreos, 2001]. 
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containing system than the problem of function ascription itself. It seems perfectly appropriate 

to say that clouds in the Earth’s water cycle have the function of making the vegetation grow, 

although it sounds odd to say that they have a purpose in doing so.  

The lack of references to purpose also disables Cummins from handling accidental 

effects [Millikan, 2002]. In Cummins’ understanding of a function all effects that contribute to 

the capacity of a containing system are functions, also those that are contributing to it by 

accident. In this sense Cummins’ theory seems to confuse the function of with the function as. 

Wright, who also relates to capacity in defining functions, distinguishes accidental benefits 

from functions by (i) condition, which demands that a function is a reason of the object’s 

existence. 

Thirdly, Cummins’ theory has problems with ascribing functions to malfunctioning 

objects. Cummins’ claims that “if the function of x in s is to  φ, then x has a disposition to φ in 

s”([Cummins, 1975], p. 758). Thus, an object that lacks a disposition to φ in s does not have a 

function to φ in s either. For instance, the Cummins’ definition implies that a heart that lacks a 

disposition to pump blood lacks that function as well. Millikan, however, argues that a 

malformed heart is still considered to have the function of pumping blood. Thus she says that 

function should not be defined by reference to what an object is capable of doing, but what it 

is supposed to do.   

Finally, it is argued that Cummins’ theory of function ascription does not explain the 

presence (or existence) of the object having the ascribed function. For example, making the 

vegetation grow does not explain the presence of clouds. 

2.3.2 Etiological Theories 

As an alternative to Cummins’ function the ethological theory of functions was introduced. 

The primary area of the theory’s application was biology, however, there are also attempts to 

interpret the artifact’s functions in terms of etiological theories (e.g. [Vermaas, Houkes, 

2003]). In general, the etiological theory originates from Wright’s (i) condition cited above and 

reveals the function of an item by reference to its kind’s (evolutionary) history, not to its 

current capacities. The explanatory motivations behind the etiological theory are also different 

than in Cummins’ approach. Cummins answers the question about how the capacity of a given 

object contributes to the capacity of a system into which the object is involved, whereas the 

explanatory theories explain why a given object (or a kind of objects) exists. In this sense the 

question about the function in the context of the etiological theory is the teleological question 

about the purpose (or reason) of existence. 



Functions in Philosophy 

 

51 

Etiological theories have been quite popular and come in several flavors, here we refer 

to two of the first developed, namely that of Neander and of Millikan. Neander defines the 

proper function in the following way: 

 

“It is the/a proper function of an item (X) of an organism (O) to do that which items of X’s  

type did to contribute to the inclusive fitness of O’s ancestors, and which caused the genotype, 

of which X is the phenotypic expression, to be selected by natural selection.” ([Neander 

1991b], p. 174) 

 

The proper function of a trait of an organism O is such an activity which contributed to the 

fitness of O’s ancestors and for which the trait was selected by natural selection. For instance, 

the function of a bird’s wings is to enable to fly since flying contributed to the fitness 

of birds and it is the reason for which wings were selected by natural selection. Neander 

considers a proper function of a trait as “whatever it was selected for”. 

In contrast to Cummins’ function, the proper function is not relative to the context 

(neither ontological nor epistemological) in which a given object is considered, but it refers 

only to its history, and hence it may be considered to be objective. 

Proper function does not suffer from being too liberal as Cummins’ function did, 

because it does not treat every disposition contributing to some system as a function but only 

one which has been selected for that purpose. Neither has it any difficulties in dealing with 

accidental effects. Only those effects of an item which were selected are considered to be its 

functions. Finally, it handles properly with the normative character of functions and 

malfunctions. An item that lacks a disposition, and therefore lacks Cummins function, may 

still have a proper function since proper function does not refer to an item’s current 

dispositions but to its history. A malfunction with respect to function F may be predicated 

when an item has a proper function to F but lacks a disposition to F.  

Etiological Theories of Artifacts 

The primary domain of the application of etiological theories is biology, whereas Cummins 

functions seem to be better suited for explaining how artifacts function. However, Millikan 

also tried to adopt her theory to artifacts. Although, the etiological theories presented above are 

non-intentionalist, Millikan also introduces the intentionalist variant of her etiological theory15. 

                                                      

15 We use the notion of intentionalist etiological theory as it is introduced by Vermaas and Houkes in 

[Vermaas, Houkes, 2003].They call an etiological theory of functions intentionalist iff it ascribes 
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In [Millikan, 1984] it is proposed to treat as (derived) proper functions of artifacts the 

functions intended for them by their makers. In this sense the history involving the intentions 

of artifact’s designers delimits the artifact’s proper function. This corresponds with the 

Kitcher’s approach, according to which “there is a direct link between function and intention: 

the function of X is what X is designed to do, and the design stems from an explicit intention 

that X do just that” ([Kitcher, 1993], p. 260).  

The etiological intentionalist theory resembles the ontological framework of 

Chandrasekaran and Josephson, in which the function of an object is also revealed by the 

intentions of a designer. In contrast to Chandrasekaran and Josephson, the intentionalist 

etiological theory is applied only to artifacts, whereas natural objects are explained by non-

intentionalist etiological theories. 

Discussion 

For an argument against interpreting functions in terms of the designer’s intentions one may 

refer to the example given by [Keil, 2003]. As a psychologist, Keil is interested in the problem 

of the so-called essence of human concepts. It is sometimes postulated (e.g. in [Bloom, 1996]) 

that people consider the intentions of a designer as essential for the categorization of artifacts. 

Thus, some writers of psychological essentialism seem to agree with the intentionalist theory 

of functions. 

 Keil discusses the following counter-example: he considers a hypothetical Adam, who 

wanders into a surgical suite and spots an array of surgical instruments lying on the table. He 

picks up one labeled “re-seater”, takes it home and, being a skilled mechanist, duplicates it for 

the purpose of selling it on the black market. Although his intention is to copy a surgical tool, 

it turns out that the object he copied was a plumber’s tool left there accidentally by the 

plumber, who removed some defect in the surgical suite. Keil argues that we do not think that 

Adam’s tool is the surgical tool, although Adam’s intention was to manufacture one. It seems 

that similar conclusions can be drawn for functions. Only on behalf of Adam’s intention would 

we not ascribe any surgical function to the tool he manufactured.  This particular problem can 

be solved by the condition saying that a function not only must be intended by a designer but 

moreover an item must be capable of realizing it. This, however, analogously as the Cummins’ 

approach would have problems of handling malfunctions. 

It is not only the intentionalist version of the etiological theory that raises problems, but 

the idea of relating the function of an object to its history, or the history of object’s species, 

                                                                                                                                                         

functions to items I on the basis of causal histories ch(I) that necessarily involve intentional behavior of 

agents ([Vermaas, Houkes, 2003], p. 270). 
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itself is problematic. An object that has identical disposition as a given object o but has a 

different history cannot have, according to etiological theory, the same function as o, which 

however seems counterintuitive. Since having a function is reduced to having appropriate 

history, the etiological theory implies that an accidental double that is molecularly identical 

with an object having a proper function does not have this proper function since an accidental 

double does not have the right history [Millikan 1989b]. 

Moreover, whilst the Cummins’ theory is argued to be too liberal in assigning functions 

the etiological theory is found to be too strict. For example, Davies [Davies, 2000a] finds that 

functions of organisms arise also as a consequence of non-selective forces such as e.g. drift.  

Assigning functions in accordance with the etiological approach is very demanding in its 

requirement of knowing the purposes behind natural selection. [Vieu, Aurnague, 2005] report 

that although the etiological approach was originally intended to explain the phenomena of 

biological functions, it has been criticized in biology “for impracticability to refer to the 

evolutionary history of some organisms, especially fossils, while biologists still use a 

functional talk in these cases” (p. 491).  

In addition, Preston in [Preston, 1998] criticized the attempt of reducing all function 

ascriptions to proper functions. She argued that apart from the proper functions, which are 

normative and permanent, there is a vast group of temporary and non-normative functions, 

called system functions, especially in the area of artifacts. System functions are either 

unintended functions or the functions ascribed to the items used in a novel way, e.g. soft drink 

bottles used as bird feeders. Those functions are not proper since they are ascribed 

independently of the causal history of the items, but instead as results of an object having some 

dispositions. System functions are not normative and are understood in terms of Cummins’ 

functions. 

2.3.3 Ontological Status of Functions 

Proper function is considered to be an objects’ objective feature, which is the result of a 

particular (objective) causal history. In contrast, the Cummins’ function is highly relative; it 

depends not only on the system in which a given item is contained but also on the way in 

which the system is explained.  This radical difference raises the problem of the ontological 

status of functions. The question is then the following: of what ontological kind is function? 

The ontological status of functions was discussed by Searle in [Searle, 1995]. He argues, 

just as Cummins, that functions are not the objective features of reality - they “are never 

intrinsic to physics of any phenomena but are assigned from outside by conscious observers 

and users. Functions, in short, are never intrinsic but are always observer relative”(original 
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emphasis, [Searle, 1995], p. 14). In this sense Searle’s approach is analogical to the approach 

of Bonnet reported in the previous section, where the function was relativized to some person’s 

belief. Bonnet is concerned with the beliefs of a designer or user, Searle generalizes it to an 

observer. Thus, also a neutral observer, which is neither using nor designing an object may 

assign a function to an object. Functions then, according to Searle, are ontologically subjective 

- the functional features exist then relatively to some observer or user ([Searle, 1995], p. 10). 

In contrast to the above approach functions are sometimes considered to be non-intentional 

entities, especially when considered in terms of (an objective) behavior or capacity. 

2.3.4 Conclusions 

The discussion about functions in philosophy is mainly concerned with the problem of 

function ascription. Philosophers do not seem interested in the structure of functions, which is 

so broadly discussed in AI and conceptual modeling. This is of no surprise, since philosophy is 

not concerned with the practical problems of building functional models, which in turn is the 

issue in computer science.  

Finally, function ascription in philosophy is analyzed in a wider context, covering not 

only functions of artifacts but also functions of natural objects. In this sense the approaches 

developed there seem to be richer and more general than those discussed in the previous 

sections. 

2.4 Requirements for an Ontology of Functions 

In the current section on the basis of the works discussed we will summarize the issues which 

we find to be of importance for a top-level ontology of functions.  

The list below will be used as a guide in the coming chapters for the construction of the 

top-level ontology of functions. Many of the issues listed below are handled by at least one of 

the approaches mentioned. However, to our knowledge none of the approaches is aimed to 

handle all of them, which, in our opinion, is the task for top-level ontology.   

In order to provide a domain independent top-level ontology of functions (OF), 

incorporated into a wider ontological framework, in our opinion four questions require an 

answer: 

1. How to represent and determine functions independently of their realizations? 

2. Under what conditions an entity is a realization of a function? 

3. What does it mean that an entity has a function?   
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4. Of what ontological kind is function? 

 

Those questions indicate the main areas, which OF should cover, namely the structure of 

function, the realization of function, function ascription, and the incorporation of the ontology 

of functions into a wider top-level framework. The first question concerns the structure of 

function and is of particular relevance in functional modeling, where it is required to represent 

functions independently of particular realizations. Secondly, we find it important to provide 

the ontological foundations for the evaluation of function realization. Thirdly, the functional 

description is often a part of the knowledge about entities, thus it is important to provide 

conditions for an item to assign a function to it. Finally, the ontology of functions is intended 

to be incorporated into a wider framework of the top-level ontology which will provide strong 

ontological foundations and enable cohesive representation of both functional and non-

functional knowledge. In order to permit it, an ontological status of function should be 

investigated. Those four problem areas are broken down into the detailed requirements the 

ontology of functions should meet, presented in table 2. 

 

Reference 

number 

Requirement Description 

R.1.  

 

The representation of a function should be independent from the function’s 

realization. In particular, the following should be provided: 

R.1.1.  The function description, which is both precise and easily comprehensible for 

human users.  

Especially in complex models, comprising a high number of functions, it is 

important to represent functions in a form easily comprehensible for human users. 

On the other hand, the representation must be precise enough to enable 

identification of functions. 

R.1.2.  The function representation should be compatible with most common understanding 

of functions, in particular with the input-output approach. 

R.1.3.  Function and realization should be handled separately. In particular: 

R.1.3.1. The function representation should be realization-free, since functions are often 

modeled independently of non-functional aspects, especially in the first phases of 

the design.  

R.1.3.2. The description of function realization should be function-free (a non-functional 

description). Entities realizing functions may be described in purely non-functional 

way, i.e. as processes. 

R.1.4.  Function should be differentiated from behavior and processes in general. The 

definition and representation of functions should not be given in behavioral terms. 

This enables one to deal with non-behavioral, passive functions. 
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R.1.5.  Functions should not be defined in the context of devices only, but the functions of 

non-devices (non-artifacts) should be handled as well.  

R.1.6.  Relations between functions should be defined independently of a particular 

function realization. For instance, functional decomposition should be independent 

of the partonomy of structures realizing the function. 

R.1.7.  Side effects and accidental benefits of functions should not be identified with 

function goals but should be included in the framework.  

R.2.  Conditions for the realization of function which permit to evaluate entities against 

their functions should be provided. 

R.2.1.  Apart from processes, other (static) entities should also be considered as candidates 

for realizations of functions.  

R.3.  Conditions for function ascription, stating the circumstances under which an entity 

has a function, should be provided. In particular the following should be 

investigated: 

R.3.1.  Possible modes of function ascription. 

R.3.2.  Types of entities that may have functions ascribed. For example, not only objects 

(persistants, presentials) carry functions but also processes, e.g. services. 

R.3.3.  The role of agents’ beliefs and intentions in function ascription should be examined. 

R.3.4.  The normativity of functions and malfunctions should be handled. Due to the 

normative character of functions also malfunctions are ascribed to entities.  

R.4.  An ontology of functions should be incorporated into a full-fledged top-level 

ontology.  

R.4.1.  The features of functions should be recognized.  

In order to find out of what ontological kind function is, first its properties should 

be investigated.  

R.4.2.  The ontological status of function should be determined and the definition of 

function should be provided. The determination of the ontological status of function 

permits to incorporate it into the broader taxonomy of  a top-level ontology. 

R.4.3.  Taxonomy of functions should be developed. Classifications of functions enable 

one to specialize the concept of function and provide a backbone of the ontology of 

functions. 

Table 2.  List of the requirements for a top-level ontology of functions. 
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3 Structure of Functions 

3.1 Introduction 

After presenting in the previous chapter the requirements which we believe the ontology of 

functions should fulfill, in the present chapter we introduce the general structure of functions. 

The structure of functions is doubly relevant: first it provides the means necessary for 

representing functions independently of their realizations (ref. R.1), and secondly it sets frames 

for a definition of function (ref. R. 4.2). 

In OF we propose to represent the structure of function Fu(F) as a  quadruple  

STR(F)=(LABEL(F), REQ(F), GOAL(F), FITEM(F)), where: 

− LABEL(F) denotes a set of labels of function F. 

− REQ(F) denotes requirements of function F. 

− GOAL(F) denotes a goal of F. 

− FITEM(F) denotes a functional item of F. 

 

In the present chapter we are going to discuss in detail each of the above function components. 

Moreover, an additional notion of final state of F, FSTATE(F) will be introduced, which 

provides a means for the introduction of  multiple-goal functions. 

3.2 Label 

Functions are represented in natural language form in a number of approaches to functional 

device modeling, e.g. FCO, FBSstate, FBSstate/m, but also in the fields of business modeling and 

system modeling, e.g. the CASE*Method or FBSstate. In the latter approach function is 

expressed as a tuple (fsymbol, b), where the functional symbol fsymbol is a natural language 

expression of the form “to do something”, whereas in OPM functions are described by function 

statements, which are imperative sentences of the form “do something”. 

The representation of functions in natural language is useful especially for the purpose 

of interaction with human users. However, we find it insufficient to reduce the representation 

of a function only to a natural language form as it is done in the CASE*Method or OPM, since 

this results in an imprecise function representation which does not permit further analyses of 
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functions. Therefore, we adopt the natural language form as an intuitive and easily 

comprehensible label of a function, but only for the purpose of supporting a human user. The 

remaining components of a function are introduced in order to permit a precise function 

representation.  

 

Definition 1  (Labeling). The labeling of a function f is a set of natural language expressions 

which describe the function: LABEL(f) = {l1,..., ln}. Every member li (1 ≤ i ≤ n) of the labeling 

is called a label of the function. 

 

Beside the verb phrase “to do something” adopted in FBSstate, OF further admits forms like 

“doing”, a substantive adverbial form, e.g. research, login, and a conditional form 

“if...then”. The latter has the advantage of an explicit reference not only to the goal state but to 

the function requirements as well. Finally, we do not restrict the number of function labels. A 

function may have several natural language descriptions assigned. For example, the labels 

goods transport or to transport goods may form a labeling of one and the same 

function.  

As reported in section 2.1.2, FBSstate/m not only uses the phrases of natural language for 

function representation, but also it provides the decomposition of the phrases into three 

elements: a verb called function body, a noun called objective entity and an adverbial phrase 

called function modifier. We find it problematic to treat adverbial phrases in general as 

function modifiers, having some degree of satisfaction. For example, in the function to 

deliver mail undamaged the adverbial phrase undamaged should not be considered 

as a modifier but rather as a part of the function body. We believe that it does not say how a 

function should be achieved but what a function should achieve. 

Secondly, modifiers in examples given by the authors in [Takeda et al., 1996] do not 

seem to refer to functions but rather to the objects on which functions operate, or even to 

external entities. For example, bicycle rear rack is considered to have a function to 

carry/fasten backpack to a bike. To that function the authors assign four 

modifiers: easy of use, a sporty-appealing form, for most bikes, and 

reasonable price range. However, it seems that only the first of them refers to the 

function. Neither a sporty appealing form, for most bikes nor a 

reasonably price refers to the function, but rather all of them are requirements for the 

device itself. Thus, they express non-functional requirements and have nothing to do with the 

function of a rack. 

It seems intuitive that for each function there is an entity on which the function operates. 

In the function to carry/fasten a backpack to a bicycle, these entities are 
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bicycle and backpack. However, the notion of objective entity does not permit to 

distinguish entities which perform the function, here a rack, from those entities on which the 

function operates - a bicycle and a backpack. 

In FCO a more detailed picture of the entities involved in a function is given. There are 

distinguished agent, operand and conduit of a function [Kitamura et al., 2004]. The division 

between an agent and an operand permits to distinguish an entity which performs the function 

from that on which the function operates – an operand. 

Unfortunately, FCO has also some limitations in revealing the structure of the label of a 

function. An operand is defined as a physical object which is changed by the function. 

However, this does not hold for all types of functions, as Kitamura and colleagues [Kitamura 

et al., 2002] recognize themselves. There is a big group of functions not changing anything, 

and for those functions the notion of an operand is not properly defined. Moreover, not all 

functions operate on physical objects. 

Although the grammatical analysis of function labels yields insight into a function, it is 

however difficult to build a formal representation of functions on that basis alone. We argue 

that the natural language form should be included in the functional structure, but it is 

insufficient to represent functions only by their labels, as these are too ambiguous and not 

precise enough in determining functions. 

Therefore, in the current study we make use of some ideas presented in FBSstate/m, 

namely we adopt the distinction between the verb - the  function body and the noun - the 

operand of the function. We make some improvements, trying to avoid the pitfalls reported 

above. An operand is considered herein neither in the FCO sense, i.e. being limited to physical 

entities changed by the functions, nor in the general sense as the objective entity in FBSstate/m. 

In our understanding, an operand is every entity involved in the function realization which is 

not a realizer16 of that function. In addition, we put no ontological constraints on the nature of 

an operand; thus it is not limited to physical objects. 

3.3 Goal 

Functions are commonly considered as teleological entities which is reflected in most of the 

approaches discussed in section 2.1 by the inclusion of a goal to the representation of 

functions. For example, [Sasajima et al., 1995] define function as a teleological interpretation 

                                                      

16 The notion of realizer is introduced in section 5.5, here suffice it to mention that intuitively a realizer 

is identified with an entity realizing a function. For example, the realizer of the function to drive a 

car is a person driving a car, namely a driver. 
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of behavior, and Chandrasekaran and Josephson identify the function of a device with the 

effect “that the object under discussion has on its environment”[Chandrasekaran, Josephson, 

1997]. 

In OF we also consider functions to have a teleological character and represent this by 

including a goal into the structure of a function. This, however, yields the following questions: 

(1) Of what ontological kind are goals? (2) Does the goal completely determine the function or 

are additional determinants needed? 

The second question is to be investigated in the next section. Regarding the first, it 

should be mentioned that there are differences in the understanding of the notion of a goal 

across the literature. In approaches like FR, the goal of a function is considered as a causal 

process of a function’s realization, whereas in McDowell’s approach a goal is seen as a goal 

state that must be reached and maintained, or the control relation that must be maintained 

[McDowell et al., 1996]. Hence, we see that FR identifies the goal of a function with the 

process of function realization, which, as reported in above, causes a functional representation 

to be realization dependent.  

We interpret a goal, following [McDowell et al., 1996] for instance, as the result state of 

a function. For example, pumping blood is the function resulting in the state of blood 

being pumped, and the function of some logistics company of transporting goods 

to the specified destination results in the state in which goods are 

located in the specified destination.   

The first observation concerning the nature of a goal is that it is a relational entity. For 

example, in Sowa’s ontology the relation has purpose is introduced as a triadic relation 

between an agent that has an intention, an act performed by that agent and an intended 

situation, which is the reason for which an agent performs an act ([Sowa, 2000], p. 272). Since 

we are not interested in the goals of the actions of agents but in goals of functions we 

paraphrase the above and define a goal as a relational entity mediating between an agent, a 

function, and some chunk of reality
17: 

 

                                                      

17 The notion of chunk of reality by analogy to the notion of state of reality does not impose that a given 

ontological entity is indeed a part of reality. According to our pragmatic realistic approach, the entities 

of the ontology are not considered as parts of the reality but as elements of the model, i.e. ontology, 

which is used for the description of reality. Our approach is both realistic and pragmatic, since the only 

argument for our claim that the constructs used in the ontology do have their counterparts on the side of 

reality is pragmatic in nature – we assume that those counterparts exists since we find it useful to model 

reality by means of the model elements corresponding to them.  
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Definition 2   (Goal). A goal of a function f is an intentional entity established for some reason 

by an agent referring to a chunk of reality, which is (to be) affected by the function f. 

 

A goal is a relational entity, since it is of something (of a function in our case) and for 

somebody (an agent). The GoalOf(x,y) relation means that a goal x is assigned to some 

function y, and GoalFor(x,y) means that x is a goal for an agent y; in other words, agent y 

establishes the goal x. The entity x can be assigned to the function as its goal only if x is 

affected by function y, which is denoted by Affect(y,x). Thus, definition 2 can be represented 

formally, 

 

Goal(x,y,z) → GoalOf(x,y) ∧ GoalFor(x,z). 

 

 

(1) 

In the next sections we will have a detailed look at the above definition. 

3.3.1 Affected by the Function 

Each function is associated with some state of the world, in which it is expected to result. In 

terms of GFO that state can be considered as a complex whole. For example, the function of 

painting a wall results in a configuration consisting of a wall, paint and the 

relation of being covered that holds between them. In accordance with the 

axiomatization of GFO in FOL provided in [Heller et al., 2005] this could be represented as 

follows: 

 

∃xy(Ph(x) ∧ x :: wall ∧ Ph(y) ∧ y :: paint ∧ covered-by(x, y).18  

 

 

 

The state of the world, which is a result of the function f is called a final state of function f and 

is discussed in section 3.3.7. Nevertheless, we do not consider the whole final state to be the 

goal of the function. The goal of painting a wall is to establish a particular relation between the 

wall and the paint. That relation is the goal of painting the wall, in contrast to the overall 

situation consisting of a wall, some paint, and the relation between them, which may be the 

                                                      

18 There exists an individual physical object which is an instance of a wall and there exists an individual 

which is an instance of paint and the former is covered with the latter. The GFO predicate Ph(x) denotes 

a physical object x and x::y – x being an instance of y. All notions and symbols of GFO used in the 

current text are defined in appendix A. 
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goal of the function to preserve the existence of the wall and the 

paint AND to cover the wall with the paint. 

Therefore we restrict the goal of the function only to those entities which are affected by 

the function. Intuitively, we call affected all those elements of the state of the world which are 

influenced by every realization of the function19. To grasp the intuitions behind it, consider our 

example of the function to paint a wall. Before the realization of the function happens, 

the wall is not covered with paint and after the realization it is covered, thus what the function 

affects is the relation covered-by(x,y) between a wall x and a paint y. Restricting the goal 

only to affected entities seems to meet the intuitions that the goal of the function to paint 

a wall is not to maintain the existence of the wall or the paint, but it concerns only the 

individual relation between a paint and a wall. 

3.3.2 Agent 

Although the notion of an agent is not central for the theory of functions, functions and agents 

are correlated, since functions are agent-dependent entities. Therefore, let us briefly clarify our 

understanding of the notion of agent.  

In the agent based systems community a number of theories of agents have been 

developed (for an overview see [Wooldridge, Jennins, 1995]). Among the commonly accepted 

features of agents is  proactivity. Agents are proactive in the sense that they are able to take the 

initiative in performing goal-directed actions. However, performing a goal-directed action 

requires that a goal is established and recognized. In this sense agents are understood herein as 

those entities which are able to establish goals. This narrow interpretation of an agent is 

adopted for our framework.  

In addition in OF three particular relations are assigned to agents, namely the relation of 

having belief, denoted by Believe(x,y), the relation of having desire denoted by Desire(x,y) 

and the relation of having intention, denoted by Intent(x,y). In this sense the adopted in OF 

notion of an agent corresponds to the postulates of a well known paradigm of agency – BDI 

(belief, desire, intentions) introduced by [Bratman, 1987]. 

                                                      

19 Affectedness is taken in OF as a primitive notion. Among other things, it touches on the Frame 

Problem, which, however, we find to be outside the scope of the present work. 
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3.3.3 Established by an Agent 

A goal is an intentional entity; for some reasons an agent may distinguish some part of reality 

to be a goal. For example, the state of the world W: the goods are located in 

Berlin may be recognized as a goal for the manager M in a logistics enterprise. Here we 

would say that W is a goal for M, GoalFor(W,M). A goal is always established intentionally by 

some agent, and there is no goal without an agent who recognizes a given chunk of reality as a 

goal. The effected entities not being a part of the function’s goal are called side effects and are 

discussed in section 3.7. 

Note that the goal-for relation should not be seen as restricted to the relation of desire, 

as for example in [Chandrasekaran, Josephson, 1997] where the function is considered as a 

desired or intended effect of a device. As will be demonstrated later, an agent may pick up a 

given chunk of reality as a goal due to other factors than just desire. Therefore, we use a 

general relation of goal establishment, whose specific types, including desire, result from 

different types of reasons an agent has when establishing a goal. 

The inclusion of an agent into the structure of a function has the following consequences 

on the nature of functions: 

1. functions are subjective, 

2. functions are not part of the material stratum20, 

3. The normativity of functions comes from agents. 

 

Since on the one hand a goal is a function’s determinant and on the other hand it  involves an 

agent who establishes it, there are no functions independent of agents. In order to describe any 

function we have to refer to an agent who establishes its goal. This means in turn that a chunk 

of reality, which is established by one agent A as a goal is not by itself recognized as such by 

another agent B, and therefore agent B could not recognize the function resulting in that goal. 

In this sense, we say that functions are subjective. This corresponds to the claim of Searle. In 

[Searle, 1995] he says that functions are assigned to entities by an external observer, and 

therefore they are observer relative. Although, this claim refers to the problem of function 

ascription, we think that it is not only function ascription that is determined by an agent, but 

also that a function itself is agent-dependent. Agents create functions by establishing goals, 

instead of finding functions as elements of an objective reality. 

Concerning the second point above, since functions are agent dependent they may not be 

present at a level of reality (or a level of the description of reality) at which agents are not 

present. Because agents do not belong to the material stratum but to the social or cognitive 
                                                      

20 For details see ‘Stratum’ in appendix A. 
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strata, functions cannot be present at the material stratum either. This works well for the 

example of the business function to deliver goods introduced above, which is situated 

at the social stratum, as it is established by some human in the role of a manager.  

However, the elimination of functions from the material stratum raises issues, e.g. the 

handling of biological functions. Biological functions, in particular their teleological character, 

like the heart’s function of pumping blood, are common but also controversial aspects of 

biology (see [Cummins, 2002] for a critique of teleology and [Gould, Lewontin, 1979] for a 

critique of the adaptationist programme in biology based upon teleological explanation). If we 

consider the function of the heart to pump blood then there seems to be no agent involved. 

Moreover, since biology is concerned with the material stratum, in principle biological 

functions seem to be functions at the material level. If biology is understood as a description of 

the world that does not refer to any subjectivity but is supposed to be objective, then, 

according to the assumptions made above, such a description cannot contain functions. In this 

sense the current framework seems to be inappropriate for biological functions. 

However, we think that biology is not only concerned with explanation of the world in 

purely descriptive terms but, like other sciences, it is also about developing theories. Theories, 

in turn, being artifacts developed by scientists belong to the cognitive and social strata and 

involve some subjectivity. Thus, in OF we represent goals of biological functions as goals 

established by particular agents, namely by scientists. In this sense we argue that there are no 

biological functions at the level of the biological (material) stratum, but that functions are 

constructed by biologists in their theories, which are intentionally created artifacts belonging to 

the cognitive and social strata21. 

Regarding the third point we see that since functions come from agents then the 

normative character of functions also has its origins in agents establishing functions. 

3.3.4 Kinds of Establishing Goals 

Definition 2 says that a goal is established by an agent. This means that an agent recognizes 

some state of reality (or more precisely some chunk of reality, see below) as a goal. The most 

intuitive case refers to an agent which desires some state of reality and establishes this as his 

goal. In many functional modeling paradigms discussed in chapter 2 goals are identified with 

                                                      

21 Functions belong to the social stratum since they are established by agents, and the notion of an agent 

belongs to the social stratum. However, functions do not require a society of agents - one separate agent 

can establish a goal and then recognize a function. In this sense functions belong primarily to the mental 

stratum. 
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desired states of reality, e.g. [Chandrasekaran, Josephson, 1997]. In this sense the relation of 

having a goal is considered as a relation of desiring a goal (preferably by a particular agent, 

e.g. the designer of the device). However, the establishment of a goal is not only driven by 

desire. Preliminarily, we can distinguish the following kinds of goal establishment: 

− A goal is desired by an agent. This corresponds to the most intuitive meaning of the 

phrase of having a goal - an agent x desires some state of the world y, Desire(x,y), and 

therefore calls it a goal. We assume that having an intention implies a desire. 

− A goal is believed by an agent to have a utility. An agent does not have to desire a state 

of reality to call it the goal of somebody or something. In this case the agent establishing 

the goal does not gain the profits of it. For example, the state in which blood is being 

pumped is useful for the human organism and as such is distinguished by some agent 

(say some physician or biologist) from other states as a goal. The goal of blood 

being pumped is not desired by a physician but nevertheless he considers it as the 

goal of the heart’s function of pumping blood. Neither is the state of circulating 

blood recognized as a goal of the heart’s function, due to some agent who desires it, i.e. 

the person, whose organism is under consideration. X may be established by some agent 

to be a goal, not because it is desired but because an agent believes that it is useful in 

some context y, Useful(x,y)22.  

− A goal provides a good explanation of a given phenomenon. A particular type of a goal’s 

utility is its epistemic usefulness. Some state of the world x may be crucial for some 

theory acknowledged by an agent – it may provide an explanation of some phenomenon 

y, Explain(x,y), and thus it may be recognized as the goal of a function. For example, the 

fact that hemoglobin transports oxygen from the lungs to other parts of the body may be 

considered as an answer to the question “why does blood contain hemoglobin?” relevant 

in the context of some biological theory. That kind of explanation is called functional 

explanation and is broadly discussed e.g. in the context of biology. 

  

In conclusion we can say that a chunk of reality is a goal for some agent, either when he 

desires it or believes that the state is useful in some context, or that it provides an explanation 

of some phenomena, formally, 

 

 

                                                      

22 A goal is believed by an agent to be useful in some context; this, however, does not imply that it is 

really useful in that context. 
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GoalFor(x,y)↔ Agent(y) ∧  

                             (Desire(y,x) ∨ ∃wvr (Believe(y,w) ∧ BelCont(w,r,x,v) ∧  

                                                               (r :: Useful ∨ r :: Explain))). 

 

 

 

 

(2) 

The relation Believe(x,y) has the meaning that an agent x believes in y. The content of the 

belief b is depicted by the predicate BelCont(b, R, a1...an) where R is an n-place relation and 

a1, . . . , an are arguments of R. In the above definition the relation r is either the useful or the 

explanation relation. Thus the content of the belief is either “x is useful for v” or “x explains 

v”. 

3.3.5 Priority of Goals and Functions 

Not all goals are equally important and thus not every function has an equal priority. For 

example, the heart’s function of pumping blood is more important than the function of  

producing beat sounds. In fact due to the lack of good reasons the second could be 

considered not to be a function of the heart. Common factors determining the priority of a goal 

are the following: 

− the reasons underlying the goal, 

− the reliability and number of agents who establishes the goal. 

 

The reliability of an agent is the value of the social trust, which an agent has and it depends on 

the role of the agent in a given society. 

The priority of functions is of particular relevance in the context of function conflicts. 

Consider the situation where the requirements and the triggers23 of two conflicting functions 

are fulfilled. Which function should be realized in such a case? Intuitively, one could say that 

the first to be realized is the function which is more important – in our terms one that has a 

higher priority. The order in which functions are realized is given by the order of goal 

priorities; the higher the priority of a goal the earlier the position of the function in the queue 

for realization.  

                                                      

23 Triggers are discussed in section 3.4. 
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3.3.6 Arbitrary Chunk of Reality 

Often a goal is called a goal state or a situation which could suggest considering goals only as 

situations. For example, the goal of the function to bring peace to the world is the 

situation of the world peace.  

For our part, however, goals do not refer only to situations. Situations in GFO are 

considered as presential comprehensible wholes which are complex entities having a high 

degree of independence in comparison to other types of entities. However, as the example of 

the previous section has shown, a goal can consist of one binary relation only, which cannot be 

considered as a whole situation. The goal of the function to paint a wall is not a 

complex entity (an entity composed of two or more entities), but it comprises only a binary 

relation that holds between a wall and paint. Note that in the GFO framework we do not 

consider relations as mere collections of their arguments, but as concrete entities that glue their 

arguments together. In this sense the relation of being covered by paint is not a pair (wall, 

paint) but rather it is an entity per se gluing them together. 

An agent, when establishing a goal of a function, is not restricted to any particular type 

of entity, but may choose an entity of an arbitrary ontological kind to be a goal. Let us consider 

a particular type of goal establishment, namely desiring. The object of my desire may be a 

whole situoid, e.g. holidays in the mountains but I may also desire a tiny part of 

reality, like the color of the wall in my room is green. The former is a 

situoid, whereas the goal of the function to paint a wall green is a presential, 

individual value of the individual property of an individual wall. We find no common feature 

of those two entities, apart from the fact that they are both goals for some agent and may 

become goals of certain functions. A goal, therefore, can be an arbitrary ontological category, 

which we call an arbitrary chunk of reality 24 . Table 3 gives some examples of various 

ontological kinds that may play the role of the goal of a function. 

The final remark regarding the nature of a goal to be made here concerns the issue of 

universal goals. We have put no constraints on the ontological status of goals, and hence we 

permit both individual and universal goals. An individual goal refers to a chunk of reality with 

"fixed"/particular constituents, whereas a universal goal refers to a chunk of reality where 

                                                      

24 To be precise one should say that actually a goal is not an arbitrary chunk of reality, since, as stated in 

definition 2, it is an intentional and relational entity which refers to a chunk of reality once that the goal 

is established. However since in the current work we refer mainly to the latter, for the sake of the 

simplicity of language we call the latter the goal. This seems to be well justified even in natural 

language where entities of the world are called goals, e.g. one can point to a painted wall and say “this 

was my goal”. 
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some constituents are merely constrained by universals but not individually identified. In other 

words the individual goal is composed of individuals only, and refers to exactly one individual 

chunk of reality, whereas the universal goal is also composed of universals and may refer to 

more than one individual chunk of reality. For example, the goal at time T the wall W 

is painted with paint P is an individual goal, referring to an individual presential 

relator between W and P located at time boundary T. In contrast, the goal a wall is 

painted is a universal goal, constrained by the universal relation cover-by between the 

universals wall and paint, which refer to the set of all relators gluing some paint with some 

wall.  

 

Function Goal GFO category 

to pump blood blood is being pumped process (situoid) 

to deliver goods to 

Rome 

goods are located in 

Rome 

presential relator  

to paint the wall red redness of the wall property value 

to build a house a house presential 

Table 3.  Various GFO categories may play a role of function goals. 

3.3.7 Final State 

The goal of a function can refer to an arbitrary chunk of reality and, as shown in the previous 

section, often it is not a comprehensible whole. In the case of the function to paint the 

wall the goal is a binary relator, i.e. the instance of the covering relation. As a relator this 

goal requires two relatas - the wall and paint. If we consider the relator of covering 

together with the wall and paint, this yields a new entity, namely the wall being 

covered with paint. An entity of this kind in GFO is called a fact, and is considered to 

be a comprehensible whole.  

In GFO facts are most simple composite entities considered as wholes. They are 

constructed of one relator together with its relata or one property bearer with its property. Facts 

come in a number of kinds depending on the kind of the entities involved in them, e.g. the 

presential fact consists of presential relata and relator, the processual fact – of a processual 

relator and relata etc. Facts can be aggregated in more complex entities, which are considered 

as wholes as well.  An aggregate of presential facts which exist at the same time-boundary is 

called a configuration. A configuration is itself a presential. For example, a wall being pained 

and polished is a configuration consisting of two facts – wall being painted and wall 
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being polished.  In turn, aggregates of processual facts are called configuroids and are 

considered to be occurrents.  

Most complex aggregates considered as wholes are called situations and situoids. A 

situation is a configuration which can be comprehended as a whole and satisfies certain 

conditions of unity, which are imposed by relations and categories associated with the 

situation. The wall together with all its properties and its environment is a situation. A situoid 

is a processual counterpart of a situation, i.e. it is such an occurrent whose boundaries are 

situations. Facts, configurations, configuroids, situation and situoids have their universal 

counterparts, e.g. a universal fact has at least one relatum being a universal, e.g. the fact John 

speaks to the clerk contains the universal clerk.  All the above notions are 

underpinned by a derived notion of complex whole, denoted by Whole(x)25.  

If a goal is not a comprehensible whole then it may be placed in the context of the 

comprehensible whole which it is a part of. For that purpose we introduce the notion of final 

state, which can be optionally included into the structure of functions. 

 

Definition 3 (Final State). A final state x of a function f, denoted by FSt(x,f), is a minimal 

comprehensible whole that contains as its part a goal of the function f . Formally, 

 

FSt(x,y)  → Whole(x) ∧ Fu(y) ∧ ∃u(GoalOf(u,y) ∧ Part(u,x)). 

 

 

(3) 

A final state is a minimal comprehensive whole; hence a final state cannot have a final state as 

its part. Formally, 

 

FSt(x,y) → ¬ ∃z(FSt(z,y) ∧ Part(z,x)). 

 

 

(4) 

For the goal being the covered-by relator a final state is the fact of wall being covered with 

paint, but it is not a configuration or situation comprising that fact. 

3.3.8 Complexity of Functions 

Analysis of the final states permits to distinguish basic function from complex functions, later 

called non-basic as well.  

 

                                                      

25 Whole(x) ↔ Fact(x) ∨ Config(x) ∨ Configu(x) ∨ Sit(x) ∨ Situ(x) 
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Definition 4   (Basic Function). A function f is called a basic function, and denoted by 

FuBasic(f),  iff  the final state of f is a single fact. 

 

FuBasic(x) ↔ ∀yz(FSt(y,x) ∧ FSt(z,x) → Fact(x) ∧ Fact(y) ∧  y = z). 

  

 

(5) 

Definition 5   (Complex Function). A function f is called a complex function, and denoted by 

FuCompl(f),  iff  it is not basic. 

 

FuCompl(x) ↔ Fu(x) ∧ ¬ FuBasic(x). 

 

 

(6) 

Basic functions are the most elementary functions, which in functional hierarchy always 

appear as the bottommost and non-decomposable. The goal of a basic function is called a basic 

goal and it consists of a single property value, or a single relator, e.g. the goal of the function 

to deliver goods to Rome comprises only one basic entity, namely the located-in 

relator.  

Every non-basic function can be decomposed to basic functions by the decomposition of 

its goals. For example, the complex function to deliver undamaged goods to 

Rome, with the final state which is a configuration consisting of two facts - goods are in 

Rome and goods are not damaged is an aggregate of two basic functions: to 

deliver goods to Rome and to protect goods.  

The final states of non-basic functions may compose one coherent entity or its parts may 

remain unrelated26. The functions of the former kind we call coherent functions, and contrast 

them with the multiple-goal functions.  

 

Definition 6  (Coherent Function). A function f is called a coherent function, and denoted by 

FuCoh(x), iff all final states of f compose a coherent entity. Formally, 

 

FuCoh(x) ↔ ∃y(Coh(y) ∧ ∀z(FSt(z,x) → CPart(z,y)). 

 

 

(7) 

From the above definition and the definitions of coherent entity and fact, it also follows that all 

basic functions are also coherent entities. 

 

                                                      

26 By a coherent entity, denoted by Coh(x), we understand such a complex entity (a whole) that all its 

constituent parts are interrelated: Coh(x) ↔ ∀yz(CPart(y,x) ∧ CPart(z,x) ∧ z ≠ y ∧ x = y + z →  

Rel(y,z)). The relation Rel is a root relation of the GFO relations hierarchy.  
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Definition 7  (Multiple Goal Function). Every function which is not a coherent function is 

called a multiple-goal function, and denoted by FuMultGoal(x). Formally, 

 

FuMultGoal(x) ↔  Fu(x) ∧ ¬ FuCoh(x). 

 

 

(8) 

For example, the final state of the function to deliver undamaged goods to Rome 

is a configuration of two facts involving the same goods. In contrast the function to 

deliver goods to Rome by plane has two basic goals, whose corresponding final 

states do not compose one coherent entity. The first final state,  the goods are in 

Rome, is a presential composed of the presential goods, the presential Rome and the relation 

located-in that holds between them at some time boundary. The later final state is the 

process of transportation involving goods and plane considered as persistants participating 

in the process. Therefore, the final states of that function do not form one coherent entity but 

instead two distinct entities: (i) a configuration C supporting the fact that the mail is in Rome 

and (ii) a configuroid (or a complex process) C’ of transporting goods by plane. Note that C 

and C’ are independent of each other and have different temporal extensions.  

3.3.9 Restrictions on Functions 

Often a goal of a function is distinguished from the restriction of its realization. The former 

could be considered as what should be done, whereas the latter how it should be done. For 

example, the function of transporting goods by car could be understood as a function to 

transport goods restricted by the constraint: a car should be used for 

transportation. Intuitively, two general types of restrictions can be distinguished. One, 

concerning the realization of the function, as in the example above, and the other concerning 

the output of the function. To illustrate the latter consider the function to deliver goods 

restricted by the condition that goods should not be damaged. Hence, the goal goods are 

in B is restricted to the goal goods are in B AND goods are NOT damaged.  

As the reader could already observe in the previous section, we do not include the 

distinction between the goal and the restriction in OF. According to accepted assumptions a 

function is not about how something is to be done but about what is to be done. We assume 

that everything which is intended to be affected by a function is the goal of the function, thus 

we do not distinguish the output from the goal as [Eriksson, Penker, 2000] do. Therefore both 

types of restrictions are considered to be merely goals of functions. That is, the function to 

transport goods to B by car is interpreted as a multiple goal function having two 
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goals - the goods are located in B and the goods are being 

transported by a car. If any of its goals is not fulfilled, then the function is not 

realized. 

A particular type of function restriction is the time constraint. Take for example a 

logistics company in which, due to regular delays, the function to deliver goods in 

24 hours was introduced. This is a non-basic function, with the goals G: goods are in 

destination location and G’: goods are in the destination location 

not later than in 24 hours. The second goal concerns the temporal location of the 

presential configuration. The basic goal referring to the temporal location we call a time frame 

of the function.  

An additional phenomenon concerning restrictions is that they are often considered to be 

secondary to the goal or less important than the goal. For example, one may claim that it is 

more important that goods are delivered than the fact that it is done by car. This, however, can 

be adequately represented in OF by means of priorities which can be attributed to goals. 

3.4 Requirements 

The interpretation of function as a teleological entity raises the questions if a goal alone 

determines the function or are there additional determinants needed? 

In our opinion the goal alone does not determine the function, since the same state may 

be a goal of two different functions, and the relation between a function and a goal is not one-

to-one. For example, the function of transporting goods to Rome and the function 

of preventing goods from leaving Rome have the same goal, which is a state, in 

which the goods are in Rome, but clearly those are two different functions. Those functions 

differ not with respect to the goals they result in, but in their initial states. In the first case 

goods are expected not to be in Rome, whereas in the second they are expected to be there. 

The information about an initial state may be present in the function structure in two ways:   

1. It could be stated explicitly in a goal, i.e. the goal of the former function may have the 

conditional form: If the goods are in Rome (initial state), then they 

should not leave Rome (goal state). Here, the goal is not considered as a state 

of the world, which will appear, when the function is realized, but instead it is a 

conditional statement comprising the conditions and the goal state. This interpretation 

of a goal, which, however, we do not follow, is adopted e.g. in CFRL, where a 

functional goal comprises a whole causal process of function realization, including 

both its initial state and final state ([Iwasaki et al., 1995] p. 13).  
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2. It is introduced as an additional determinant of a function, beside a goal. It is often 

implicitly indicated by the verb in the function’s label. For example, in the label to 

prevent goods from being sent the verb prevent implicitly indicates 

that the goods are initially in Rome.  

 

Since we consider a goal as an intentional entity referring to a chunk of the reality  in which a 

function results, and not as a conditional statement, we see that it is insufficient to represent a 

function only by reference to a goal. Therefore, we introduce requirements as an additional 

component of the function structure. 

 

Definition 8  (Function Requirements). Requirements of the function f are an intentional 

entity referring to a chunk of reality which should be present if the function f is to be realized. 

 

Later in the text we refer to requirements also in terms of an initial state
27 or conditions of the 

function, which is denoted by Req(x,y), having the reading that x is the requirement of 

function y. Each function requires some conditions to be fulfilled in order to enable its 

realization. Those conditions are common for all individual realizations of the function28. For 

example, every realization of the function to hammer nails requires that there are 

available nails and some physical object, to which nails should be 

hammered. Those conditions do not impose what is the type of the object, into which nails 

should be hammered, although some conditions of it can be given, for example that its 

hardness must be lower than the hardness of nails. The conditions remain realization-

independent:  they are equally valid for hammering nails into a wooden table as into a brick 

wall. We say that all of those necessary conditions compose the requirements of a function. 

Requirements, by analogy to the goal, are said to form a chunk of reality, since it seems 

that there are no restrictions on the ontological character of the entity or entities that form 

them. Fairly good candidates for requirements in the context of GFO seem to be configuroids 

and configurations. For example, in case of the function of hammering nails, the 

requirements form a configuration containing two facts: nails are present and a 

physical object, for nails to be hammered in, is present.  

                                                      

27 The initial state can be considered as a minimal comprehensible whole of which requirements are part, 

analogically to the final state in case of a goal. However, this distinction is not made explicit in the 

present work since it is not as relevant as the earlier-introduced distinction between a goal and a final 

state. 

28The notion of an individual realization of a function is discussed in section 5.2, whereas the distinction 

between individual and universal functions is drawn in section 4.2.1.  
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However, we do not want to exclude the functions that have simpler requirements, i.e. those 

consisting only of one simple entity. 

Often the label of a function refers itself to the requirements of the function. For 

instance, the label “to hammer nails” refers to nails, which are the function operand, and 

which must be present in order to realize the function. An operand, however, is not always 

present in the requirements, for example in case of the label: “to prevent flood”, where the 

operand flood is not part of the requirements. 

The role an entity plays in the context of a function determines the type of requirements 

that concern it. The following types of requirements are distinguished29: 

− The operand requirements denoted by ReqOp(x,y),  having the meaning  that x is an 

operand requirement of function y. 

− The environmental requirements denoted by ReqEnv(x,y),  having the meaning  that x is 

an environment requirement of function y. 

− Functional item requirements denoted by ReqFi(x,y),  having the meaning  that x is a 

functional item’s requirement of function y30. 

 

The operand’s requirements are those requirements that concern an operand, for example in 

the function of hammering nail, the operand nail is expected to have a particular shape 

and to be reasonably tough in comparison to the object into which it is to be hammered to. The 

functional item requirements are those requirements that concern an entity playing the role of a 

functional item, which is an entity executing a function. In our example a functional item is 

required to have enough force to hammer nails. 

Finally, the environmental requirements are all those requirements, which are neither 

operand nor functional item requirements. In our example environmental requirements are e.g. 

those given by the background theory like the laws of physics.  

Requirements are necessary but not sufficient conditions for the realization of a 

function. Apart from them, for a function to be realized what is needed is a trigger, denoted by 

the predicate Trig(x,y) having the reading that x is a trigger of function y. The notion of a 

trigger is present, among others, in the CASE*Method [Barker, Longman, 1992]. In OF a 

trigger, together with the requirements, provide a necessary and sufficient condition for the 

function realization; in this sense a trigger can be understood as a direct cause of the 

realization of a function. For instance, the realization of the function of transporting 

goods may be triggered by the event the invoice is signed or by the event the

                                                      

29 Req(x,y) → (ReqOp(x,y) ∨ ReqFi(x,y) ∨ ReqEnv(x,y)). 

30 The notion of functional item is defined and discussed in section 3.6. 
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phone order. In contrast to requirements a trigger is not considered to be a part of the 

function structure. Therefore, a function remains the same regardless of having different 

triggers in different realizations. For instance, the function of transporting goods 

triggered by the event the invoice is signed, and the function of transporting 

goods triggered by the phone order, remain in our framework the same function, to 

which different triggers are applied. This enables us to represent functions independently of 

their particular applications.  

3.5 Temporal Extensions of Functions 

After introducing the notions of requirements, goal and the basic function we will now provide 

the classification of basic functions reflecting the relation of functions to time. The issue is of 

relevance since firstly it permits to separate the notion of function from the notion of process, 

and secondly it enables the identification of the three kinds of function realization.  

Concerning the first point we see that functions are commonly related to processes and 

treated as particular types of processes. We discuss the interdependence of functions and 

processes in detail in section 7.3.1, as well as in the context of function realization in section 

5.8.  Herein we mention only two approaches that follow this line, namely Loebe’s approach 

[Loebe, 2003] and the CASE*Method.  

In [Loebe, 2003] a function is treated as the universal of a processual role. A processual 

role is a layer of the process containing a persistant. Since a process layer is considered to be a 

part of the process which is a process itself, therefore a function is considered to be a particular 

type of a process universal, namely one whose instances (1) contain a persistant and (2) are 

layers of some process. For instance from the universal process of painting a wall containing 

among others a painter, a wall and paint, one may cut out a layer containing a painter and its 

behavior, which can be understood in terms of a painter’s role in that process. This process 

layer according to Loebe is to be understood as the function of a painter.  

Similar ontological assumptions yield the solution adopted in the CASE*Method 

[Barker, Longman, 1992], where the difference between functions and processes is that the 

latter contain the mechanism of realization and the former are mechanism-free processes31. 

Here, functions could also be considered as particular layers of bigger processes, namely ones 

which are free of the realization mechanisms. 

To illustrate the above let us consider the process P of transporting goods 

with a car. We could cut off the layer of that process, which does not contain a car but 

                                                      

31 See section 2.2.1 for a detailed discussion) 
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only goods being transported and call this layer a function  F: to transport 

goods. In this sense function F is a layer of a process P and thus is a process itself. Although 

we follow a very similar strategy in defining the realization of functions (see chapter 5), yet we 

argue that functions are not processes. 

Understanding functions as processes requires functions to be time-extended. This meets 

the intuitions behind functions such as to transport goods, or to pump blood, 

where in both cases the function is recognized as extended in time. However, we think that 

functions do not have to be time extended-entities. To demonstrate this let us have a closer 

look at the relation of function to time. When discussing this relation we recognize two 

important factors: 

1. time-location of the requirements 

2. time-location of the goal 

 

For the sake of simplicity we do not take into account multiple-goal functions but we 

concentrate only on basic functions. When considering points (1) and (2) in terms of GFO, we 

see that the requirements  and the goal of a function can have one of two types of time 

locations: each can be either a time extended process, projected on the framing chronoid or a 

presential, fully  present at a time boundary. From the number of all possible combinations of 

pairs of the temporal extensions of the requirements and the goal we excluded as unreasonable 

those where a goal started before the start of requirements and where it ended before the end of 

requirements. This gives us ten reasonable combinations of time locations of the requirements 

and the goal, of which three will be analyzed in detail three (figure 13).  

In the first two cases both the requirements and the goal are presentials. In the first case 

the requirements are located before the goal. For example, in the function to transport 

goods, the requirements are the presential configuration of goods located in A at some time 

boundary tb1, whereas the goal (final state) comprises goods being located in location B at 

some time boundary tb2. Typically, we assume that transportation is not instantaneous, thus tb1 

and tb2 not only are not coincident but moreover tb1 < tb2. We call functions of that kind 

sequential functions as the requirements and the goal are in the temporal sequence. 
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Figure 13. Three combinations of time locations of the requirements and the 

goal of a function. The arrow indicates the time line. Points represent presentials 

located at time boundaries, lines joining the points represent processes. 

Requirements are labeled ‘Req’, while goals - ‘Goal’. 

 

Definition 9  (Sequential Function).  A basic function f is called a sequential function, 

denoted by FuSeq(x), iff the requirements and the goal of f are presentials and the requirements 

are present before the goal.  

 

FuSeq(x) ↔  FuBasic(x) ∧ 

             ∀yz (Req(y,x) ∧ GoalOf(z,x) →  Pres(y) ∧ Pres(z) ∧  

                                                                     ∀st(At(y,s) ∧ At(z,t) → s < t)). 

 

 

 

 

(9) 

In the second case presented in figure 13 the goal and the requirements are also presentials but 

are not sequentially ordered in time. For the presential requirements and the goal it is not 

necessary that the goal occurs after the requirements, but instead they may be present on the 

same time boundary. Although this case seems to be odd at the first glance, we will 

demonstrate that it is well justified. 

Consider the function F to camouflage a tank at a battlefield. The 

requirements and the goal (and the final state) of the function could be defined as follows, 

REQ(F): a tank is at a battlefield, FST(F): a tank is camouflaged 

at a battlefield, GOAL(F): the camouflaged-at relation. The realization of this 

function may be provided by an appropriate type of covering. Due to its chemical structure it 

may absorb the heat generated by the tank’s engine, and due to an appropriate color and 

pattern it makes a tank hard to be spotted by an observer. It seems natural to say then that the 

covering of a tank realizes the function to camouflage a tank.  

Now, suppose we consider an individual tank as a presential at a given time boundary t. 

We find that at that time boundary a tank is covered by covering c. Thus in GFO terms, what 

we find at the time boundary t is a situation that fulfils the requirements of the function (tank 

is at a battlefield) and the relation of being camouflaged, camouflaged-
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in(tank, battlefield). Both the requirements and the goal are presentials and parts of the same 

situation, thus, they are located on the same time boundary. 

This example shows that the realization of a function is not necessarily a time extended 

process, and thus the notion of function should not be identified with a process. Functions of 

that kind we call instantaneous functions and they refer to passive functions discussed in 

[Keuneke, 1989; Chandrasekaran, 1994b]. 

 

Definition 10 (Instantaneous Function).  A basic function f is called an instantaneous 

function and is denoted by FuInstant(f) iff the requirements and the goal of f are presentials 

located on the same or on the coinciding time boundaries. Formally, 

 

FuInstant(x) ↔ FuBasic(x) ∧   

              ∀yz (Req(y,x) ∧ GoalOf(z,x) →  

                       Pres(y) ∧ Pres(z) ∧ ∀st(At(y,s) ∧ At(z,t) →   s = t  ∨ Coinc(s,t))). 

 

 

 

 

(10) 

The requirements and the goal of an instantaneous function can be generalized to time 

extended entities, which brings us to the third case presented in figure 13. In this case both the 

requirements and the goal are processes having equal temporal locations. Functions of that 

kind we call continuous functions.  

 

Definition 11 (Continuous Function).  A basic function f is called a continuous function 

and is denoted by FuContin(x) iff the requirements and the goal of f are processes having the 

common start and ending. 

 

FuContin(x) ↔ FuBasic(x) ∧   

             ∀yz (Req(y,x) ∧ GoalOf(z,x) → Proc(y) ∧ Proc(z) ∧  

                                                                   ProcStarts(y,z) ∧ ProcEnds(y,z)). 

 

 

 

 

(11) 

To illustrate this kind of function the camouflage function may be modified to the following: 

to camouflage a tank in the battlefield overnight. Here, the 

requirements are the process of the tank being in the battlefield overnight, and the goal is the 

(time extended) state of the tank being camouflaged overnight. Both processes have the same 

temporal extensions, namely from sunset till dawn. 

This particular continuous function can be reconstructed by a number of instantaneous 

functions. The tank is camouflaged overnight if it is camouflaged at every moment of the 

night. This, however, is not the case with all continuous functions. Take for example the 
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function to pump blood. The requirement of this function is a presence of blood in the 

circulatory system and the goal is the process of blood being pumped. Note that the presence 

of blood in the circulatory system should be considered here not as a presential but as a process 

extended in time which co-occurs with the process of blood being pumped.  

Intuitively, this function says that whenever blood is provided, it should be in the state 

of being pumped. It cannot be reduced to the number of presential functions as was done in the 

case of the camouflage function above. There the goal was the static relation of 

camouflaged-in, which could have been considered on the presential level as well. Here, 

the goal is the movement of blood, which is a process and cannot be interpreted on the 

presential level. If the process of blood being pumped is projected on the time boundary of its 

framing chronoid then there would be found a presential blood participating in that process. 

However, on the level of presentials there will not be found the movement of blood, as it is a 

process. Thus, we see that not all cases of time extended functions can be reduced to presential 

functions.  

From the above three function kinds some other kinds can be constructed. For instance 

the requirements of the function could be a presential and the goal of the function – a process, 

which starts after the requirements. Consider as an example the function of the house 

construction, the requirements of this function is a presential configuration of required 

materials. The goal of the function is the time extended presence of a house.  

This function can be decomposed into two functions – a sequential and a continuous 

function. First we observe that the function of constructing the house is a sequential function in 

which the goal is a presential house. However, a house is not only intended to be ready when 

the construction process ends, but moreover it should persist throughout a given period of 

time. This can be represented by the continuous function of maintaining the house. In this 

sense it is a combination of the sequential and continuous function. 

3.6 Functional Item 

So far we have represented functions by means of the requirements, which are an input of the 

function, the goal which is an output of the function and the function’s basic kind. This 

representation resembles the input-output view on functions. However, it is in our opinion not  

sufficient to represent functions only as the input-output pairs, since this looses the important 

feature of functions, which is their dependency. Treating a function as a dependent entity 

supports the intuitions that a function is always of something. Thus the goods 

transportation understood only in terms of an input and an output is not a function but 
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rather a teleologically interpreted process.  Moreover, the lack in the function structure of the 

entity to which a function is assigned results in ambiguities and does not permit to determine 

the function precisely, because it is possible that two different functions have exactly the same 

requirements and the same goal. Consider for example two functions F and F’: 

 

LABEL(F) =” to deliver an item to A” 

REQ(F) = Ph(x) ∧ x :: item ∧ ¬ located(x,A) 

GOAL(F) = located(x,A) 

 

LABEL(F’) = “to be delivered to A” 

REQ(F’) = Ph(x) ∧ x :: item ∧ ¬ located(x,A) 

GOAL(F’) = located(x,A) 

 

Both functions have the same requirements: item is not located in A, and the same 

goal: item is located in A, thus F and F’ in light of previous considerations should 

be considered as the same function. However, the difference between F and F’ is obvious. The 

first is the function of somebody (something) who is supposed to deliver an item, while the 

second is the function of an item that ought to be delivered. Therefore, we see that the function 

specification must not only indicate the input and the output but also the entity, which realizes 

the function. That entity, let it be  x, we will call a functional item of a function f, and denote 

by FI(x,f).  

In the literature on functional modeling a device can be found to be a typical counterpart 

of our functional item. Function is therefore defined as a function of a device. For reasons 

presented in section 2.1.5 we find this solution problematic. To give a brief summary of its 

drawbacks: firstly, it assigns functions only to devices, but clearly not only devices realize 

functions, and secondly and most importantly, it makes functions realization-dependent. For 

example, if a device is a part of a function specification then, the function of transporting 

people realized by a car must be considered to be different from the function of 

transporting people realized by a plane, since a car and a plane are two 

different devices32. But this makes functions realization-dependent and does not permit to 

model functions independently of their realizations.   

                                                      

32 If we consider different brands of e.g. cars to be different devices, then it makes functions even more 

realization vulnerable: Fiat’s functions of transporting people and Renault’s function of transporting 

people should be considered as two different functions then.  
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Thus, there arises quite a dilemma: on the one hand the functional representation should 

assign a function to its realizer, but on the other hand it should be independent of it. To solve 

the dilemma we will refer to the concept of role.  

3.6.1 Role 

We adopt here the pattern of roles developed by Loebe [Loebe, 2003; Loebe, 2005] and 

incorporated into GFO, which is coherent with other approaches, e.g. with the Eriksson and 

Penker’s Actor-Role pattern ([Eriksson, Penker, 2000] pp. 191-197) (see figure 14). According 

to Loebe a role is an entity played by some role-filler which is said to have a role in some role-

context. 

 

Role(x) ↔ ∃yz(HasRole(y,x) ∧ RoleIn(x,z)). 

 

 

(12) 

For instance a person may have a role of student in the context of a university. The 

role-context is the main criterion of classifying roles. The distinguished types of roles are 

relational roles, whose context is a relation, processual roles, whose context is a process and 

which describes participation in a process; and social roles which corresponds to the 

involvement of a social object within some society. 

Although roles should not be confused with properties (and property values), we find 

those entities similar. Firstly, they both describe the entity they refer to, called a role player or 

a property bearer, respectively. Secondly, they are both dependent on that entity. Finally, they 

can both be understood as aspects of that entity33. In this sense a role is an aspect of an entity 

against some (external to the entity) context or, to be more precise, a role selects some of the 

aspects (properties) of an entity with respect to some context. For example, the role of a 

driver selects such aspects of a person as driving skills or driving 

experience.  

Roles can be classified on the basis of the nature of properties they select. Thus a driver 

role selects the properties we call structural, i.e. belonging to the structure of the role-filler and 

as such can be called a structural role. Moreover, some roles are a mixture of the structural and 

role aspects, where the structural aspects come from the role player and the role aspects from 

the context of a role [Loebe, 2005]. For example, the role of father contains both the 

structural aspect of a male and a role aspect of a parent.  In contrast, parent is a pure 

                                                      

33 Similarly e.g. in UML both roles (called there associations ends) and attributes are generalized under 

the notion of property [OMG, 2004b]. 
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role, which does not contain any structural aspect of its role-player but is defined purely by its 

context. 

 Finally, we observe that it is common for the comparison of entities to be based on and 

restricted to the scope given by their roles, hence one can compare two persons with respect to 

their properties such as driving skills or driving experience, which are captured by their driver 

roles.  

 

 

Figure 14. Part of the business actor-role pattern developed by Eriksson and 

Penker ([Eriksson, Penker, 2000] p. 193).  A role is considered as an entity 

mediating an actor and a context. 

3.6.2 Functional Item as a Role 

As observed above we do not want to define the functional item in terms of particular entities 

(devices) which realize the function in order not to fall into realization-dependent function 

specification. Instead we will use for that purpose a notion of role: we understand the 

functional item as the role an entity plays in the context of the realization of function. 

For example, a heart in the context of the process of pumping blood can be 

considered to be a blood pump. A car in the context of the process of transporting 

goods can be considered as a goods transporter, etc. In this sense both a blood 

pump and a goods transporter are roles of those entities in the context of the process 

which realize functions. 

However, not every role is suitable to be a functional item. The functional item should 

not constrain the realization of the function more than the goal of the function does. If this 

condition is not fulfilled, then the functional item again would be a source of the realization-

dependence in the function structure. For instance, if we consider the function of pumping 

blood, the functional item should not be the role heart pump but rather a more general 

role pump, which does not exclude mechanical hearts from being its role players. As a 

solution to this problem we think that the roles naming the entities realizing the function 
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should be constrained only by the goal of the function. Therefore we define the functional item 

as follows: 

 

Definition 12 (Functional Item). The functional item of a function f indicates the role of 

entities executing a realization of f, such that all restrictions on realizations imposed by the 

functional item are dictated also by some goal of f. 

 

The functional item is a purely teleological role in the sense that it abstracts from every aspect 

of the entity realizing the function, which is not related to the (appropriately defined) goal. It 

abstracts from everything apart from the goal, and thus does not impose any structural features 

of the filler as long as the goal does not do it. As such it is a common umbrella for all roles 

which are constrained not only by the goal but also by the role filler. For instance, 

transporter as a functional item of the function to transport goods is a common 

umbrella for car-transporter, plane-transporter and all the others realizers of 

this function. Each of them extends the functional item by structural aspects. For instance, 

plane-transporter, beside the teleological aspect of executing the realization of 

transportation of goods, contains also the structural aspects of a plane, like cargo space, 

maximum flight distance, and others. 

A functional item is either a simple entity, which is a role of a single entity, like in case 

of teacher, being a role of person, or it can be a more complex entity composed of roles 

of several entities. A functional item composed of more than one role is called a complex 

functional item: 

 

Definition 13 (Complex Functional Item). A functional item x of a function f is called a 

complex functional item of f, and denoted by FICompl(x,f)  iff it has as its role proper part more 

than one role.  

 

FICompl(x,y) ↔ ∃vw(RolePPart(v,x) ∧ RolePPart(w,x) ∧ v ≠ w) 34. 

 

 

(13) 

For example, a functional item car-transporter of the function to transport 

goods by car involves beside a role of a car also a driver, which is a role of an 

agent. Often the complex functional item is not just a simple aggregate of its elements but it 

                                                      

34  The notion of proper role part is defined as follows: RolePPart(x,y) ↔ Role(x) ∧ Role(y) ∧ 

PPart(x,y). The predicate PPart(x,y) denotes a proper part which is a non-reflexive variant of the part-

of relation. 
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may have the interior structure. For example, in case of car-transporter, there is 

involved a relation of driving that holds between a car and a driver. In this sense 

complex roles are complex wholes whose relata are roles only35.  

3.6.3 Discussion 

We have introduced functional item as a pointer to the entities intended to realize the function. 

However, in order to avoid defining functions in the context of the entities that realize them, 

we assign functions to their realizers by the mediating role called functional item. 

Now one could object to our example that transporter could in fact be considered 

as a type of device, whose subtypes are plane and car. The introduction of transporter 

as a general device concept solves the problem of realization-dependency on the one hand, and 

on the other it does not force us to resign from the number of approaches that assign functions 

directly to devices. 

There are, however, at least two reasons, for which such a solution is problematic. 

Firstly, if we organize into one hierarchy the categories of device, transporter, car 

and plane and still want to remain realization-independent in defining functions, we have to 

provide criteria that permit to define functions by means of some of the concepts of this 

hierarchy, like transporter and prevent from doing so by means of others, here by car or 

plane. However, it seems that no such mechanism may be provided. If the hierarchy 

represents devices then, as long as defeasible subsumption is not considered, there is no basis 

on which a device, i.e. transporter, can be a functional item whereas its subconcepts, car 

and plane, cannot.  

This solution has also a second drawback, namely such that placing transporter in 

a subsumption hierarchy above the concepts of car and plane results in the erroneous 

taxonomy. Transporter, as we have seen, is a role, thus by definition for each role x there 

is some y, which is its role player, and some z, which is a context of the role x. Since car and 

plane would be subconcepts of transporter, the above should by inheritance hold for 

them as well. However, it can clearly be seen that it does not. An entity to be a car does not 

require any role player and any context. Thus, we see that the non-role concept cannot be a 

subconcept of the role concept. Analogous constraint on subsumption taxonomy, although 

based on different arguments, is given in OntoClean36.  

                                                      

35 FICompl(x,y) → FI(x,y) ∧ Whole(x). 

36 OntoClean is a methodology for supporting construction of concept taxonomies [Guarino, Welty, 

2004]. It is founded on the ontological meta-properties of rigidity, identity, dependency and unity which 
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In conclusion we can say that (1) the approaches that define function by reference to a 

device are fated for representing functions in realization-dependent manner; (2) this problem 

may not be avoided by considering the role-concept of functional item as a type of device, 

since it gives no means to differentiate functional items from mere device concepts, and 

moreover it results in erroneous taxonomy, where role concepts subsume non-role concepts. 

3.7 Side Effects  

Not all effects of the functions must be established by the agents as goals. In such cases 

functions are said to have side effects. We recognize two kinds of side effects: one which 

belongs directly to functions and one which belongs to a particular realization of functions. 

The former we define as follows: 

 

Definition 14 (Function Side Effect). A function side effect of a function f, denoted by 

SideEf(x,f),  is a chunk of reality x affected by f, which is not a part of the goal of f . 

 

SideEf(x,y) ↔ Affect(y,x) ∧ ¬∃z(GoalOf(z,y) ∧ Part(x,z)).  

 

 

(14) 

Side effects of functions could be taken as those consequences of the goal, which are not 

intended by an agent. A side effect, then, is everything, which is not a goal but belongs to the 

very nature of the goal or, in other words, everything which is inseparable from the goal or 

dependent existentially on the goal. For example, the function to disband the 

university U, which has a goal that there is no university U, has a side effect 

that John stops being the professor at U. Here, being a professor is the role of John at 

university U, which is dependent on John and on U. When U ceases to exists so does the role 

of John. Thus the function affects the role. However, it does not have to be an intended goal of 

disbanding the university U to deprive John of his position. In this sense a side 

effect of the function is an unintended consequence of the goal.  

The dependency relation between the goal and the side effect may be different in its 

nature and in its strength, however for the purpose of the current topic it is not an issue to 

investigate its nature, and we treat it roughly as an existential dependency relation. 

                                                                                                                                                         

provides constraints for taxonomy structures [Welty, Guarino, 2001]. The rigidity based constraint 

prohibits subsumption of non-roles under roles [Guarino, Welty, 2000].  
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Whereas function side effects are independent of the particular way of function 

realization, the second type of side effects is the result of a particular function realization. 

Consider for example air pollution, which is a side effect of the process of transporting 

people by car, which realizes the function to transport people. Here, however, the 

side effect depends not on the function itself but on the particular realization. Hopefully, if we 

switch to ecological cars, that particular side effect will be avoided. Side effects of that kind 

are called realization side effects.  The definition of the realization side effect is introduced 

later in section 5.7.2 since it refers to the notions of individual realization, fulfillment and 

others, which are handled in chapter 5. 

3.8 Summary 

In the current section we have introduced the structure of functions STR(x) which enables to 

represent functions independently of their realizations. The structure of the function has four 

elements, STR(x) = (LABEL(x), REQ(x), GOAL(x), FITEM(x)). Every element of STR(x) is 

called a component of function x, and is denoted by C(x), C(x) ∈ STR(x).  

LABEL(x) is a set of natural language expressions describing function x, the remaining 

components are defined on the basis of introduced binary relations as follows: 

 

REQ(x) = {y: Req(y,x)}. 

 

(15) 

 

GOAL(x) = {y: GoalOf(y,x)}. 

 

(16) 

 

FITEM(x) = {y: FI(y,x)}. 

 

 

(17) 

The goal and the requirements provide the ontologically refined view on the input and output 

approach to functions. The particular type of the goal is the time frame, which provides a 

temporal restriction on the function. The time frame is such a goal which is a time entity, 

 

TFRAM(x) ={y: GoalOf(y,x)∧ Te(y)}. 

 

 

(18) 

The functional item indicates the entities which are intended to realize the function, without 

imposing any constraints on them not imposed by a goal. 

Since the label LABEL(x) plays only an informative role for human users, we do not use 

it for determining functions. Functions are determined by the subset of the function structure, 
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defined as DETE(x) = STR(x) \ {LABEL(x)}37.   Each element y of DETE(x) is called a 

determinant of the function x and is denoted by D(y,x). The equality of functions is founded on 

the equality of their determinants. 

 

x =Fu y ↔ DETE(x) = DETE(y).  

 

 

(19) 

The equality of functions can be restricted to only some of their determinants, and thus two 

functions can be equal with respect to the goal, the requirements or the final item: 

 

x =Gl y ↔ GOAL(x) = GOAL(y).  

 

(20) 

 

x =Req y ↔ REQ(x) = REQ(y).  

 

(21) 

 

x =Fi y ↔ FITEM(x) = FITEM(y).  

 

 

(22) 

 

                                                      

37 D(y,x) ↔ Req(y,x) ∨ GoalOf(y,x) ∨  FI(y,x). 
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4 Relations between Functions 

4.1 Introduction 

So far we have discussed the function considered in isolation, however for the purpose of 

functional modeling functions are glued by relations into functional models. The primary 

question then is what kinds of relations connect functions? In this chapter we investigate the 

following relations:  

− Instantiation 

− Is-a 

− Part-of 

− Realization 

− Enablement 

− Support 

− Prevent

 

Instantiation, is-a and part-of are typical ontological relations, commonly discussed and 

applied. In the context of the functional modeling they are present in several approaches 

discussed in chapter 2, however there is no consensus on their meaning, and they are seldom 

defined in a formal way. The relation of realization is not a common ontological notion, but it 

belongs to the domain of functional modeling, although its interpretation varies across 

formalisms. Moreover, some additional relations, peculiar for functional representation can be 

found. These are: enablement, support, and prevent. They are present in some of the AI 

approaches to functional modeling, e.g. in FCO or MFM.  

The aim of the current chapter is to give a formal and a general specification of the 

relations mentioned, which permits them to be handled across diversified domains. 

4.2 Instantiation 

Firstly, let us consider the relation of instantiation. It is a common mechanism used in 

programming, conceptual modeling and in ontologies. Take as examples the UML notion of 

instantiation, and the RDF property rdf:type, utilized in OWL. The distinction between 
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instantiation and subsumption is often problematic. The problems have their roots already in 

the linguistic ambiguity, since both relations pass is-a test. Informally, it can be said that “an 

instance is a universal”, like in example  John is a person, as well as that “a subclass is 

a superclass”, i.e. a human is a mammal. Thus, both relations are sometimes called is-a 

relations and therefore confused (see [Brachman, 1983] for discussion). Here, in accordance 

with GFO and many other approaches we consider these two relations being different. 

The instantiation relation varies across formalisms. In UML it is the relation holding 

between the elements of models on different layers of MOF metadata architecture [OMG, 

2002], and thus not only holding between objects of layer#1  and classes on layer#2, but also 

between classes and meta-classes (layer#3); meta-classes and meta-meta-classes (layer#4). In 

contrast in OWL Lite and OWL DL the instantiation denoted by rdf:type holds only 

between individuals and classes.  In  OWL Full classes can be considered as individuals, thus 

analogically to MOF the instantiation between classes is permitted there. In both UML and 

OWL instantiation is not distinguished from the membership relation. In contrast, in GFO 

instantiation is “the intensional counterpart of the membership relation as it (instantiation) does 

not satisfy the principle of extensionality” (original emphasis, [Heller et al., 2005]).  

In GFO instantiation, denoted by “::”, is a binary relation, whose second argument is a 

universal and the first, called instance, is an individual or a universal. Individuals are entities 

that do not have, and are not permitted to have, instances. Not all entities lacking instances are 

individuals in GFO framework. For instance, classes, which do not have instances, but 

elements, are not considered to be individuals. In contrast to universals individuals are located 

in time and space. However, one should have in mind that it is not a necessary characteristic of 

individuals since some of them, which in GFO are called general or abstract individuals, are 

not located in time and space. Universals on the other hand are defined as entities that have, or 

may have, instances. Universals all of whose instances are individuals are called primitive 

universals.  

Just as in UML and OWL Full, meta-universals, whose instances are universals, are 

not excluded in GFO. Meta-universals are commonly met, especially in context of biological 

taxonomies. In the example “Hedgehog is an instance of species, Tony is an instance of 

hedgehog”, species is a meta-universal, Hedgehog is a primitive universal and Tony is 

an individual ([Heller et al., 2005], p. 17). In GFO, in contrast to UML, and similarly to OWL 

Full the instantiation hierarchy is not restricted to only four layers, and therefore higher than 

meta-meta-universals are permitted38.   

 

                                                      

38 The discussion on the comparison of meta-architecture of MDA and  the meta-architecture of GOL 

can be found in [Herre, Loebe, 2005]. 
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4.2.1 Individual, Universal Functions and Instantiation 

Since the notion of instantiation is closely related to the notions of universal and individual, let 

us first introduce our understanding of universal and individual functions. We account for both 

those notions by the references to the function structure.  

 

Definition 15 (Individual Function). A function f is called an individual function, and 

denoted by IndFu(f),  iff  all its determinants are individually determined. 

 

IndFu(x) ↔ ∀y(D(y,x) → Ind(y)). 

 

 

(23) 

Definition 16 (Universal Function). A function f is called a universal function, and denoted 

by UniFu(f), iff at least one of its determinants is a universal. 

 

UniFu(x) ↔ ∃y(Uni(y) ∧ D(y,x)).  

 

 

(24) 

The intuition behind the above definitions is that an individual function is such that cannot be 

instantiated in any dimension, which means that none of its determinants can be instantiated. 

In this sense the individual function is a function determined by individuals, whereas universal 

function is determined by at least one universal. Consider for example the function F: to 

paint a wall and the function F’: to paint by the person A the wall W 

with the paint P within the time period T. The first is clearly a universal 

since at least one its determinant, and here in fact all of them, is a universal. In contrast, the 

determinants of the latter are individually determined. The requirements is the individual 

configuration of paint P and the wall W located at the left time boundary of the period T. The 

goal is the painted-with relator gluing the wall W and paint P located at the right time 

boundary of the period T.  Finally, the painter is the functional item which is a role 

restricted to the individual role filler, namely the person A. 

The interesting case of a universal function is such a function whose all determinants but 

the functional item are individually determined. A function of that kind we call a primitive 

universal function. 

 

Definition 17  (Primitive Universal Function). A function f is called a primitive universal 

function, and denoted by UniFuPrim(f), iff  all its determinants apart from  the functional item 

are individual entities. 
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UniFuPrim(x) ↔ ∀y(GoalOf(y,x) ∨ Req(y,x) → Ind(y)) ∧ ∀z (FI(z, x) → Uni(z)). 

 

 

(25) 

Consider the function F’’: to paint the wall W with paint P within the 

time period T. Here, both the goal and the requirements are the same as in the function 

F’ and are individuals, whereas the functional item is a universal role with undetermined role 

filler – a painter of wall W with paint P.  

In contrast to primitive functions there are functions similar to F, all of whose 

determinants are universals not containing as their parts individuals. Functions of that kind are 

called absolute universal functions and are defined as follows:  

 

Definition 18 (Absolute Universal Function). A function f is called an absolute universal 

function, denoted by UniFuAb(f), iff  all determinants of f are absolute universal determinants 

of f. A determinant x of a function f is called an absolute universal determinant of f, denoted by 

UniDAb(x,f)  iff x is a universal that does  not contain any individual as its part39.  

                                                      

39 The ontological analysis of the part-whole relation is a topic in itself, and exceeds the scope of this 

work. Here in principle we refer to GFO as a framework defining the part-whole relation. It is only 

worth mentioning that we treat the part-whole relation in a more general sense than it is done typically. 

Typically, the part-of relation is considered as relation between individuals (see [Guizzardi, 2005] for 

overview). We, however, do not exclude the part-whole relation between universals, or between 

universals and individuals. For example, consider the situation S: a car is in a garage. S is 

clearly a universal since it may be instantiated by an individual situation s1: my car is now in 

the garage. On the other hand we may say that a car, which also is a universal (instantiated by an 

individual My car) is a part of situation S. In this case a universal is a part of a universal. The part-

whole relation between universals refers to the problem of principles of concept structures discussed in 

experimental psychology and in cognitive science [Laurence, Margolis, 1999]. In frames of GFO it is 

handled by the relation of categorical part [Herre, Loebe, 2005].  

In the current work we extend the notion of the categorical part to the relation that may hold 

between a universal and an individual. Thus, we permit an individual that is a categorical part of a 

universal. For example, an individual My Car is a part of a universal situation My car is in a 

garage. However, one should not understand that the individual (really existing) physical car is a part 

of the category, which would sound odd. All ontological entities discussed in the present work, 

including individuals, are not considered here as entities in the world, but rather as elements of the 

model which describe the world. In this sense My Car is considered as an individual, which refers to 

some physical individual object in the world not as that object directly. 

The relation denoted by Part(x,y) is used in the present work as a general notion of the part-

whole relation, which holds either between individuals, universals, or a universal being a whole and its 
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UniDAb(x,y) ↔ D(x,y)  ∧ ∀z(Part(z,x) → Uni(z)). 

 

 

(26) 

 

UniFuAb(x) ↔ ∀y(D(y,x) → UniDAb(y,x)).  

 

 

(27) 

Now, after distinguishing individual from universal functions we can define the relation of 

instantiation between functions. Just as the analysis of the function determinants permitted to 

distinguish universal from individual functions, the instantiation between function 

determinants is helpful in defining the instantiation of functions.  

Let us consider the goal first. The goal a wall is painted is a universal relation 

of being painted between the universal wall and the universal paint. In turn, the goal 

the wall W is painted with paint P at time T is an individual presential 

relator at time boundary T gluing the individual wall W with the individual paint P. It can be 

easily seen that this relator is an instance of the relation of being painted. In this sense 

we can say that the latter goal is the instance of the former. The instantiation of goals of two 

functions is denoted by x ::Gl  y, and defined as follows: 

 

Definition 19 (Goal Instantiation).  

 

x ::Gl  y ↔ ∃vw (GoalOf(v,x) ∧ GoalOf(w,y) ∧ v :: w). 

 

 

(28) 

Similarly, the instantiation may hold between the requirements of two functions. For instance 

the requirements of function F’ form an individual configuration which is an instance of a 

universal requirement of F. In most cases, also in the case of function F’, the individual 

requirements entail an individual goal, but this is not the rule. Consider the function of a 

construction crew - to construct a house out of given components. Here, 

requirements are a particular, individual configuration of the given components, whereas the 

goal is a universal house. The configuration of components does not determine individually the 

house which will be constructed.   

The instantiation of requirements of two functions is denoted by x ::Req y, and defined 

analogously to the goal instantiation. 

 
                                                                                                                                                         

individual part. The only case which we excluded is such, where a universal is a part of an individual,  

thus :  Part(x,y) → (Uni(x) ∧ Uni(y)) ∨ (Ind(x) ∧ Ind(y)) ∨ (Ind(x) ∧ Uni(y)). More on part of relation in 

GFO can be found in appendix A. 
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Definition 20 (Requirements Instantiation).  

 

x ::Req y ↔ ∃vw (Req(v,x) ∧ Req(w,y) ∧ v :: w).  

 

 

(29) 

Considering the functional item we assume that its role-filler usually is not determined by the 

goal. For example, in the function to transport goods the goal is a universal and the 

functional item is a role of an arbitrary entity which transports goods, i.e. a transporter. 

However, there are also functions in which the goal imposes the filler of the functional item, as 

for example in the function to transport goods by car LVB 2040. Here, the filler 

of the functional item is individually determined persistant car LVB 2040.  

On the basis of the relation of instantiation which holds between an individual and a 

universal role filler of two functional items we introduce the relation of functional item 

instantiation between functions.  

 

Definition 21 (Functional Item Instantiation).  

 

x ::FI y ↔ ∃vwst(FI(v,x) ∧ FI(w,y) ∧ HasRole(s,v) ∧ HasRole(t,w) ∧ s :: t). 

 

 

(30) 

According to the above definition the function to transport goods by car is 

instantiated with respect to the functional item by the function to transport goods by 

car LVB 2040, since the functional item of the latter has individually determined role 

player, i.e. car LVB 2040 which is an instance of the role filler of the functional item of the 

former, i.e. car. 

Concluding we can see that a functional item analogously as a goal and requirements 

can be a universal or an individual. In the former case it may be a universal role with or 

without individually determined role filler. For instance transporter is a universal with 

non-determined filler, whereas car LVB 2040 transporter is a universal comprising 

transporter roles of an individual role filler: car LVB 2040. Finally, in the case of 

individual functions where the goal, the requirements and the role filler of the functional item 

are individuals the functional item is an individual as well.  

Now, after defining the relations of the determinant instantiation we can define the 

relation of function instantiation. 

 

Definition 22  (Function Instantiation). An individual function f instantiates a universal 

function f’, denoted by f ::Fu f’, iff f instantiates f’ with respect to all determinants.  
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x ::Fu y ↔ IndFu(x) ∧ UniFu(y) ∧ x ::FI y ∧ x ::Req  y ∧ x ::Gl  y. 

 

 

(31) 

4.3 Taxonomic Relations 

4.3.1 Introduction 

The is-a relation is the main taxonomic relation, often considered as a backbone of an 

ontology. It is common across the conceptual modeling and the ontology representation 

formalisms. For example, in UML the generalization is the relation between classifiers, 

whereas in OWL the RDFS property rdfs:subClassOf is the basic taxonomic 

constructor that holds between OWL classes. 

The semantics of the notion of the is-a relation is, however, not clear-cut (for discussion 

see [Brachman, 1983]). Most often it is taken as a logical implication, for example in OWL, 

where if A is a subclass of B then every instance of A is an instance of B.  

In this understanding it may be called an extensional subsumption and is contrasted to its 

intensional counterpart, called also structural subsumption , which was introduced by Woods 

in [Woods, 1991]. In accordance with the intensional subsumption one concept subsumes 

another not by virtue of a model-theoretic criterion but by virtue of their structures. Concepts 

in Woods’ approach are considered as atomic or composite descriptions. An atomic description 

consists merely of an atomic concept label. A composite description is of the form: c1,…,ck / 

m1,…,mn, where ci are primary conceptual descriptions, and mi are the relation-value pairs 

(ri:vi) called modifiers ([Woods, 1991],  p.50). For example [person] / ([like]:[golf]) is a 

composite description describing  a person who likes golf. Structural subsumption is 

defined on the basis of subsumption of descriptions which is understood as the subsumption of 

primary conceptual structures and the subsumption of modifiers. One conceptual description 

c1,…,ck / m1,…,mn, subsumes the other c’1,…,c’k / m’1,…,m’n, if each primary conceptual 

description  ci subsumes some c’j and each modifier m1 subsumes some m’j. 

For most cases both the extensional and intensional criterion brings the same results. 

However, those notions are not equivalent. Woods writes: 

 

“For example, one might judge the concepts [polygon with three sides] and [polygon with 

three angels] to be intensionally distinct, even though they will necessarily have the same 

extensions in all possible worlds, because that fact does not follow directly from the structure 
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of the descriptions but has to be deduced from the logic of the domain. If the two expressions 

were intensionally the same, one would argue, then a proof should not be necessary - it would 

suffice to examine the meanings to see they are the same.“ ([Woods, 1991],  p. 72-73) 

 

Moreover, Woods observes that the intensional subsumption entails the extensional 

subsumption but not vice versa. In this sense the intensional subsumption is the extensional 

specialization of the extensional subsumption40. 

Both the extensional and intensional subsumption have problems when confronted with 

the prototype theory and with exceptions. The prototype theory have its roots in the research of 

Rosch and Mervis [Rosch, Mervis, 1975]  in the field of cognitive science and experimental 

psychology, who have found that people’s concepts often lack a definition of the necessary and 

sufficient conditions, but instead they often are structured prototypically. Prototypically 

structured concepts are depicted by a representative, having the typical features. However, not 

all representatives of the category share all of the typical features. Representatives lacking 

them are considered to be atypical or peripheral. For example a prototype of the bird has 

wings, has feathers and can fly. All those hold for e.g. eagles, doves, etc. On the other hand 

ostriches or penguins cannot fly but still are considered to be birds. In this sense the principles 

of both extensional and intensional subsumption fail, since none of them permit to classify 

ostriches and penguins as birds.  

For that purpose the defeasible subsumption was introduced. In the defeasible 

subsumption not everything that is true for a super-class must be true for a subclass, but it may 

be cancelled. For example, the property of a bird: ability to fly is canceled in case of 

ostrich and penguin. That mechanism is used also in the object-oriented paradigm where the 

property of a class may be overwritten by its subclass.  

However, the cancellation of properties in subsumption is not free of problems. 

Brachman in [Brachman, 1985] reported the problems that the cancellation of properties raises 

for subsumption. He observes that if it is allowed with no restriction to cancel in a subconcept 

an attribute or an attribute value of the superconcept, then it results in the mishmash in the 

subsumption hierarchy. For example, if we except non-flying penguins and ostriches as 

subconcepts of bird, then nothing stops us from treating also airplanes as birds, in spite of 

the fact that they are not living beings, though having wings and being able to fly. 

The is-a relation is also required in function modeling and it has been introduced in 

several approaches, e.g. FCO, although, as far as we know, the semantics of functional 

subsumption seems not to be analyzed in details in the literature.  

                                                      

40 Every instance of the intensional subsumption is an instance of the extensional subsumption as well. 
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4.3.2 Subsumption, Specialization and Individualization 

It is not our intention to contribute to the general discussion about the is-a relation outlined 

above; instead we intend to provide a formal understanding of taxonomies of functions.  In 

contrast to the relation of instantiation, which is sometimes also labeled by “is a”, the is-a 

relation holds not between an individual and a universal function but between universal 

functions only. Three kinds of is-a relation between functions are introduced: subsumption, 

specialization and individualization.  

As in the case of instantiation, all three are founded on the analysis of the relation of 

function determinants. Let us introduce subsumption first: 

 

Definition 23 (Function Subsumption). A universal function f is subsumed by a universal 

function f’, denoted by f ⊆⊆⊆⊆Fu f’, iff every determinant of f is subsumed by the corresponding 

determinant of f’. 

 

x ⊆⊆⊆⊆Fu y ↔  UniFu(x) ∧ UniFu(y) ∧  

                     ∀φ∀uv(φ ∈ DETE ∧ φ(v,x) ∧ φ(u,y) → Subsume(u,v)) 41. 

 

 

 

(32) 

Subsumption of determinants denoted by Subsume(x,y) is understood here in an extensional 

sense and is reflexive, 

 

Subsume(x,x). 

 

 

(33) 

The non-reflexive variant of subsumption of determinants is called here specialization, and is 

denoted by Specialize(x,y).  

 

Specialize(x,y) ↔ Subsume(y,x) ∧  ¬ Subsume(x,y). 

 

 

(34) 

On the basis of the specialization of determinants the specialization of functions is introduced. 

 

Definition 24 (Function Specialization). A universal function f specializes a universal 

function f’, denoted by f ⊂⊂⊂⊂Fu f’, iff all determinants of f are subsumed by the appropriate 

determinants of f’ and at least one determinant of f specializes the appropriate determinant of 

f’. 

                                                      

41 The formulas 32, 35, 36 are second order formulas but can be reconstructed in FOL. 
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x ⊂⊂⊂⊂Fu  y ↔  UniFu(x) ∧ UniFu(y) ∧   

              ∀φ∀uv(φ ∈ DETE ∧ φ(v,x) ∧ φ(u,y) → Subsume(u,v)) ∧  

              ∃γ ∃wz(γ ∈ DETE ∧  γ (w,x) ∧ γ (z,y) ∧  Specialize(w,z)).  

 

 

 

 

(35) 

If determinants of two functions cross-specialize, then the subsumption between those 

functions does not hold in any of the directions. For example, if the requirements of the 

function F specializes the given requirements of the function G and the goal of G specializes 

the goal of F, then neither F subsumes G nor G subsumes F.  

Different kinds of functional specialization can be distinguished by references to the 

kind of determinant which is specialized. These are goal specialization, requirements 

specialization, and functional item specialization. Goal specialization usually entails 

requirements specialization, since requirements are to some extend dependent on the goal. For 

example, the function to deliver mail is a goal specialization of the function to 

deliver item, since the goal of the former: mail is delivered is a specialization of 

the latter: item is delivered. Concurrently the specialization holds between the 

requirements of those functions, since the first function requires a mail and the second an 

item to be present, and mail specializes item. In turn, the goal and requirement 

specializations entail the functional item specialization. 

Yet apart from the subsumption and specialization of functions there is another 

taxonomic relation between universal functions, namely individualization. Determinants of 

universal functions can not only be related by subsumption and specialization but, as it was 

shown in the previous section, by instantiation. For example, the goal and the requirements of 

the absolute universal function to renovate a house are instantiated by the goal and 

the requirements of the primitive universal function to renovate the White House 

within time period T. The latter is not an instance of the former since it is not an 

individual – its functional item (the White House renovator) does not have 

individually determined role fillers. In this sense one can say that the second function is a kind 

of the former function. However, this is-a is neither founded on the subsumption nor on the 

specialization of function determinants but on their instantiation. To cover cases of that kind 

we introduce the next taxonomic relation called functional individualization.  

 

Definition 25 (Function Individualization). A universal function f is an individualization of 

a universal function f’, denoted by f ⇒Fu f’, iff at least one of individual determinants of f 

instantiates a corresponding universal determinant of f’ and the remaining determinants of f are 

equal to the corresponding determinants of f’. 
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x ⇒Fu y ↔ UniFu(x) ∧ UniFu(y) ∧  

                  ∃U (U ⊆ DETE ∧ ∀φ (φ ∈ U → x ::φ y) ∧  ∀γ (γ ∈ DETE \ U → x =γ y)). 

 

 

 

(36) 

In contrast to instantiation, individualization holds between universals and not between a 

universal and an individual function. For instance, both functions to renovate a house 

and to renovate the White House are of a universal character. Moreover, 

analogously to subsumption and specialization the extension of the latter function is the subset 

of the extension of the former. However, in contrast to subsumption and specialization, 

individualization is founded on the relation of instantiation between determinants. Here, it is 

founded on the instantiation of the universal house by the individual the White House. 

Intuitively, the difference between specialization and individualization is that the first 

restricts a universal function by the restriction of the kind of (at least) one of its determinants, 

whereas the second restricts a universal function by the instantiation of its determinant. 

However, the instantiation of one determinant does not imply the instantiation of the whole 

function.  

Concluding we can see that all three kinds of is-a relations – subsumption, specialization 

and individualization are taxonomic relations for structuring universal functions. All three 

have an intensional character - they are identified by the analysis of functions structures, not 

only by the analysis of functions extensions. In addition, all of them fulfill the extensional 

condition. Cancellation is not permitted and thus defeasible taxonomical links are not 

supported in OF.   

4.4 Part-Whole Relation 

4.4.1 Introduction 

It is common in the literature on functional modeling to consider the part-of relation between 

functions. For example, in MFM [Lind, 1994] introduces the whole-part relations for all levels 

of functional description – between goals, between functions, between behaviors and between 

structures. Of our interests here are not the relations holding between behaviors and structures 

but only those between functions, and between goals. The whole-part relation between goals 

means that one goal is a super ordinate goal for other goals. [Lind, 1994] illustrates it with the 

following example: the goal G that the central heating system operates 

properly may be decomposed to three goals G1, maintain water level within 



Part-Whole Relation 

 

99 

safe limits; G2,  maintain condition for energy transport; and G3, 

keep room temperature within limits. According to Lind G1, G2 and G3 are 

parts of G. Analogously the function of transporting energy from radiator to 

the boiler have three parts: transport of water from supply to 

expansion tank, circulation of water, transport of energy from 

boiler to radiator.  

In FCO the notion of decomposition of functions is also introduced by means of the 

part-of relation: “the part-of relation between functions represents how a function is achieved 

by finer grained function [Kitamura et al., 2004], p. 116). Analogously in the OPM function 

hierarchy, lower level function answers how the superordinate function is achieved. 

4.4.2 Function-Part 

In OF we distinguish two kinds of part-of relation applied to functions: 

1. Function-part: Function A is a part of function B if  the determinants of A, in particular 

the requirements and the goal are the parts of the appropriate determinants of B 

2. Sequence-part: Function A is a part of function B if it is an element of the sequence 

realizing B. 

 

The function-part is based on the part-of relation that holds between the requirements and the 

goals of the functions and corresponds to Lind’s whole-part relation between goals. The 

sequence-part seems to meet the intuitions similar to the whole-part relation between 

functions. Both kinds of part-of relations are now define formally. 

 

Definition 26 (Function-Part Function). A function f is a function-part of a function f’, 

denoted by PartFu(f,f’),  iff the requirements of f are the part of the requirements of f’ and the 

goal of f is a part of the goal of f’.  

 

PartFu(x,y) ↔ ∃vw(GoalOf(v,x) ∧ GoalOf(w,y) ∧  Part(v,w)) ∧ 

               ∃st(Req(s,x) ∧ Req(t,y) ∧ Part(s,t)). 

 

 

 

(37) 

Consider two functions F1: to deliver a car from A to B and F2: to deliver 

an engine from A to B. The former has the requirements: car is in A and the 

goal: car is in B, whereas the latter has the requirements: engine is in A and the 

goal: engine is in B. We may say that F2 is a part of F1, since the configurations 

containing the engine being in A or in B are parts of the configurations of the car being in A or 
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B, which follows from the fact that an engine is a part of a car. The function-part relation 

should not be confused with the subsumption of functions based on the subsumption of 

requirements and goals. For example, the goal G1 of the function to transport a car is 

a subgoal of the goal G3 of the function to transport a vehicle, since car involved 

in G1 subsumes vehicle involved in G3.
42 

The particular pattern of function-part is the decomposition of a non-basic goal to the 

basic ones. Every non-basic goal may be decomposed to two or more basic goals, and every 

function resulting in any of basic goals is a function-part of the decomposed function. For 

example, the function F: to produce software satisfying the needs of 

customer may be decomposed to two basic functions I: to produce software, with 

the goal: software present, and function H: to satisfy a customer, with a 

goal: a customer satisfied. The complex goal of function F is then composed of 

those two chunks which are the goals of functions G and H, hence G and H  are the function-

parts of F.  

4.4.3 Sequence-Part 

To illustrate the second type of the part-of relation between functions consider the function F 

of a purchase system: to purchase an item. The requirements REQ(F) is:  exists a 

customer and an item, and  a goal GOAL(F) is: a customer posses an item. 

In a typical e-commerce system this function may be decomposed into the sequence of the 

following functions: 

1. To view/search item 

2. To choose item 

3. To buy item 

4. To deliver item to a customer 

 

It seems intuitive to say that each of the above functions is a part of the function to 

purchase an item in a sense that they answer how F is achieved. Such a part-of relation 

we call a sequence-part and introduce it by means of the notion of sequence, that is the list l of 

functions realizing a function f, denoted by Seq(f,l). 

                                                      

42 An analogous relationship holds for the requirements of those functions. 
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Definition 27 (Sequence). 

 

Seq(y, L) = L is a List ∧  

                   ∃v(Req(v, Head(L)) ∧ Req(v,y)) ∧ 

                   for every prefix x of L and z s.t. L = x + z holds Enable(Last(x), First(z))    

                   ∧  ∃w(GoalOf(w,Last(L)) ∧ GoalOf(w,y)) 43. 

 

 

 

 

 

(38) 

Each element of the sequence of function y we call a sequence-part of y and write PartSeq(x,y). 

 

Definition 28 (Sequence Part). 

 

PartSeq(x,y) ↔ ∃L(x ∈ L ∧ Seq(y,L)). 

 

 

(39) 

In this sense we say that each of the functions of the e-commerce system is a part of the 

function to purchase an item. 

The sequence-part differs from the function-part in a number of properties. Firstly, a 

function is a sequence-part of another function always with respect to some realization of the 

second, whereas a function is a function-part of another function independently of the 

realizations of the second. For example, the function F could be decomposed to some other 

sequence in a different purchase system.  

Secondly, the requirements and the goal of the sequence-part are not necessarily parts of 

the requirements and the goal of the whole function, whereas the requirements and the goal of 

the function-part function by definition are parts of the requirements and the goal of the whole 

function, respectively. In fact, the goal, or the requirements, of any sequence-part function 

taken in isolation may have nothing to do with the goal or the requirements of the decomposed 

function. For example the goal of the function to view item, is not related to the goal of 

the function to purchase an item. 

4.5 Additional Relations between Functions 

There may be found a bunch of relations between functions that relates the goal of one 

function with the requirements of another function. Those relations correspond to meta-

                                                      

43 Every two successive elements of the sequence are related by the enablement relation, which is 

defined in the next  section. 
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functions introduced in FCO [Kitamura, Mizoguchi, 1999].  A meta-function is introduced as a 

role of a base function, called an agent function, for another base function, called a target 

function. The meta-functions are distinguished from base-functions. The latter are defined as 

teleological interpretations of behavior, whereas the former are the roles that some base-

functions play in the context of other base-functions. Since in OF we do not define functions in 

the context of behavior, we are not forced to distinguish base-functions from meta-functions. 

Moreover, we find that not a (agent) function has a role in the context of some other (target) 

function but to be more precise it is the goal of an agent function having a role in the context 

of the requirements of the target function.  

The role that a goal of one function has in the context of the requirements of the other 

function we represent by the relations: support, enable, prevent. Moreover, there are cases 

where the goal of one function influences the other only in a particular realization of the first. 

For example, the function to rotate is improved by the function to cool not in general 

but only in the context of an engine. Thus, two realization-dependent relations between 

functions, trigger and improve, are introduced later in section 5.7. 

4.5.1 Support, Enable and Prevent 

We say that the goal of a function f is relevant for a function f’ if it influences the requirements 

of f’. The requirements of f’ may be influenced by the goal of f in various ways:  

− the goal of f is a part of the requirements of f’,  or  

− the requirements of f’ are a part of a goal of f, or 

− the goal of f excludes requirements of f’. 

 

We introduce three relations corresponding to the above three cases, these are:  support, 

enable, and prevent. 

 

Definition 29 (Support). A function f supports a function f’, denoted by Support(f,f’), iff a  

goal of f is a proper part of the requirements of f’. 

 

Support(x,y) ↔ ∃vz (GoalOf(v,x) ∧ Req(z,y) ∧ PPart(v,z)). 

 

 

(40) 

For example, the function to provide a nail supports the function to drive a 

nail, since it results in the goal: a nail is present, whereas hammering nails 

requires, among the other things, a nail to be present. Here the goal of the former function is a 

proper part of requirements of the latter.  
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One function may not only partially satisfy the requirements of another but it may 

support all the requirements of it. In such a case we say that one function not only supports but 

enables another. 

 

Definition 30 (Enable). A function f enables a function f’, denoted by Enable(f,f’), iff the 

requirements of f’ are the part of the goal of f. 

 

Enable(x,y) ↔ ∀v(Req(v,y) → ∃z (GoalOf (z,y) ∧ Part(v,z))). 

 

 

(41) 

The enable relation covers both the case when a goal of f equals the requirements of f’ and the 

case where the requirements of f’ constitute a proper part of the goal of f.  

In both the support and the enable relations the goal of one function has a positive 

influence on the requirements of the other function. Analogously, a goal may have a negative 

influence. We say that a goal of the function f has a negative influence on the requirements of 

function f’ when it excludes the requirements or part of the requirements of f’. In those cases 

we say that f prevents f’. 

 

Definition 31 (Prevent). A function f  prevents a function f’, denoted by  Prevent(f,f’),  iff 

the goal of f  excludes a part of the requirements of f’.  

 

Prevent(x,y) ↔ ∃vwq (GoalOf(v,x) ∧ Req(w,y) ∧ Part(q,w) ∧  Exclude(v,q)). 

 

 

(42) 

The predicate Exclude(x,y) denotes that a chunk of reality x, here the goal of f, excludes a 

chunk of reality y, here the requirements of f’, which intuitively means that from the presence 

of x follows the absence of y. 

4.6 Summary 

In this section we identified several relations by which functions may be related in a functional 

model. In the first place we have analyzed the classical ontological relations such as is-a, 

instantiation and part-of relation. We have found that in context of functions those relations 

have a particular character and may have different flavors.  

The instantiation of functions was based on the distinction of the individual and 

universal functions and the analysis of instantiation links between the determinants of 

functions. 
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The is-a relation between functions is not defined in extensional terms but instead it is 

based on the structural similarities between functions. Three kinds of is-a are introduced 

namely the subsumption, its non-reflexive variant – specialization,  and individualization. 

The part-of relation between functions comes in two flavors – function-part and 

sequence-part. The first says that one function has a goal and requirements which are parts of 

the other function’s goal and requirements, whereas the second says that a function is an 

element of the sequence of functions realizing some other function. The first kind of the 

functional part-of relation is realization independent, thus in contrast to e.g. OPM function 

hierarchy it enables the realization-free functional decomposition. The second kind grasps the 

intuitions behind the realization-dependent function decomposition. 

The distinction of various kinds of is-a and the two kinds of part of relation permits to 

handle properly the functional decomposition, which is an issue of particular importance in 

functional modeling, since it enables to construct generic and complex functions out of more 

specific and simple ones. However, in our opinion the functional decomposition is often used 

informally and is a mixture of several types of relations, e.g. in the goal decomposing pattern 

of Eriksson and Penker [Eriksson, Penker, 2000] the subsumption and goal-part are implicitly 

mixed on different levels of decompositions (for details see section 2.2.2). We believe that 

functional decomposition can be composed of various relations, which however should be 

explicitly named and formally defined. All of the relations introduced in the current chapter 

can be used for functional decomposition.  Figure 15 presents an exemplary decomposition of 

the function to transport goods based on: 

− Subsumption and Specialization (in all their flavors) 

− Individualization 

− Sequence Part 

− Function Part 

 

It can be seen that this approach to functional decomposition not only increases the 

expressivity of the decomposition link but moreover explicitly distinguishes various principles 

of decomposition underlying it. 
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Figure 15. Function decomposition founded on four distinct relations: 

specialization, function-part, sequence-part and function 

individualization. The figure uses the UML profile for OF presented in 

chapter 8. Black-headed arrows represent functions named by labels. The 

double-headed arrow labeled with <<fu>> represents specialization; the 

line with a diamond labeled <<fu>> - the function-part; the line with a 

diamond labeled <<seq>> - the sequence-part; and finally the arrow 

labeled with <<fu-individual>> - the functional individualization. 

 

Finally, the current chapter has defined three function-specific relations, which permit to 

model further interdependencies between functions. These are: Support, Enable and Prevent.  
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5 Realization 

5.1 Introduction 

Having introduced the common ontological relations of  subsumption, instantiation, and the 

part-of,  as well as a number of relations specific to functional modeling, we now turn to the 

notion of realization. In contrast to the relations discussed so far, realization is peculiar since it 

does not belong purely to the functional model but involves also non-functional entities. 

The realization of a function provides the answer to the question how the goal of the 

function is to be achieved. In the literature the notion of realization is often distinguished from 

the notion of function, which in turn answers the question about what is to be achieved. We, 

however, hold that the notions of functions and realizations are not disjoint because in OF 

functions are also permitted to realize other functions. 

In requirement R.1 for OF we postulated that the specification of an item’s function 

should be separated from its behavior or its structure, which are often considered as the way 

the function is realized. On the other hand, it is recognized that both notions of function and 

realization are relative and context-dependent. For example, Salustri [Salustri, 1998] 

demonstrates that the distinction between function and behavior is contextual. Below we 

present Salustri’s example but, since we do not share his intuitions in defining function, we 

interpret the example according to the intuitive difference between the function and the 

realization based on the what- and how-questions. Salustri considers the following four 

statements ([Salustri, 1998], p. 340): 

S1. The refrigerator keeps food cold. 

S2. The refrigerator keeps things cold. 

S3. The refrigerator preserves food. 

S4. The refrigerator lowers ambient temperature in an enclosed space.   

 

Each of the above statements considered in isolation can be understood as a function of a 

refrigerator, since each describes what a refrigerator does. For example, statement S1 could be 

considered as the description of the refrigerator’s function to keep food cold 44. If one 

asked the question how this function was realized, one could find the answer in statement S4: 

                                                      

44 Req: food present, Goal: food is_cold_during a period; FI: food cooler. 
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food is kept cold by lowering ambient temperature in an enclosed space. In this sense 

statement S1 refers to the function, whereas statement S4 refers to the realization of this 

function. This picture, however, gets complicated if we consider statement S3.  Just as S1 it can 

be taken as a description of the refrigerator’s function, namely - to preserve food45. In 

this case, when asked how it is achieved that food is preserved, one could use S1– food is 

preserved by keeping it cold. We see that although S1 refers to a function (has a proper 

functional structure and has its realization described in S4) it also refers to the realization of the 

function described in S3. 

Two conclusions could be drawn from the above: (1) the realization is not a particular 

type of non-relational entity but it is a role of an entity in context of some function – the 

realization is then a binary relation; (2) realizations are not restricted to non-functional entities, 

but a function may also have a role of being a realization for some other function.  

As a key for understanding the realization relation we use the what & how questions 

test. For two entities e and e’ the test checks whether e (function) provides the answer to the 

question “what is e’ doing?”, whereas e’ (realization) provides the answer to the question “how 

is e achieved?”. The realization then provides additional information to a function, whereas the 

function provides the justification of the realization.  When applying what & how questions to 

the pairs of functions related by the functional relations introduced so far the following can be 

observed:  

1. If x ::Fu y then x realizes y. 

2. If x ⊆⊆⊆⊆Fu y  or x ⇒⇒⇒⇒Fu y  then x realizes y.  

3. If PartFu(x,y) then y realizes x. 

4. If Seq(y,L), then L realizes function y, but each x ∈ L taken in separation does not 

realize y. 

 

To illustrate the first case let us consider the function to purchase book B by 

customer C at given time T. This function is an instance of the function to 

purchase an item. In this sense the former gives a (partial) answer to the question how 

the latter function is achieved - a purchase of an item is realized by customer C buying  book B 

at time T. 

To illustrate the second case consider the function to purchase a book, which 

answers how the function to purchase an item is realized. Here, the goal of the latter 

function is a subgoal of the former.  

                                                      

45 Req: food edible at t1; Goal: food edible at t1; FI: preserver. 
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The third case can be illustrated by functions F: to transport an engine and 

F’: to transport a car. F is a function-part of F’, concurrently F’ answers the question 

how F is realized: An engine is transported via the transportation of a car. 

Concerning the fourth case we see that a sequence of functions realizing the function to 

purchase an item provides a mode of realization of that function and therefore answers 

the question how this function is realized. 

The above cases show the diversity and vagueness of the realization relation, when 

based only on the intuitive what & how questions test. The picture gets even more complicated 

when one recognizes that the realization holds not only between functions, but a function may 

be realized by a non-functional entity as well, e.g. by a process, or a structure. In order to 

provide one general definition of functional realization, beyond the ambiguous distinction 

based on the what & how questions, and one that would be a common umbrella for the four 

cases above, we will first define what it means that an individual non-functional entity realizes 

a function. Secondly, the notion of individual realization will be generalized to the notion of 

universal realization. Finally, on those basis we are going to define the relation of realization 

that holds between functions. 

5.2 Individual Actual Realization  

Intuitively, the individual realization of a function f is an individual entity which is the 

achievement of the goal of f in the circumstances satisfying the requirements of f. Take for 

example the primitive universal function F: to transport goods G from Leipzig 

to Berlin in time period T46 and the individual process of transportation 

of goods G by plane from Leipzig to Berlin in T47. In brief, we can say 

that the process starts with the requirements of F being satisfied and ends with achieving the 

goal of F and in this sense can be called the realization of function F. Note, that the primitive 

universal function F could be realized by some other individual process, e.g. by the process of 

transporting goods G from Leipzig to Berlin by car in T. However, 

it is not possible that both those processes realize that primitive universal function actually. For 

                                                      

46 Figure 16 illustrates some of the notions introduced in this section and their interrelations on the 

example of the function to transport goods G from Leipzig to Berlin. 

47 Processes are often labeled by the functions they realize, which is the cause of confusion of both 

notions. For example both the function and the process can be labeled with the expression transport 

of goods. However, one should keep in mind that those notions are different. For a detailed 

discussion see section 7.3.1. 
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a non-primitive universal function there may be many actual realizations, whereas for a 

primitive universal function there is at most one individual actual realization, but there may be 

many possible realizations. We distinguish therefore actual realizations from dispositional 

realizations.  

 

    

 

 

 

Figure 16. The semi-UML diagram representing entities involved in function 

realization. The right hand side of the figure presents the function determinants 

marked gray, the left hand side the entities involved into realization of the 

function. All classes are labeled with the OF or GFO terms.  

 

Moreover, we distinguish three general kinds of function realization depending on the 

temporal locations of the requirements and the goal, which we discussed in section 3.5. On the 

basis of those three function kinds we now introduce three kinds of realization: processual 

culminative, processual non-culminative and situational realization.  

5.2.1 Actual Culminative Realization 

The first kind of an actual realization discussed is the culminative realization, corresponding to 

the sequential function.  

  

Definition 32 (Actual Culminative Realization). An individual process x is called an actual 

culminative realization of a sequential function f, and denoted by RlActCulm(x,f),  iff x is a 
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process of causal transformation from the presential p fulfilling the requirements of f  to the 

presential p’ fulfilling the goal of f . 

 

 

RlActCulm(x,y) ↔ Proc(x) ∧ FuSeq(y) ∧  

                        ∀st(Req(s,y) ∧ GoalOf(t,y) → ∃vw(v @ s  ∧ w @ t  ∧ Trans(x,v,w))). 

  

 

(43) 

 

The above definition makes use of the relation of fulfillment, denoted by x @ y, and having 

the intuitive reading that an individual (preferably a complex whole) x fulfills an entity y, in 

other words - y is fulfilled at x. If y is an individual then it is said to be fulfilled in a given 

complex whole, when it is a part of it. If y is a universal then it is fulfilled in x, when an 

instance of y is a part of x. For example, the universal goal goods are located in 

Berlin is fulfilled by every situation, which contains as its part the situation of individual 

goods being located in Berlin. Formally, 

 

x @ y ↔  Whole(x) ∧ (Ind(y) ∨  Uni(y)) ∧   

                (Ind(y)→ Part(y,x)) ∧ (Uni(y) → ∃z(z :: y ∧ Part(z,x))). 

 

 

 

(44) 

The culminative realization is defined in terms of the causal transformation from one presential 

into the other, denoted by trans(x,y,z). Here x refers to an individual process and y and z to 

presentials such that x is a causal transformation from y to z. We understand causal 

transformation by means of the notion of causally cohesive process developed in [Michalek, 

2006].  The causally cohesive process, denoted Causecoh(x) is a process of a particular causal 

structure, namely every pair of coinciding (inner) time-boundaries contain presentials 

connected by the basic causal relation. To give only a rough understanding of the causal 

relation between the presentials, which in fact is out of scope of the current work, we should 

mention that in [Michalek, 2005; Michalek, 2006] it is understood in terms of regularity and 

manipulation conditions. The former is considered as a statistical dependency – the presence of 

the cause raises the probability of the presence of the effect, the latter states that the effect is 

manipulable by the cause. 

By reference to the notion of causal cohesive process we introduce the notion of causal 

transformation from one presential into the other.  
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Definition 33 (Causal Transformation). A causal transformation from a presential p to a 

presential p’ is a causally cohesive process, whose projection on its left boundary contains the 

presential p and the  projection on its right boundary - the presential p’. Formally,   

 

Trans(x,y,z) ↔  Causecoh(x) ∧ ProcLBd(y,x) ∧ ProcRBd(z,x)48.  

 

 

(45) 

From the above we see that not every process that starts with a presential p and ends with a 

presential p’ is a causal transformation from p to p’ but only the one which is a causally 

cohesive process. For example, if we consider the well-known example of the process of the 

movement of a spot of light on the wall from point A to point B, then we would not consider it 

as a causal transformation. The pairs of presentials on the coinciding inner boundaries of that 

process lack the causal connection, i.e. there is no causal link between two locations of the spot 

of light. The causal connection holds between the position of the source of light and the 

position of the spot of light, but the former is not a presential being a projection of the process 

of the movement of the spot of light on its time boundary. Rather it is a projection of the 

process of the movement of the source of light.    

Now, having discussed the notions of the fulfillment and the causal transformation we 

can illustrate the culminative actual realization by an example. Let us consider the above-

mentioned process of flight which could be checked against being the realization of the 

function of goods transportation. This process has on its left boundary a presential 

situation of goods being in Leipzig which fulfills the requirements of the function to 

transport goods from Leipzig to Berlin. On its right boundary the process 

contains the presential fulfilling the goal of the function, namely the situation that the goods 

are in Berlin. Moreover, since it is a causally cohesive process, it provides a causal 

transformation  from the state where the goods are in Leipzig to the state that they are in 

Berlin. In this sense the process of flight is an actual culminative realization of the 

transportation function.  

The ternary relation of transformation can be decomposed to two binary relations: 

transformation-from: TransFrom(x,y) ↔ ∃z Trans(x,y,z), and transformation-to: 

TransTo(x,y) ↔ ∃z Trans(x,z,y). From formula 45 and the above splitting of the notion of 

transformation we obtain the following formulae: 

                                                      

48 Process left and right boundaries are presentials located respectively on the left and the right time 

boundary of the process’ framing chronoid. In  GFO they are defined formally, ProcLBd(x,y) ↔ ∃c 

(Prt(y,c) ∧ Prb(y,L(c),x)) (left process boundary), ProcRBd(x,y) ↔ ∃c (Prt(y,c) ∧ Prb(y,R(c),x))  (right 

process boundary). 
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RlActCulm(x,y) → ∀z(Req(z,y) → ∃v(v @ z ∧ TransFrom(x,v))). 

 

(46) 

 

RlActCulm(x,y) → ∀z(GoalOf(z,y) →∃v(v @ z ∧ TransTo(x,v))). 

 

 

(47) 

In accordance with formula 46 the fulfilled requirements are the necessary condition for an 

actual culminative realization to occur; and in accordance with formula 47 an actual 

culminative realization is a sufficient condition for the goal to be fulfilled. For example, the 

goods must be available in Leipzig in order to enable the process of transporting them from 

Leipzig. If the process of transporting goods takes place, then at the end of the process the 

goods are in Berlin. Note that an actual realization assumes a positive result. It cannot happen 

that the process of transporting goods occurs but the goods are not transported as a result of the 

process. If they were not transported, the process would not be called an actual realization. 

5.2.2 Actual Non-culminative Realization 

The second kind of realization corresponds to the continuous function and is defined as 

follows. 

 

Definition 34 (Actual Non-culminative Realization). An individual x is called an actual 

non-culminative realization of a continuous function f, and is denoted by RlActNonCulm(x, f), iff x 

is a process containing as its layers a process p fulfilling the requirements of f and a process p’ 

fulfilling the goal of f and all processes p’’ which adhesively cause p’.  

 

RlActNonCulm(x,y) ↔  Proc(x) ∧ FuContin(y) ∧  

                                 ∀st(Req(s,y) ∧ GoalOf(t,y) →  

                                        ∃vw (LayerPart(v,x) ∧ LayerPart(w,x) ∧  v @ s  ∧ w @ t  ∧  

                                                 ∀q (Causeadh(q,w) → LayerPart(q,x)))) 

 

 

 

 

 

(48) 

The notion of non-culminative realization is based on the notions of the process layer part and 

the causally adhesive processes [Michalek, 2006]. The process layer part denoted by 

LayerPart(x,y) is a process x being a processual part of y, which is framed by the same 

chronoid as y.  The causally adhesive processes, denoted by Causeadh(x,y) are the processes x 

and y such that at every pair of coinciding time-boundaries t and t’, such  that t is the boundary 

of x and t’ is a boundary of  y,  there exist causally connected presentials p and p’ such that p is 

the projection of the process x and p’ is the projection of process y.  
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Let us explain the definition of actual non-culminative realization by the example of a 

continuous function to pump blood. Intuitively a situoid comprising a heart, its behavior 

and the blood it pumps could be called a realization of this function. In this situoid we find a 

layer fulfilling the requirement of the function (blood is present) and the one fulfilling 

the goal (blood is being pumped). Moreover, this situoid has as its layer part a process 

of behavior of the heart, which is an adhesive cause for the process of blood being pumped.  

Since the goal of the function is not a culmination of that situoid but rather it is 

maintained during the whole situoid, this kind of realization in contrast to culminative, is 

called a non-culminative.   

5.2.3 Actual Situational Realization 

The third actual realization kind, corresponding to the instantaneous function, is called a 

situational realization and is defined as follows. 

 

Definition 35 (Actual Situational Realization). An individual x is called an actual 

situational realization of an instantaneous function f, and is denoted by RlActSit(x, f),  iff x is a 

situation fulfilling the requirements and the goal of the function f and containing as its part a 

causal factor for the goal being fulfilled.  

 

RlActSit(x,y) ↔  Sit(x) ∧ FuInstant(y) ∧  

                          ∀st(Req(s,y) ∧ GoalOf(t,y) →   

                                 ∃vw(CPart(v,x) ∧ CPart(w,x) ∧  v @ s  ∧ w @ t  ∧  

                                         ∀q(CauseInst(q,w) → CPart(q,x))). 

 

 

 

 

 

(49) 

In contrast to the two previous kinds of realization the situational realization is not considered 

as a time-extended entity but is a presential situation. This grasps the intuitions of 

instantaneous function realization typical of functions realized by structures rather than 

behaviors. In order to illustrate that definition let us consider the example of the realization of 

the instantaneous function to camouflage a moth in environment. Since the 

function is instantaneous it is  required that whenever a moth is present in the environment, 

then instantaneously, and not by means of some process extended in time, it is safe from 

predators in that environment. 

Now, if we consider the situation of an individual pepper moth sitting on dark bark, we 

see that due to its dark color it is safe from predators in that environment. Thus, we may say 

that this situation is the realization of the function. It not only fulfills the function’s 
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requirements (moth is present in environment) and the goal (moth is safe 

from predators) but moreover it contains as its part a causal factor for the goal being 

fulfilled, namely the dark color of the moth.  

The causal factor denoted by CauseInst(x,y) is the relation between two presentials x and 

y, namely between the presential fact that the moth has dark color and the presential fact that 

the moth is safe from predators. In contrast to the causal connection between presentials, 

which the causal cohesion and the causal adhesion refer to, here the presentials are considered 

not at two coinciding boundaries but at the same time boundary, as both the causal factor and 

its effect, are parts of the same situation. This understanding of the causal factor neither 

disturbs the regularity nor the manipulation condition of causal relation. For instance, there is a 

statistical dependency between the color of the moth and its safety. Analogously, manipulation 

of the  moth’s color influences its safety. 

We see therefore that such an understanding of causality49 violates only the temporal 

order of the causal relation and could thus be considered as the less restrictive form of it. On 

the other hand, it seems to be in agreement with the common usage of the notion of cause, 

which also refers to such instantaneous  cases.  

Some of the non-culminative functions can be reduced to the number of situational 

functions. In particular those which do not involve the active behavior but are founded directly 

on the structure. For instance, the function to support the roof for a given 

period realized by the column of some house can be understood in terms of the number of 

the (presential) situations in which the presential columns support the roof50. In contrast the 

process of the heart behavior cannot be reduced to the number of situational realizations, but 

should be considered on the processual level.  

The three technical definitions above can be underpinned by the general notion of the 

actual realization, RlAct(x,y). 

 

RlActNonCulm(x,y) ∨ RlActCulm(x,y) ∨ RlActSit(x,y) → RlAct(x,y). 

 

 

(50) 

Intuitively, the actual realization is the individual entity which fulfills the requirements and the 

goal of the function and provides an additional cause for the goal being fulfilled.  

                                                      

49 CauseInst(x,y) ↔ Pres(x) ∧ Pres(y) ∧ Reg(x,y) ∧ ∃q,w(Man(x,q,y,w)) ∧ ∃t(At(x,t) ∧ At(y,t)), where 

the predicates Reg and Man refer to the regularity and the manipulation conditions. For details see 

appendix A. 

50 For details see the distinction between active and passive realizers in section 5.6. 
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5.3 Minimal Actual Realization and its Components 

An actual realization can be decomposed to the minimal actual realization which has a 

particular structure, namely it contains entities contributing to achievement of the goal and 

those executing the realization. The former we call the means of realization and the latter the 

realizers. 

5.3.1 Minimal Actual Realization 

Often an individual realization is a complex entity. In one of the above examples it is the 

flight of a plane, which is a complex process composed of a particular plane, together 

with all its properties, like shape, color, and cargo space; with the crew, eventual passengers, 

the airports, the route of the flight, and many others entities. Out of them we can distinguish 

those, contributing to the realization of the function and those, having no influence on it. For 

example, the persistants plane and  crew, and the process of weather contribute to  the 

transportation of goods, whereas passengers do not. Thus, we can introduce the ternary relation 

Contribute(x,y,z), with the meaning that x contributes to the realization y of function z. The 

contribution to the realization should be understood in terms of the causal impact, e.g. the 

plane contributes to the realization of the function of transporting goods, since it has a causal 

impact on the situation of goods being located in the destination. Analogously, in the situation 

realizing the function of camouflage, the dark covering of the pepper moth contributes to this 

realization, since it is the causal factor for the moth being camouflaged.   

On the basis of the notions of the individual actual realization and the contribution 

relation we may introduce the minimal actual realization.  

 

Definition 36 (Minimal Actual Realization). A minimal actual realization r of a function f, 

denoted by RlActMin(r,f), is such a realization of f that every entity involved in r contributes to 

the realization of the function f.  

 

RlActMin(x,y) ↔ RlAct(x,y) ∧ ∀z(Part(z,x) → Contribute(z,x,y)). 

 

 

(51) 

For every actual realization there may be found a part of it, which contains only entities 

contributing to this realization.  



Realization 

 

116 

 

RlAct(x,y) → ∃z (RlActMin(z,y) ∧ Part(z,x))51. 

 

 

(52) 

For the process of a flight of a plane a minimal realization would be a layer of that 

process comprising only those entities which contribute to the realization of the function of 

transportation, i.e. a plane, a crew, goods, weather, whereas some other elements of a flight 

would be left apart e.g. passengers. In this example the minimal realization is a process,  which 

we could call the process of  transporting goods by plane, and which is a 

layer contained in the process of flight of the plane. Note that just as in the case of 

the individual actual realization there may be more than one minimal actual realization of a 

non-primitive function. For example, the process of transporting goods by a car is 

a different minimal actual realization of the function of transporting goods.  

5.3.2 Means of Realization 

In the process of minimal realization are involved only those entities which contribute to the 

realization of the function. Each of those entities is related to the minimal realization by a 

contribution relation and therefore plays some role in that realization. The role of each entity 

contributing to the realization of the function we call a contributor. Thus, we may say that the 

plane has a role of contributor in the realization of the function of transportation.  

As a role of an entity in the contribution relation we understand such an aspect of that 

entity, by which the entity contributes to the realization, i.e.  a contributor is a structural role 

including structural aspects of a role-filler. For example, the contributor role of a plane in the 

realization of the transportation function comprises such structural aspects of a plane as the 

maximum flight distance or the cargo space, whereas it abstracts from such aspects as the color 

of the plane, the number of passenger seats, etc. Often a contributor-role has its own name, in 

our example a plane’s contributor-role is transporter. All contributor-roles may be 

combined into one entity, called actual means of realization: 

 

Definition 37 (Actual Means of Realization). A composition x of contributor-roles of all 

the entities contributing to the actual realization r of a function y  is called the actual means of 

realization of y, and is denoted by MeansActRl(x,y).  

 

                                                      

51 This formula trivially follows from the definitions of realization and the reflexive understanding of the 

notion of part.  
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In other words, the means of realization is a relational entity composed of all aspects of entities 

involved in the realization of the function  that are relevant for that realization. The means of 

realization typically form a complex role composed of several contributor-roles, optionally 

interrelated. In our example, the means of realization is the composition of contributor-roles of 

the plane, the crew, the goods, the weather conditions, and the airports in the process of 

transporting goods. 

This example illustrates also the other feature of means of realization, namely that its 

structure is not homogenous. Firstly, different types of entities may be role-fillers of particular 

role-contributors. For instance, we may consider a plane, a person, and goods as persistants, 

whereas the weather as a process.   Secondly, the particular components of the means of 

realization may be interrelated by various relations. For example, a pilot, which is a role of 

a person, may be related to a plane-transporter role of a plane by the relation of 

piloting: a pilot pilots a plane transporter, whereas transportee 

(goods qua transportee) is related by the relation of transported on to plane 

transporter. 

5.3.3 Actual Realizer 

Among the entities contributing to the minimal actual realization some have a primary status in 

that realization, namely they are said to execute the realization of a function. For instance, to 

the realization of the function to pump blood, contribute heart, blood, and veins. 

However, the role of the heart is different from veins and blood, namely it is the heart which 

pumps blood, and thus executes this realization. The relation of execution is thus a sub-relation 

of the contribution relation: Execute(x,y,z) → Contribute(x,y,z). The role of entities executing 

a realization in comparison to mere contributor-roles we would call an executor-role or an 

actual realizer.  

 

Definition 38 (Actual Realizer). An individual executing a realization r of a function f plays 

in that realization a role x called an actual realizer of function f and denoted by RAc(x,f). 

 

RAc(x,y) ↔ ∃uv(RlAct(u,y)  ∧ Execute(v,u,y) ∧ HasRole(v,x) ∧ RoleIn(x,u)). 

 

 

(53) 

For every minimal actual realization there is an entity executing it, and thus there is an actual 

realizer which is a role of that entity in this realization. 
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RlMinAct(x,y) → ∃z (RoleIn(z,x) ∧ RAct(x,y)). 

 

(54) 

The realizer might be a complex role composed of roles of several entities. For example, in the 

case of the transportation function we could say that a pilot piloting a plane realizes a 

function of transporting goods. Here, the realizer role of the function would be a 

complex role composed of a pilot role and a plane role. A complex actual realizer of a function 

f we denote by RComplAct(x,f) and define as follows: 

 

Definition 39 (Complex Actual Realizer).  

 

RComplAct(x,y) → ∃vw (RAct(v,y) ∧ RAct(w,y) ∧ w ≠ v ∧  

                                    RolePPart(w,x) ∧ RolePPart(v,x)). 

 

 

 

(55) 

A realizer can be identified also by means of a functional item. A functional item is depicting 

in purely teleological terms the role of an entity executing the realization of a function. A 

realizer being an individual role of an entity(-ies) executing the realization of a function is an 

either an instance of the functional item or in case of the individual functional item it contains 

it as a part. In this sense we can say that a realizer fulfills a functional item. For instance, a pure 

teleological role transporter is the functional item of the function to transport 

goods saying that the role filler executes the transportation of goods. Among all contributors 

of the realization of this function realizers are those which are instances of the functional item, 

i.e.  the complex role of a pilot and a plane. Every actual realizer of a function f fulfilling the 

functional item of f must satisfy the requirements of the functional item, ReqFi(x,f) defined in 

the requirements of the function f.  

Note that the same configuration of entities may form the means of realizations for more 

than one function. For example, the above-discussed means of realization of the function to 

transport goods are also the means of realization of the function to be 

transported. What distinguishes realizations of those two functions is that for the first 

function the role of pilot piloting a plane forms a realizer, whereas for the second 

the realizer is the transportee role of the goods.  

In contrast to the functional item the realizer is not considered only in teleological terms 

but instead it comes with a rich structural description exceeding that imposed by the goal. For 

example, in case of the realizer a pilot piloting a plane each of roles composing it 

is structurally described. For example, plane-transporter has such properties as cargo space or 

maximum flight distance, whereas the pilot role is depicted by the required skills. 
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5.3.4 Dynamic and Passive Realizer 

If we analyze the dynamics of the realizer we find that it may be either dynamic or passive. 

 

Definition 40 (Dynamic Realizer). A realizer r is called a dynamic realizer of a function f, 

denoted by RDyn(r,f), iff  r  is  a process with some dynamics involved in it, i.e. if it changes 

over time. Formally, 

   

RDyn(x,y) ↔ Proc(x) ∧ R(x,y)  ∧  

                     ∃ e1 e2 b1 b2 (Prb(x, b1, e1) ∧ Prb(x, b2, e2) ∧ Change(e1, e2). 

 

 

 

(56) 

The predicate R(x,y) is the generalized notion of realizer comprising both the actual realizer 

and the dispositional realizer introduced below; Change(e1, e2) is an abbreviation of  GFO 

predicate52 having the intuitive meaning that there is a change between two presentials e1 and  

e2; Prb(x, b, e) denotes the relation of projection between the process x, the time boundary b of 

the chronoid framing this process and the process boundary e of x located at b.  In GFO 

process boundaries are presentials located at time boundaries of chronoids framing a given 

process. In this sense the processual realizer whose two boundaries form a change is called 

dynamic. For example, chameleon camouflage, considered as a processual role of 

chameleon’s covering in the process of camouflaging, which dynamically adapts to the 

environment is a dynamic realizer of the function to camouflage, since it is a process 

which has two boundaries such that there is a change of the color of the covering between 

them.  

The dynamics of a realizer may be classified on the basis of the classification of changes 

developed within GFO, where two kinds of changes are distinguished – extrinsic and intrinsic. 

Extrinsic changes are discontinuous, instantaneous changes, involving two coincident process 

boundaries, which are instances of two disjoint universals; whereas intrinsic changes are 

continuous, for example locomotions. Depending on the kind of change a dynamic realizer 

undergoes during the realization of the function it can be classified as extrinsically dynamic, 

intrinsically dynamic, or as a mixture of both kinds. For example, a chameleon’s covering is an 

extrinsically dynamic realizer, since the change of the color in the realization is extrinsic.  

Beside active also passive realizers are introduced to OF:  

 

                                                      

52 Full version of the GFO predicate is introduced in appendix A. 
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Definition 41 (Passive Realizer). A realizer r of a function f is called passive, and denoted 

by RPass(x,y), iff the realization does not involve any changes of the realizer. Formally, 

 

RPass(x,y) ↔  R(x,y)  ∧ ¬ RDyn(x,y). 

 

 

(57)    

For example, the covering of a frog is the passive realizer of the function to camouflage, 

since, in contrast to the chameleon’s covering, it does not undergo any change (extrinsic or 

intrinsic) during the realization of the function.  

Note that from formulae 49, 56 and 57 follows that all realizers of situational 

realizations are passive since they are not processes but presential situations.  

5.4 Universal Realization and Realizer 

A minimal actual realization and actual realizer are individuals and as such they have 

corresponding universals, which we call universal minimal realization and universal realizer, 

respectively.  

5.4.1 Universal Minimal Realization 

A minimal actual realization is an individual, and thus there may be found a structural 

universal which it instantiates directly53. Such a direct universal we call a universal minimal 

realization. 

 

Definition 42 (Universal Minimal Realization). A structural universal u is called a 

universal minimal realization of a function f, denoted by UniRlMin(u, f), iff u is directly 

instantiated by a minimal actual realization of f. 

 

UniRlMin(x,y) ↔ ∃z(RlMinAct(z,y) ∧ z ::: x). 

 

 

(58) 

                                                      

53 We are interested only in such individuals about which something may be predicated, and  since 

universals are considered to be entities that may be predicated of other entities and are expressed and 

represented in terms of language, thus for every individual we speak about, we may point to its 

corresponding universal. 
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The universal minimal realization is composed of universals directly instantiated by the parts 

of the individual actual realization: 

 

UniRlMin(x,y) → ∀z(CatPart(z,x) → ∃wv(w ::: z ∧ Part(w,v) ∧ RlMinAct(v,y))). 

 

 

(59) 

The direct instantiation, denoted by the predicate x ::: y means that x is an instance of the 

universal y and there is no such universal z which is a sub-universal of y such that x is its 

instance. Formally, 

 

x ::: y ↔ x :: y ∧ ¬ ∃z (x :: z ∧ Subsume(y,z)). 

 

 

(60) 

In the case of the individual process of transporting goods by plane P a universal 

realization would be the universal of the process of transporting goods by plane, 

containing the universals corresponding to all individuals being parts of the minimal actual 

realization. For each component of the actual minimal realization one should try to find a 

corresponding universal that is instantiated directly by it. Only the directly instantiated 

universals are taken into considerations, since we are interested in most specific universals. 

This, however, shows the dependency of the notion of the universal minimal realization on the 

granularity of a given taxonomy of universals. For example, the universal realization 

corresponding to the individual process of transporting goods by plane is the universal process 

of transporting goods by plane, containing a plane universal rather than the process of 

transporting goods by a physical object containing a physical object universal, since the second 

is not instantiated directly by the individual plane involved in the individual process. This, 

however, is relative to the granularity assumed. If one refers to the most top level taxonomy of 

universals, which lacks the category of plane but contains only the category of physical 

object then the corresponding universal minimal realization would be the process of 

transportation by a physical object. 

A universal realization is a structural universal, which means that only structural aspects 

of the actual realization are taken into account when constructing it. A universal realization 

does not reflect the non-structural aspects of a process of transportations, such that it is a 

causal transformation to the state where goods are transported. 

The notion of the universal realization corresponds to the intuitions behind the notion of 

the-way-of-achievement introduced and delimited from functions in FCO [Kitamura et al., 

2002]. The-way-of-achievement relates the function to “the principle of the achievement” 

([Kitamura et al., 2002], p. 150). Similarly, a universal realization represents the principle 
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underlying the individual realizations instantiated by it. In this sense the universal realization is 

a general specification of the way the function is realized by some individual realizations. 

5.4.2 Universal Realizer 

In an analogous way to the universal realization the universal realizer is constructed. 

 

Definition 43 (Universal Realizer). A structural universal u is called a universal realizer of a 

function f, denoted by UniR(u,f)  iff u is directly instantiated by the individual actual realizer 

of f. 

 

The structural universal is a universal depicting only structural features of corresponding 

individuals. In this sense the structural universal directly instantiating a plane-transporter role 

is the universal depicting a plane only in the context of the structural features relevant for the 

realization of the transportation function such as the cargo space and the maximum flight 

distance. It does not include the characteristic saying that a plane is involved in the process of 

flight since this characteristic is not structural.  

Neither should a universal realizer be identified with the universal functional item of the 

realized function nor put in the intensional subsumption relation to it. A universal functional 

item is characterizing corresponding individuals only in teleological terms and abstracts from 

the structural features not imposed by the goal, whereas a universal realizer is a structural 

universal and it lacks functional characteristics typical of a functional item.  

5.5 Dispositional Realizer and Realization 

We can describe entities not only due to their actual state of being a realization of a function or 

executing such a realization, but also due to their capability of doing that. For that purpose we 

introduce the notions of dispositional realizer and dispositional realization.  

5.5.1 Dispositional Realizer 

If we consider some arbitrary plane, it is intuitive to judge whether or not it could be used as a 

realizer of the function of transportation. As long as it is not involved in the process of goods 

transport it is not an actual realizer; however, we would often say that it has a disposition to do 

so. In this sense we can speak about a dispositional realizer of a function. 
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Figure 17. The UML diagram representing relations between Functional Item and 

Realizers. Classes represent reified universal roles (Universal Functional Item and Universal 

Realizer) and reified individual roles (Actual Realizer and Dispositional Realizer). Universals 

are grouped in two disjoint Layers: Functional Layer and Structural (non-functional) Layer. 

Universal Functional Item is a universal role depicted in purely functional (teleological) 

terms, whereas Universal Realizer is a universal role depicted in purely structural terms. 

Actual Realizer comprises both structural and functional aspects, whereas Dispositional 

Realizer only structural aspects. 

 

Commonly dispositional realizers are identified by means of analogy. If the actual realizer of a 

given function is known, we consider the entities similar to it as potential realizers. In OF an 

individual dispositional realizer is an entity relevantly similar to the actual realizer, where the 

relevant similarity means that the individual dispositional realizer is similar to an actual 

realizer in all aspects relevant to the realization of a function. In this sense it is an instance of 

the same universal realizer. We say that every instance of the universal realizer which is not an 

individual actual realizer is called an individual dispositional realizer. An individual 

dispositional realizer r of a function f is denoted by RDisp(r,f),and is defined formally as 

follows:  

 

Definition 44 (Dispositional Realizer).  

 

RDisp(x,y) ↔ ∃z(UniR(z,y) ∧ x :: z  ∧ ¬ RAct(x,y)). 

 

 

(61) 

From the above we can see that each individual actual realizer is an instance of both a 

universal functional item, which captures its teleological character, and a universal realizer, 

which captures its structural features. In contrast, an individual dispositional realizer is an 

instance of a universal realizer only. Since it does not realize the function actually, it lacks the 

teleological characteristic and hence is not an instance of a functional item (see figure 17). 



Realization 

 

124 

5.5.2 Dispositional Realization 

Often not only persistants are judged against their disposition to execute the realization of a 

function but also an entity, say a process, may also be judged against its ability to be a 

realization of a function. For example, if we consider an arbitrary flight of the plane, it is 

intuitive to judge whether it could be used as a realization of the function of transportation or 

not. In this sense the process of flight is considered as a potential realization of the function, 

but not as an actual realization, since it does not actually realize a function but only could do 

so. So if we consider an individual process of flight, by which goods are not transported, call it 

x, then it is clear that formula 47 does not hold for x. Since x is not an actual realization of the 

function but only a dispositional one, thus it is not the case that when x occurs the goal of the 

function is achieved, but rather it is only possible that the goal is achieved. For a dispositional 

realization x of function y, denoted by RlDisp(x,y), formula 47 can be replaced with the 

following formula of modal logic: RlDisp(x,y) → ∀z(GoalOf(z,y) → ◊∃v(v @  z ∧ 

TransTo(x,v))). 

Unfortunately, the above formulation gives no hints about the structural conditions a 

flight should fulfill in order to be a dispositional realization of the function of transporting. 

That formula gives no help in the determination of the structural properties a flight should have 

in order to realize the function, which in fact is the crucial issue when looking for possible 

function realizations. One is not interested only in knowing that a dispositional realization is 

such that may turn out to be an actual realization. Rather one wants to know what features 

make it a possible realization. In practice, analogously to the case of dispositional realizers the 

answer to this question is given by analogy. One looks into the current realizations and 

searches for entities that are similar to them. However, not an absolute similarity to the actual 

realizations is needed, but only similarity in those aspects which are relevant for the 

realization. Helpful in the determination of those aspects is the above-introduced notion of the 

universal minimal realization. We say that every instance of the universal minimal realization 

of a function f which is not an actual realization of f is an individual dispositional realization 

of f.   

 

Definition 45 (Dispositional Realization).  

 

RlDisp(x,y) ↔ ¬ RlAct(x,y) ∧ ∃s(UniRlMin(s,y) ∧ x :: s ). 

 

 

(62) 

A universal minimal realization is thus considered as a template of the realization – it states all 

the structural features, like plane cargo space, maximum flight distance, 
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duration of flight, flight route, skills of the crew, that must be 

fulfilled by an individual realization. Each individual entity which fulfills those conditions and 

thus is an instance of a universal minimal realization, but is not actually realizing a function is 

a dispositional realization54. Since usually there are many ways of realizing a function, every 

universal minimal realization depicts a particular way of realization, e.g. transport by 

car, or transport by air (see figure 18).  

 

    

  

 

Figure 18. Universal minimal realization as an template for individual 

realizations. Every individual realization is an instance of some universal 

minimal realization. Analogously, universal realizers are templates for 

individual realizers.  

 

5.5.3 Strong Dispositional Realizers 

Now that the notions of dispositional realization and dispositional realizer are introduced we 

may see that some of dispositional realizers are involved in dispositional realizations. For 

example consider two planes 55 , which are dispositional realizers of the function to 

                                                      

54 In the current approach dispositional and actual realizations (and analogously realizers) are considered 

to be mutually exclusive. However, this we find rather as a matter of convention and we are aware that 

for the purpose of some applications it may be beneficial to consider actual realizations (and realizers) 

as a subclass of dispositional ones. This can be easily achieved by slight modifications to axioms 62 and 

63. 

55 To be more precise we do not speak about planes as wholes here but only on their aspects relevant for 

the realization of the function, thus plane-transporters. 
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transport goods from Leipzig to Berlin. One plane is on the flight to Berlin 

and the second is locked in a hangar in Leipzig. In the first case not only the plane is a 

dispositional realizer, but moreover the flight in which it participates is a dispositional 

realization of the function to transport goods from Leipzig to Berlin. In the 

second case the plane is a dispositional realizer but it is not involved in the process of the 

dispositional realization. Clearly, the former plane is considered to be a better candidate for the 

function realization then the latter plane, and is called a strong dispositional realizer.  

 

Definition 46 (Strong Dispositional Realizer). A dispositional realizer x of a function f 

involved in the dispositional realization of f is called a strong dispositional realizer of f and is 

denoted by RDispStr(x,f). 

 

RDispStr(x,y) ↔ RDisp(x,y) ∧  ∃z(Part(x,z) ∧  RlDisp(z,y))  

 

 

(63) 

5.6 Functional Realization  

In the previous section, on the basis of the how & what question test, we identified several 

cases, in which one function realizes another. Those cases are problematic, since they 

significantly differ one from another and no common definition for the realization that joins all 

of them was found.  

Our strategy for introducing the notion of realization that holds between functions is to 

reduce it to the above-defined notion of individual realization that holds between a function 

and a non-functional entity.  

 

Definition 47 (Functional Realization). A function f realizes a function f’ , denoted by 

Realize(f,f’), iff all individual realizations of f are the individual realizations of  f’ and not all 

of the realizations of f’ are the realizations of f. Formally, 

 

Realize(x,y) ↔∀w(RlAct(w,x) → RlAct(w,y)) ∧ ∃ v (RlAct(v,y) ∧ ¬ RlAct(v,x)). 

 

 

(64) 

The second part of the definition blocks the trivial case where the function realizes itself, as it 

does not answer how the function is realized which should be answered by a realization.  

Let us now examine the cases of functional realization reported in section 5.1 against 

that definition: 
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1. An instance function realizes the universal function it instantiates.  By definition 31, 

for f ::Fu f’ every individual determinant of a function f instantiates a corresponding 

universal determinant of f’. Thus, the realization of f comprises instances of 

determinants of f’ and in this sense is the realization of f’ as well. On the other hand an 

arbitrary realization of a universal function is not necessary a realization of the 

instance function. 

2. A specialized function realizes a general function. Since every determinant of a 

specialized function is subsumed by the appropriate determinant of the generic 

function then it can be clearly seen that every entity being a realization of a specific 

function is also a realization of a generic function. Analogously to the point above, not 

every realization of a function is a realization of its subfunctions. 

3. A whole function realizes its function-part. Every realization of a given function is also 

a realization of its function-parts,  but not every realization of its function-part entails 

its realization.   

4. A sequence of functions realizes the whole-function; every sequence-part function in 

separation does not realize the whole-function. Each realization of the whole sequence 

is an individual realization of the function. For instance, each realization of the 

sequence search item, view item, order item, deliver item is a 

realization of the function of purchase item. Note that not every individual 

realization of the function is a realization of the sequence. It is possible that a purchase 

is realized by a different sequence of functions. This distinguishes the sequence-part 

from the function-part, for which the realization of the whole function is also the 

realization of its parts.  

 

From the above we see that every case of one function realizing another function reported in 

section 5.1 can be reconstructed in terms of an individual realization. 

5.7 Realization-dependent Relations between Functions 

In section 4.5 there have been introduced three kinds of relations between functions based on 

the role of the goal of one function in the requirements of the other, i.e. support, enable, and 

prevent. It is often the case that the relations between functions are not modeled independently 

of the realizations of functions but are intrinsic to them. One such relation introduced already 

is sequence-part. Now, we consider two more, namely the trigger and the improve relation.  
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5.7.1 Trigger 

A goal of one function might be relevant for the realization of another function not only when 

it has an influence on its requirements, like in the case of the support, the enable and the 

prevent relations but also when it is a trigger of the other function realization.  

 

Definition 48 (Trigger). A function f triggers a function f’ in a realization r, denoted by 

Trigger(f,f’,r) , iff the goal of the function  f  is a trigger of the realization r of the function f’. 

 

Trigger(x,y,z)↔ ∃v(GoalOf(v,x) ∧ Trig(v,z) ∧ RlAct(z,y)). 

 

 

(65) 

A trigger together with the requirements provides the necessary and sufficient condition for the 

function realization. In this sense a trigger can be understood as a direct cause of the function 

realization. In contrast to the requirements which are common for all realizations of a given 

function, different triggers may be assigned to different realizations of the same function. For 

example the realizations of the transportation function can be triggered by such triggers as 

phone order or invoice signed. Therefore the trigger relation between functions is 

realization-dependent - one function has an influence on another only relatively to its particular 

realization. 

5.7.2 Improve 

Two kinds of side effects are considered in OF. Beside the function side effects discussed in 

section 3.7, which belong to the very nature of the function’s goal, we now introduce side 

effects of the function realization. A realization side effect is not a result of a function as such 

but it is a result of its particular realization. Having introduced the notions of realization, 

fulfillment and transition we define realization side effect as follows: 

 

Definition 49 (Realization Side Effect). An individual x is called a side effect of  the 

realization r of  a function f and denoted by SideEfRl(x,r,f)   iff x is a part of r’s result and no 

effect of f is fulfilled by x. 

 

SideEfRl(x,y,z) ↔ RlAct (y,z) ∧ Cause(y,x) ∧  

                              ∀v(GoalOf(v,y) ∨ SideEf(v,y) → ¬ x @  v). 

 

 

 

(66) 
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The predicate Cause(x,y) is a common umbrella for three causal relations introduced in 

section 5.2 and has the reading “x causes y”56. As an illustration of the above definition 

consider the process of transporting people by car. This process is the realization of the 

function to transport people and results among others in polluting the environment. 

However, the fact of the environment’s pollution, considered as a situation, does not fulfill a 

goal or any side effect of that function. Therefore, the environment pollution is considered to 

be a side effect of that particular realization of the function of transportation. Relying on the 

notion of the realization side effect we introduce the improvement relation between functions. 

 

Definition 50 (Improve). A function f improves a given realization r of a function f’, 

denoted by Improve(f,f’,r),  iff  a  realization of f neutralizes some side effect of the realization 

r  of  f’.  

 

For example, the car transportation process which realizes the transportation function and 

pollutes the environment might be improved by the function of reducing pollutant 

emission which has the goal pollutant emission reduced. 

Both trigger and improve are ternary relations, involving as a third argument the 

realization of improved/triggered function, which  reflects the realization-focused character of 

those relations.  

5.8 Summary 

In this chapter we have investigated the problem of function realization, which can be stated as 

the search for the answer for the question “what does it mean that an entity realizes a 

function?”.  

Two basic senses of function realization have been found. In the first sense an individual 

entity, e.g. a process, is said to be a realization of a function. In the second sense an entity, e.g. 

a persistant via its execution of the process of realization is said to realize the function. The 

former have been called a realization of a function, the latter - a realizer of a function.  

We believe that realizations should not be considered as functions, and in particular as 

individual functions, since there are at least two differences between individual functions and 

individual realizations: 

1. Functions are subjective, whereas realizations are objective entities. 

                                                      

56 Causeadh(x,y) ∨ Causeinst(x,y) ∨ TransTo(x,y) →Cause(x,y)  
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2. Realizations are function-independent entities and conversely. 

 

The first difference between a function and a realization concerns the structure of functions 

and realizations. The former are determined by agents, and thus are agent dependent and 

subjective57. Realizations on the other hand are not subjective but are objective entities having 

causal powers to reach some goals. For a given function an individual entity is objectively its 

realization or not.  

Secondly, realizations and functions are independent from each other. The relation 

between function and realization is many-to-many. One function may be realized in various 

ways – it may have many dispositional realizations. On the other hand, one entity may be a 

realization of more than one function. Moreover, realizations may be described independently 

of the functions they realize. For example, the process of transporting goods by plane may be 

described independently of the function it realizes by means of physics as the movement of 

bodies. The physical description of that process does not refer to the function which the 

process realizes. 

The important point to be mentioned here is that realizations in OF are not reduced to 

processes as it is the case for instance in [Johansson, 2004] where the state of functioning of an 

item (which corresponds to our individual realizer) is considered as the participation of the 

item in a process. Johansson postulates: “no state of functioning without some process” 

([Johansson, 2004], p. 5) and illustrates his postulate with an example: “In (its state of) 

function(ing), the screwdriver participates in a process, namely a certain characteristic 

movement. In other words, it is in a state of being involved in a process.” ([Johansson, 2004], 

p. 6). Paraphrasing Johansson’s postulate in our terminology we could say that an entity may 

have a role of an actual realizer only in the context of a process. In this sense the only 

realization of a function accepted by Johansson is a process. Although we agree that a function 

may be realized by a process, we however, do not claim that it can be realized only (and in all 

cases) by a process. As already mentioned in section 3.5 we do not excluded from our 

framework instantaneous functions and thus do not exclude realizations which are presentials, 

e.g. the presential situation containing a presential moth, its covering and an environment is a 

realization of the function to camouflage a moth in environment. 

Next, the different modes of both realizations and realizers have been introduced, 

namely actual and dispositional realizations/realizers. The actual realization/realizer refer to 

the individuals which actually realize or actually participate in the actual realizations of the 

function. By means of induction and the mechanism of direct instantiation for every individual 

actual realization and realizer a corresponding universal, called a minimal realization universal 

                                                      

57 Subjectivity of functions is discussed in section 7.2.1. 
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and a realizer universal, respectively, is found. Those universals are used for identification of 

the individual dispositional realizations and realizers. Thus, the framework provides means not 

only for representing individual actual and dispositional realizations and realizers but 

moreover it handles the general patterns of realizations considered as universals.   

Additionally, on the basis of the notion of individual realization, functional realizations 

are introduced, which enable to predicate that one function realizes another function.  

Finally, two relations between functions have been identified, namely trigger and 

improvement. In contrast to the functional relations discussed in the previous chapter those 

two are relative to the particular realizations of functions.  
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6 Ascription of Functions 

6.1 Introduction 

So far in our considerations we have taken a function-oriented perspective, which means that 

we analyzed the structure of an isolated function in the first place, the relations between 

functions in the second place, and we have finally defined the notion of function realization, 

which glues functions with non-functional entities. However, the perspective taken in function 

modeling is often different. The starting point is not the function’s structure but rather an 

entity, to which a function is assigned. It is motivated by the need of representing the 

functionality of entities, in particular of artifacts. In many of the works on functions reported in 

chapter 2, the question “what is a function” is identified with the question “what does it mean 

that an entity has a function”. This shows the importance of functions and functional 

knowledge in describing entities. Functions permit to describe entities in an alternative way to 

a structural or behavioral description. In OF we delimit the issue of what a function is, from 

the issue of what does it means that an entity has a function.  The former issue, which was 

investigated so far is intended to be used as a foundation for defining the latter.  

We ascribe a function to an entity by means of the has-function relation, denoted by 

HasFu(x,y,z) having the meaning that an entity x, called a function bearer, has a function y in 

context z. A function bearer should not be confused with a functional item or a realizer. A 

functional item is a role by means of which a function is described, a realizer is a role of an 

entity in the context of function realization, whereas a function bearer is an entity that is said to 

have a function. Functions usually are defined independently of the function bearer, but 

function bearers are often defined in terms of the functions they have ascribed.  

The third argument of the has-function relation pointing to the context corresponds to 

the function in interpretation of Cummins [Cummins, 1975]. Cummins observes that function 

ascription is relativized to a context (see section 2.3.1). In his understanding, the context of the 

has-function has an epistemological character, it is an analytical account of a capability of 

some entity in which an object under question is considered. For example, he writes “it is 

appropriate to say that the heart functions as a pump against the background of an analysis of 

the circulatory system’s capacity to transport food, oxygen, wastes and so on” ([Cummins, 

1975], p. 762). We do not restrict ourselves to the epistemological context but permit also a 

situational (topological) context. For example, a hammer lying on my desk on a pile of papers 
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may have a function of holding paper, but clearly when I remove it from my desk it would not 

have that function anymore. Some considerations on the nature of context involved in the has-

function relations appear in chapter 7. Nevertheless, it is outside the scope of the present work 

to investigate in detail the notion of context which is an issue in itself (see e.g. [Akman, Surav, 

1996; McCarthy, Buvač, 1998]). For our purposes it is enough to represent it by means of GFO 

notions of situations and situoids.   

We believe there is not only one kind of the has-function but rather it comes in several 

flavors. The aim of a top-level ontology of functions in our opinion is to name explicitly those 

flavors and put them together into one coherent theory. Therefore, we do not define one has-

function relation but rather, by analysis of its different usages, we introduce several kinds of it 

and show their interrelations. 

Usually, functions are ascribed to objects that are actors of function realizers. Thus, the 

first candidates for function bearers are the role-fillers of realizers. Consider as an example a 

heart, which is an actor of the role of a blood pump, and it is often said to have a function 

of pumping blood. However, function bearers are not restricted to actors of realizers only, 

but functions can be ascribed also to realizations. In [Chandrasekaran, Josephson, 2000] 

authors report the difference between functions of objects and functions of processes. It is not 

only a heart that may have a function of blood pumping, but also the process of 

heart’s behavior may be said to have that function. In section 5.2.3 we demonstrated 

that the realization is not necessarily a process; thus we propose to draw the distinction, 

referred to by Chandrasekaran and Josephson, not between objects and processes but rather 

between actors of realizers and realizations. We say that a function may be ascribed to a 

realization and/or to the actor of a realization.  

Often to have a function means to realize (actually or potentially) that function. 

Therefore, one could identify the has-function relation with the realization relation. We, 

however, distinguish those relations for a number of reasons. Firstly, extensionally those 

relations are not equal, since, as we will show in the current chapter, it is possible that an 

object has a function although it is not realizing that function or is not its realization. The 

differences in extension follow from the differences in intension. The realization relation is the 

objective relation observable in the world, denoting a goal achievement, whereas the relation 

of the has-function often involves an element of subjectivity58. 

In the current chapter we will first consider the ascription of function to individuals, but 

we do not exclude universals from having the function ascribed as well. For example, about an 

individual hammer lying on my desk I can say that it has a function of driving in nails, but that 

                                                      

58 A function is sometimes assigned to an item due to the subjective feeling –intentions of some agent, 

see for details section 6.3. 
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statement can be generalized to the statement that hammers (in general) have the function of 

driving in nails. In the second case one is not interested in a particular individual hammer but 

in the class of hammers. In this sense the function is not ascribed to an individual hammer only 

but rather to a hammer universal. Thus, we say that not only an individual hammer has a 

function of driving in nails but a universal hammer as well. The former we call an individual 

has-function, the later a universal has-function. Let us start with the notion of the individual 

has-function and on its foundations we will develop its universal counterpart. 

6.2 Actual and Dispositional Function 

The first two kinds of individual function ascriptions that we will discuss are the actual and the 

dispositional has-functions.  

 

Definition 51 (Actual Function). An individual x has an actual function f in a situation or 

situoid  s, denoted by HasFuAct(x,f,s),  iff  x is an actual realization of f in s or x is a role-filler 

of an actual  realizer r of f in s. 

 

HasFuAct(x,y,z) ↔ (RlAct(x,y) ∧ CPart(x,z)) ∨   

                                ∃w(RAct(w,y) ∧  CPart(w,z) ∧ HasRole(x,w)).  

 

 

 

(67) 

The above definition grasps the dual character of function ascription. A function may be 

ascribed either to a realization or to the actor of the realizer participating in a realization. An 

actual realization is not restricted here to the minimal realization - not only a process of 

transporting goods by a plane, but also the flight has a function of transporting goods.  

Frequently, an item has a function ascribed although it does not actually realize this 

function. For example a car on the parking lot has a function of transporting people 

although it is not realizing it currently. 

We recognize several kinds of non-actual function ascriptions. Firstly, we will introduce 

is the dispositional has-function. Just as in the case of the actual has-function, the dispositional 

has-function is defined both for realizations and actors of realizers. 

 

Definition 52 (Dispositional Function). An individual x has a dispositional function f in a 

situation or situoid s, denoted by HasFuDisp(x,f,s),  iff x is a dispositional realization of f  in s 

or x is an actor of a dispositional  realizer of f in s. 
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HasFuDisp(x,y,z) ↔ (RlDisp(x,y) ∧ CPart(x,z)) ∨  

                                 ∃w(RDisp(w,y) ∧ CPart(w,z) ∧ HasRole(x,w)). 

 

 

 

(68) 

 

If a flight from A to B is a dispositional realization of transporting goods, then it 

follows that it has a dispositional function of transporting goods. Analogously, a plane being a 

dispositional realizer has a dispositional function to transport goods.  

An actor of a dispositional realizer may have a dispositional function ascribed in a weak 

or a strong sense, which correspond to the weak and the strong dispositional realizer 

respectively. For example, a plane involved in the flight being a strong dispositional realizer of 

transporting goods has a strong dispositional function of transporting goods.  

Actual and dispositional functions may seem on the first glance to be too liberal and 

include also the cases of accidental effects. However, not everything that an entity does or is 

capable of doing is its function.  For example, although a car, actually or potentially, pollutes 

the environment it does not mean that it has a function to pollute an environment. 

In OF cases as the above are already excluded by the definitions of function and goal. 

According to definition 2 the only valid goals of functions are such intended effects that are 

established for explicit reasons by some agents. In this sense, as long as an effect is not 

established for a good reason by an agent, one cannot speak about functions. Thus, we cannot 

consider polluting of an environment as a function until there is a reason for establishing this 

as a goal. For example, if we consider some mad scientist to have a goal to destroy the 

ecosystem of the Earth then he may find it useful for his purpose to pollute an 

environment and thus may define such a function and then assign it to a car.  

An entity may have many actual and dispositional effects. Especially the number of the 

letter is high, if not infinite. However, we would not find that intuitive to say that all 

dispositions of an item are its functions. In OF we restrict the actual/dispositional function of 

an item only to those actual or dispositional effects of an item which are related to some 

(pre)defined system of functions and goals. 

6.3 Intended Function  

The two types of function ascriptions discussed above seem to meet the intuitions of Johansson 

when he writes:  “to say that functional entities have a function is to say either that they have a 

disposition to be in a state of functioning or that they are in fact in such a state” [Johansson, 
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2004].  However, we do not think that function ascription can be restricted to those two cases 

only.  

The common and intuitive interpretation of the statement “X has a function F” is “X was 

designed to have a function F”. Those intuitions are reflected by several approaches reported 

in chapter 2. However, from the statement that an item was designed to realize a given 

function, does not follow that the item actually realizes that function or that it has a disposition 

to realize that function, since it  may be broken or ill-designed. 

Therefore, the function ascription founded on the designer’s intentions cannot be 

reduced to the actual or the dispositional has-function and should be considered as a third kind 

of function ascription.  

On the other hand, if one agrees to rely in function ascription on the designer’s 

intentions, then the question could be raised why to take only the designer’s intentions into 

account. Apart from the designer, the process of artifact construction also involves other 

parties that have an influence on the function of an artifact. Let us take the example of 

software engineering process. Most typically the process starts with the requirements of 

stakeholders. On the basis of their requirements software is designed by designers (system 

analysts) and developed by developers.  If software does not meet the stakeholders’ 

requirements, then we could say that it does not perform its function. It may be the case that 

software is ill-designed: intentions of designers do not reflect the requirements, or ill-

developed: designers’ intention may meet the requirements but they may be inappropriately 

implemented. 

Therefore, it seems that not only the intentions of designers have an influence on the 

artifact’s function, but other parties like stakeholders should also be included. Thus, the 

statement that the function of an item is what it was designed for seems to be too narrow, since 

the function of an item may be not what an item was designed for but what an item was (is) 

expected to do. 

To grasp under one umbrella the intentions of designers, stakeholders and other parties 

in the assignment of functions we introduce the third kind of function ascription, namely the 

intended has-function.  

 

Definition 53 (Intended Function). An individual x has an intended function f in a situation 

or situoid s, denoted by HasFuInten(x,f,s),  due to some agent who intends x to have the 

function f in s. Formally, 

 

HasFuInten(x,y,z) → ∃qvr(Agent(q) ∧ Intent(q,v) ∧  

                                          IntCont(v,r,x,y,z)  ∧ r :: HasFu). 

 

 

(69) 
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The relation Intent(a,i) has the meaning that an agent a intends i. The content of the intention i 

is depicted by the predicate IntCont(i, R, a1...an) where R is an n-place relation and a1, . . . , an 

are arguments of R. In the above definition the relation r is the has-function relation. Thus, 

herein the content of the belief is “x has function y in situation z”. 

To illustrate this definition let us follow the example of the hammer lying on my desk. It 

has a function of driving in nails due to the intentions of some agent, a designer, who 

intended the hammer to have that function during its existence. Note that the situation in which 

an agent intends an item to have a function, and the situation, in which an item has a function, 

may be distinct. For instance a designer intends a hammer to have a function of driving in nails 

during its existence, but the act of intending may take place before the existence of a hammer 

or during the manufacture process.   

The drawback of definition 53 is that it makes function ascription too general and too 

liberal. Not all agents who intend an item to have a function have the power to ascribe 

functions to items. The statement that an artifact has function  f is not treated equally when 

expressed by an artifact’s designer and by a person having no particular knowledge about the 

artifact.  

This shows that not every agent’s intention should be considered when ascribing 

functions to items. Two factors are of importance when ascribing intended functions to items: 

− reliability59 of an agent ascribing a function, 

− number of agents ascribing a function. 

 

As shown in the above example, some agents are more reliable in ascribing functions than 

others. Some agents (or, to be more precise, some social roles of agents) are of particular 

importance for the ascription of functions to artifacts. Those are: stakeholder, designer, user 

and researcher roles. The role players of those roles are not disjoint, thus one agent can play 

several of them.  

Each of those roles reflects a different interest in the artifact. Stakeholder is the agent, 

whose requirements should be satisfied by the artifact, and which motivate the manufacture of 

the artifact. The function required by a stakeholder is called a required function of an artifact 

and is denoted by the predicate HasFuReq(x,y,z) having the reading that x has a required 

function y in situation/situoid z. 

 

                                                      

59 Reliability of agents is considered as the attribute of an agent in the context of a given community, 

which was discussed in section 3.3.2. 
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Definition 54 (Required Function).  

 

HasFuReq(x,y,z) → ∃qvr(Stakeholder(q,x) ∧ Intent(q,v) ∧  

                                         IntCont(v,r,x,y,z)  ∧ r::HasFu). 

 

 

 

(70) 

A designer is an agent that designs an artifact. A function designed by a designer is called a 

designed function and is denoted by HasFuDesig(x,y,z), having the reading: x has a designed 

function y in situation/situoid z. 

 

Definition 55 (Designed Function).  

 

HasFuDesig(x,y,z) → ∃qvr(Desig(q,x) ∧ Intent(q,v) ∧  

                                           IntCont(v,r,x,y,z)  ∧ r :: HasFu). 

 

 

 

(71) 

A user is an agent who uses an artifact or some other entity. A function intended by a user is 

called a user function, or ad hoc function and is denoted by HasFuUser(x,y,z), having the 

reading: x has a user function y in situation/situoid z. 

 

Definition 56 (User Function).  

 

HasFuUser(x,y,z) → ∃qvr(User(q,x) ∧ Intent(q,v) ∧  

                                         IntCont(v,r,x,y,z)  ∧ r :: HasFu). 

 

 

 

(72) 

Finally a researcher, Researcher(x,y) is an agent x who examines an artifact or some other 

entity y. A function assigned to an item by a researcher is called a researched function. The 

researched function is denoted by HasFuRes(x,y,z), having the reading: x has a researched 

function y in a situation/situoid z. 

 

Definition 57 (Researched Function).  

 

HasFuRes(x,y,z) → ∃qvr(Researcher(q,x) ∧ Believe(q,v) ∧  

                                         BelCont(v,r,x,y,z) ∧ r :: HasFu). 

 

 

(73) 
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The above function kinds differ among each other not only due to the role of an agent, who 

intends them, but also due to the time when they are assigned to an artifact. The required and 

the designed function are intended before or during the existence of the artifact. The user 

function is intended during the existence of the artifact, whereas the researched function is 

intended during or after the existence of the artifact. Consider, for instance, an e-commerce 

software in a given moment m of its existence.  We may say that it has a required function of 

bringing profit in m, if we know that there was a stakeholder who intended, before 

or during the existence of the software, that it would have that function in m. Analogously, the 

software may have a designed function in a given situation s, for example to replicate 

to central database at every 00:00, due to the designer who intended it before 

s. Next, each user during the existence of an artifact intends that it has some functions, for 

example for a customer it may have the function of buying cheap second-hand 

photographer equipment. Finally, a sociologist, during or after the existence of the 

software, may analyze its social impact and assign to it the function of changing 

customer habits.  

The intended functions are only the matter of intentions of particular agents and do not 

involve actual nor dispositional realization. Therefore, none of the above function ascriptions 

guarantees that the software really realizes any of those functions. For example, the needs of 

stakeholders might not be satisfied, and the software might be unsuccessful in yielding profit. 

Due to bad programming it might not perform data replication every 00:00, thus the designed 

function would not be an actual function, either. The user may fail to buy the desired item 

cheaply. Finally, the theory of social impact of the software may turn out to be false.  

The second important factor influencing the intended function, beside the reliability of 

an agent, is the number of agents intending the function. If, for example, an ancient artifact 

found on an archeological spot, has an intended function f according to only one archeologist, 

it is of lower reliability than another function f’, ascribed to it by the scientific community. 

Again, the high number of agents does not guarantee that the function ascribed is actual or 

dispositional. 

Definitions 53-57 has a recursive character. An item has an intended function in a 

situation s iff it is intended to have a function in s. The question, then, is what does it mean that 

an agent intends an item to have a function in a given situation? We distinguish three 

possibilities, as three kinds of the has-function have been distinguished. In the first two cases 

an item has a function in a given context, because an agent intends that an item actually 

realizes, or has a disposition to realize, the function in that context. In those cases an agent 

intends an item to have respectively an actual or dispositional function.  In the third case an 

agent intends that an item has an intended, if only by some other agent, function. Take as an 
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example an archeologist exploring an ancient artifact. The archeologist may have reasons to 

claim that the artifact was designed to perform a given function. In this case a function that is 

assigned to an artifact is an intended-intended function. The researcher intends that a designer 

intended that the artifact should have a function f in s. Note that the artifact may be wrongly 

constructed so that not only the artifact never actually realized that function, but also never had 

a disposition to realize it. This, however, does not disturb the archeologist’s claim concerning 

the intended function. The intended-intended function is independent of an actual or a 

dispositional function.  

In order to block infinite chains of intended functions, we postulate that behind each 

intended function must stand an actual or a dispositional function. This postulate provides the 

grounding of the function ascription in reality. In our example the grounding may be provided 

by an actual function intended by a designer: The archeologist intends that the designer 

intended the artifact to actually realize the given function in s.  

So far we have considered intended function only in the context of artifacts, understood 

as role-players of the function’s realizers. However, an intended function, just as a 

dispositional and an actual function, may be ascribed not only to realizer-fillers but to 

realizations as well.  

This point is of particular importance in the context of processes and services. Take our 

running example of an individual process of transporting goods by plane, which is 

a realization of the function to transport goods. This process may be considered as a 

service delivered by some provider. For that service there may be a stakeholder – a top 

manager in a provider enterprise, who wants, by means of this service, to shorten the time 

required for delivering goods. Thus, the required function of that process is then to 

improve the time of delivery. For an individual customer of that service it might 

have the function to deliver the wardrobe to Rome. In turn, for the analyst the 

service may have a function of increasing the number of customers. Thus, we 

see that an intended function may be ascribed to entities being realizations, just as the actual 

and the dispositional functions are. 

Against the intended has-function one could raise the objection referring to the 

designer’s erroneous intention. In section 2.3.2 we have paraphrased the argument of Keil 

[Keil, 2003] concerning the nature of the categorial essence to the question concerning the 

nature of the has-function relation. One may argue that the intentions of the designer cannot be 

taken as a function of the artifact because if they are erroneous they do not justify the function 

of an artifact. This problem is solved in OF by reference to the agent’s reliability. When 

concerning the example of Adam, who intended to copy a surgical tool and instead copied a 

plumber’s tool, we can say that Adam’s tool has an intended function to be used in 
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the surgery since there is a designer – Adam who intends it to have this function. But on 

the other hand Adam’s reliability in the area of the surgery tools manufacture is low, and thus 

the function established by Adam and assigned to the tool due to his intentions is of low 

reliability.

6.3.1 Inherited Intended Function 

In the age of mass production it is seldom that each artifact is individually designed. Rather it 

is a prototype, which is individually designed, and the remaining mass produced items are 

copies of that prototype. If we consider mass produced artifacts then we find that many of 

them lack the designer that designed them individually, and therefore it would follow that they 

have no designed function, which is counterintuitive. To handle such cases we extend 

definition 55 of designed function by the inherited designed function: 

 

Definition 58 (Extension of Designed Function definition). An individual x has a designed 

function f in a situation or situoid s, denoted by HasFuDesig(x,f,s),  if there is a designer who 

intends x to have a function f in s or x is a copy of an individual x’ which has an intended 

function in a  situation s’ similar to s60
. 

 

Designer(q,x) ∧ Intent(q,v) ∧ IntCont(v,r,x,y,z)  ∧ r :: HasFu → HasFuDesig(x,y,z). 

 

 

(74) 

HasFuDesig(x’,y,z’) ∧ CopyOf(x,x’) ∧ z :: s ∧ z’ :: s →HasFuDesig(x,y,z). 

 

(75) 

In the second case an individual inherits the designed function from some other individual out 

of which it was copied. The relation of copying, denoted by CopyOf(x,y) has the 

straightforward reading: x is a copy of y, and should be considered as transitive. It is outside 

the scope of this work to investigate in detail the mechanism, which stands behind that 

relation.  

6.4 Universal Has-Function 

So far we have analyzed the ascription of functions to individuals, but universals may have 

functions ascribed as well. A function may be ascribed to a universal in two different modes. 

                                                      

60 In a similar way the definition of the required function can be extended. 
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In the first mode a universal may have a function ascribed to it due to the fact that 

corresponding individuals have the function ascribed. For example, the process of boiling 

of water considered as a universal has an actual function of producing steam in the 

sense that all individual processes of water boiling have an actual function of producing 

steam. In the second mode, a function is ascribed not via individual instances but directly to a 

universal. To illustrate this consider a universal ideology, which is a particular type of a 

universal, namely a conceptual structure. It may be said that a function of ideology is to 

have a political impact. Thus, we may say that a conceptual structure has a 

function ascribed, and it seems that the same holds for other types of universals as well. 

In the current work we are interested only in the first mode of function ascription to 

universals. The ascription of function to a universal can be understood as a universal 

quantification over the instances of the universal.  

 

Definition 59 (Universal Has Function). A universal x has a function f in a universal 

situation or situoid s, denoted by UniHasFu(x,f,s),  iff all instances of x have the function f in 

the situations or situoids which are instances of s. Formally, 

 

UniHasFu(x,y,z) ↔ ∀vs(v :: x ∧ s :: z → HasFu(v,y,s)).  

 

 

(76) 

Every type of the above-discussed individual function ascription may be generalized to the 

universal level, and thus the following universal function ascriptions are introduced: 

 

Definition 60 (Universal Actual Has Function). A universal x has an actual function f in 

the context of a universal situation or situoid z, denoted by UniHasFuAct(x,f,z), iff all instances 

of x have the actual function f in the situations or situoids being instances of the universal z. 

Formally, 

 

UniHasFuAct(x,y,z) ↔ ∀vs(v :: x ∧ s :: z → HasFuAct(v,y,s)).  

 

 

(77) 

 

Definition 61 (Universal Dispositional Has Function). A universal x has a dispositional 

function f in the context of a universal situation or situoid s, denoted by UniHasFuDisp(x,f,z), 

iff all its instances have  the dispositional function f in situations or situoids being instances of 

the universal z. Formally, 

 

UniHasFuDisp(x,y,z) ↔ ∀vs(v :: x ∧ s :: z → HasFuDisp(v,y,s)).  

 

(78) 
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Definition 62 (Universal Intended Has Function). A universal x has an intended function f 

in the context of a universal situation or situoid z, denoted by UniHasFuInten(x,f,z),  iff all its 

instances have the intended function f in situations or situoids being instances of the  universal 

z. Formally, 

 

UniHasFuInten(x,y,z) ↔ ∀vs(v :: x ∧ s :: z → HasFuInten(v,y,s)).  

 

 

(79) 

In most cases functions are ascribed to universals rather than individuals. For instance it is 

often said that the function of heart is to pump blood, not that this is a function of my heart.  

6.5 Function Bearers  

An entity, to which a function is assigned by means of the has-function relation we call a 

function bearer. Function bearers, and especially artifacts, are often defined in term of 

functions they have ascribed. So far we have permitted both individuals and universals to be 

function bearers, but we have not investigated of what ontological kinds function bearers are. 

In fact we put no ontological constraints on the ontological kind of function bearers. We think 

that an arbitrary entity can have a function ascribed. The table below lists the exemplary 

function bearers of several ontological kinds of GFO.  

 

Ontological kind Function bearer 

Universal Ideology has a function of political impact. 

Persistant 

 

A hammer considered as a persistant has through out its lifetime the 

designed function to hammer nails.  

Presential 

 

A stone at a given time boundary t, considered as a presential may 

have a user function to provide sitting at t.  

Process A process of flight may have an actual function to 

transport goods. 

Situoid A picket considered as a situoid may have a function to influence 

the government’s decisions. 

Quality Value A color of a moth has a function to camouflage. 

Table 4.  Function bearers of various ontological kinds. 
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6.6 Functionality and Multiple Function Ascriptions 

Different kinds of the has-function relation have been presented in the current chapter. Now, 

let us demonstrate how they can all be used for the description of an items’ functionality. We 

introduce two straightforward postulates: (1) an entity may have more than one function 

attributed; (2) a function may be attributed to an entity by different kinds of has-function 

relations.  

The first intuitive postulate can be well illustrated with such an object as for example a 

Swiss pen knife, which has more than one function. The total of all functions of an individual 

we call the functionality of an item. The second postulate is more interesting and is especially 

important in the context of malfunction, which is discussed later. As an illustration consider an 

individual hammer in the situation s of lying on my desk. The hammer was designed to realize 

the function of hammering nails, which means that the designer intended the hammer to have a 

function of driving in nails during its lifetime. The situation s is a part of the hammer’s 

lifetime, hence a designed function of the hammer lying on my desk is F: to drive in 

nails. The hammer, however, is currently not participating in a realization of that function, 

but is lying on my desk. Thus, F is not its actual function. Nor is F  its dispositional strong 

function, because the process of the hammer lying on the desk is not a dispositional realization 

of the function to drive in nails. However, since the hammer is well designed and 

manufactured, and because it is not broken, it has a weak dispositional function of driving in 

nails.  

Moreover, the hammer is lying on a pile of papers, because I have put it there in order to 

prevent the papers from being blown off by the wind, and thus its user function is to 

prevent the papers from being blown off by the wind. Because the day 

is windy and the window is open, the hammer actually prevents the papers from being blown 

off by the wind. Therefore, preventing the papers from being blown off is 

not only an intended user function of the hammer but it is its actual function as well. If the 

wind stopped blowing tonight, the function of preventing the papers from being 

blown off would become a dispositional weak function.  

The example shows yet another important feature of the framework. Although the 

intended functions are most common to artifacts, it does not follow that artifacts have only 

functions of that kind ascribed. This feature is important when considering the example 

presented in ([Kitcher, 1993] p. 380 – 381). During the process of machine manufacture, 

unbeknownst to the designer there appears an error in the design. The design does not include 

the connection between two parts of the machine, which is necessary to make the machine 

work properly. Luckily, an accidental dropping of a screw provides that connection. Now, the 
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screw clearly does not have a designed function, but it still has a function to provide the 

connection. Kitcher derives that function from the overall intended function of the 

machine, whereas in OF it would be considered as an actual, but not intended function of the 

screw in the machine.  

6.7 Malfunctions 

Beside functions there also malfunctions that can be ascribed to items. About a broken engine 

one says that it malfunctions, in the sense that it is not functioning properly. In OF malfunction 

is introduced as a ternary relation, denoted by Malfu(x,y,z), having he meaning  that an 

individual x is malfunctioning with respect to a function y in a context z.  

Especially in philosophical literature many works have been committed to the problem 

of malfunctioning (see section 2.3), since the representation of malfunctioning brings 

difficulties for the philosophical theories of functions. For example, the Cummins theory of 

functions meets a problem in representing malfunctions, since it considers functions only as 

the current dispositions of an item, and thus lacks the normative aspect. Neither are etiological 

theories without problems. For example, Davies [Davies, 2000b; Davies, 2000c] argues that 

etiological (or selective) theory has no means to handle malfunctions. He maintains that 

etiological theories define functional types as the items having heritable properties that 

resulted in selective success. This implies that the items that lack a relevant success property 

cannot be considered as functional types and thus cannot be said to malfunction. 

Malfunction is important not only from the perspective of a philosophical discussion, 

but also in the context of validation, control and evaluation of artifacts. It is also relevant for 

the purpose of representing biological knowledge which commonly refers to malfunctions. The 

main points can be formulated as the following questions: (1) Under what conditions is an item 

malfunctioning? (2) What is the difference between malfunctioning and a mere lack of 

function realization? 

Considering (1) we postulate that for the assignment of malfunction to an item in a 

given context c two conditions must be satisfied: 

1. The item is not realizing (actually or dispositionally) function f in context c. 

2. The item should realize (actually or dispositionally) function f in context c. 

 

The first condition is clear - only items that are not realizing a function may be considered 

malfunctioning with respect to this function.  On the other hand, it is not always the case that 

an entity which does not realize a given function is said to be malfunctioning. Even though a 

car engine is not realizing the function to enable steering the vehicle, it is not 
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considered to be malfunctioning, since this function is simply not what an engine is supposed 

to do. The example shows the need of delimiting malfunction from the ordinary lack of 

function realization. This difference is the subject of condition (2), and requires a better 

understanding of the normativity of function ascription. The question to be stated here is what 

does it mean that an item should do something. 

We find three general answers for this question: an item should do something because 

(1) it was required/designed to do so, or (2) it used to do it in the past, or (3) other items of that 

kind do it. On the basis of these three answers there are three kinds of malfunctions defined: 

the malfunction with respect to the intended function, (2) the malfunction with respect to the 

item’s history, and (3) the malfunction with respect to other instances of the item’s kind. 

6.7.1 Malfunction with respect to Intended Function 

The item is malfunctioning when it is not able to do what it should. In the case of artifacts, 

agents involved in the creation of the artifact, dictate what an item should do. Thus, on the 

basis of the intended function we define the first type of malfunction – malfunction with 

respect to intended function:    

 

Definition 63 (Malfunction with respect to Intended Function). An individual x 

malfunctions in a given context  c  with respect to an intended function  f, denoted by 

MalfuInten(x,f,c), iff:  

(a)  x has required/designed function f  in c  and  

(b) x does not have dispositional or actual function f  in c. Formally, 

 

MalfuInten(x,y,z) ↔ (HasFuReq(x,y,z) ∨ HasFuDesig(x,y,z)) ∧  

                                 ¬(HasFuAct(x,y,z) ∨ HasFuDisp(x,y,z)). 

 

 

 

(80) 

Intuitively, the definition says that an item is malfunctioning if it is not able to do what some 

agent intended it to do. Malfunction is therefore agent-dependent and the degree of 

malfunction, just as the degree of intended function, varies with respect to the reliability and 

the number of agents, who intend an item to have a given function. For example, if a hammer 

lying on my desk turns out not  to prevent the wind from blowing the papers off my desk, then 

it does not perform the intended user function and thus it malfunctions with respect to that 

function. Surely no one will accept the warranty return of such a hammer, simply because 

preventing papers from being blown off is not the required or designed function of the 
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hammer. Therefore, only malfunction with respect to the designed or the required function are 

considered as intended malfunction.  

Dominant Intended Function 

The artifact design is a process extended in time and within it artifacts are often redesigned. In 

the software engineering process several methodologies even assume that software is 

redesigned. For example in prototyping, software evolves from the prototype to the final 

product. It happens that the final product does not satisfy the functions that were required in 

the first stages of the design because the design evolved. In this case although the product does 

not realize the functions that it was initially required or designed for, we would not say that it 

malfunctions. In order not to treat such cases as malfunctioning we define the subsets of 

required and designed functions, called  dominant required functions and  dominant designed 

functions, respectively.  

 

Definition 64 (Dominant Intended Function). A function f of an artifact a in a context c is 

called a dominant required/designed function iff a was designed or required to realize f in c 

and f was not rejected in the later process of design.  

 

Now, in order to handle the cases of prototyping and redesign the definitions of required and 

designed functions should be restricted to the dominant required and designed functions. 

6.7.2 Malfunctions with respect to History 

So far we have restricted malfunctions to artifacts, but it is not only artifacts that malfunction. 

Take for example body organs - a heart is considered to malfunction when not pumping blood. 

However, malfunction of a heart cannot be explained by reference to designed or required 

functions, since this would assume some agent, who designed a heart. In case of organs it is 

problematic to find such an agent without slipping into the theological discussion about the 

origins of life. The ontological framework of Chandrasekaran and Josephson in our opinion 

falls into difficulties of that kind.  In [Chandrasekaran, Josephson, 1997] function is 

understood in terms of design, and nature or evolution is taken as a designer of biological 

organs. However, the understanding of nature or evolution as a designer we find as an 

oversimplification, since in the broader ontological framework this requires to regard them as 

some kind of agentive and intentional entities. Alternatively, beside the notion of intended 

malfunction, applicable for artifacts, we suggest introducing other kinds of malfunction suited 
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also for non-artifacts. We rely here on the ideas fund in [Upton, 2004], which we develop, 

formalize and incorporate into our ontology. 

The first non-intentional criterion is provided by the reference to the history of a given 

individual. Often, when complaining about the malfunction of some item, we say “so far it was 

working fine”. Here, we judge an item to be malfunctioning not by references to the intentions 

of a designer or a stakeholder, which in fact for most of us are unknown, but rather we refer to 

the history of an item, which we know. In this sense, an item is recognized as malfunctioning 

when it does not realize the function in a given situation, although it used to do so in the past. 

 

Definition 65 (Malfunction with respect to history). An individual x malfunctions with 

respect to its history in a situation or situoid s with respect to a given function f, denoted by 

MalfuHist(x,f,s),  iff x used to have a  dispositional or actual function f in a situation/situoid s’ 

similar to s and does not have it in s.  

 

Two situations or situoids we call similar when they are instances of the same universal. Thus, 

we say that an item has a historical dysfunction if it is not functioning in a situation which is 

the instance of the same universal as the situation in which an item had a disposition to f 61.  

 

MalfuHist(x,y,z) ↔ ¬ (HasFuDisp(x,y,z) ∨ HasFuAct(x,y,z)) ∧  

                       ∃uv(z ::: v ∧ u ::: v ∧ (HasFuDisp(x,y,u) ∨ HasFuAct(x,y,u))).  

 

 

 

(81) 

Malfunction with respect to the history holds for both artifacts and for non-artifacts. By 

analogy to a malfunctioning heart an engine is considered as malfunctioning if it is not 

working today although it was working in the past in exactly the same conditions. 

Malfunction with respect to the history has difficulties concerning the change over time. 

An item may by natural (healthy) evolution loose some functions but it does not make it 

malfunctioning. This issue is discussed below in section 6.7.4. 

6.7.3 Malfunction in Comparison 

Yet another way of identifying malfunction is the comparison of an item with similar 

individuals in similar conditions. For example, one may judge one’s car to be malfunctioning 

if it does not manage to drive up a steep hill, whereas other cars of the same model manage to 

                                                      

61 We refer to direct instantiation here since we are interested in the maximal similarity of the situations 

compared.  
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do so. In this case one is not referring to the history of an individual but to other individuals 

instead. 

 

Definition 66 (Malfunction in comparison) An individual x being an instance of a kind u 

malfunctions in comparison with other individuals with respect to a function f in a 

situation/situoid  s, denoted by MalfuKind(x,f,s), iff:  

(a) other instances of u have a dispositional or actual function f in situations or situoids 

similar to s, 

(b) x does not have the dispositional or actual function  f in s. Formally, 

 

MalfuKind(x,y,z) ↔ ∃prst (x ::: t ∧ s ::: t ∧ z ::: r ∧ p ::: r ∧ s ≠ x ∧  

                                 (HasFuDisp(s,y,p) ∨ HasFuAct(s,y,p)))  ∧ 

                        ¬ (HasFuDisp(x,y,z) ∨ HasFuAct(x,y,z)). 

 

 

 

 

(82) 

In this definition, similarity of two individuals is represented by the common universal. In this 

sense an item is compared with other instances of the universal, which it instantiates. However, 

the universal used here is not a universal of an arbitrary type but instead it is a kind universal. 

It is not our purpose to investigate the problem of natural kinds (for discussion see for example 

[Wilkerson, 1995]) or the problem of typology of universals. For our purposes only three types 

of universals are distinguished: universal functional item – a universal role depicting items in 

purely functional terms, universal realizer – a structural universal depicting structure of items 

in the context of the realization of some function, and finally the kind universal which is a 

universal grouping entities considered to be of the same kind, such as e.g. human beings. Kind 

universals extend natural kinds and we do not exclude kinds such as artifacts, but they should 

not be identified with universal realizers. Thus, two individuals can be instances of the same 

kind but not of the same realizer, e.g. the plane with loaded cargo and the plane with empty 

cargo space are of the same kind but are not instances of the same universal realizer goods 

transporter, since only the latter can be loaded with goods, and thus can realize the 

function of goods transportation. 

6.7.4 Priorities of Malfunctions 

The three introduced kinds of malfunction are independent from another. For example, it may 

be the case that an artifact malfunctions with respect to its history but not with respect to its 

intended function. Consider a space probe designed to work only for a given period of time. 

After the end of the period it is not expected to be functioning anymore. If in a situation which 



Ascription of Functions 

 

150 

takes place after the end of that period, the space probe is not realizing its function, then 

according to the design it is not malfunctioning. However, if this situation satisfies the 

requirements of the function, then the space probe is malfunctioning in that situation with 

respect to its history, since it does not realize the function which it was realizing in an 

analogous situations in the past. Therefore, there arises a conflict – the space probe is 

malfunctioning with respect to its history, but not with respect to its intended function. To 

solve conflicts of this kind the priority of has-function and malfunction kinds should be given. 

In OF the strongest malfunctions are considered to be those with respect to the designed 

and required functions. An artifact may be considered malfunctioning with respect to its 

intended function, although it does not malfunction with respect to its history or in comparison 

to other instances of the kind. Concerning the first case, an artifact could never have realized 

the function in question, for example due to a design flaw or a production defect and thus it 

would not be said to malfunction with respect to its history. Concerning the second case, all 

members of the kind might be wrongly designed and none of them might realize the function. 

Therefore, the item would not malfunction with respect to other instances of the kind, neither.  

Similarly if an artifact is not malfunctioning with respect to its required/designed 

function but is malfunctioning with respect to its history or with respect to other members of 

the kind then it is said not to be malfunctioning.  

For non-artifacts, which lack designed and required functions, the malfunction due to 

comparison with other members of the kind is prior to the malfunction with respect to the 

item’s history. An item defective throughout its lifetime is not malfunctioning in a given 

situation s with respect to its history but nevertheless it may be detected malfunctioning in 

comparison to other items of its kind. For example, an inborn defect cannot be detected as 

malfunction with respect to the history but it can be detected when comparing an item with 

other instances of the kind.  

From the above considerations we can provide the following hierarchy of malfunctions: 

1. Required/ designed malfunction. 

2. Malfunction with respect to other instances of universal. 

3. Malfunction with respect to item’s history. 

6.7.5 Side-Effect Malfunction 

We have considered malfunction with respect to a given function f as the lack of a 

dispositional or actual realization of f. In this sense an item is malfunctioning if the goal of a 

function cannot be reached by the item. Such a malfunction we call a goal failure malfunction. 

However, there are malfunctions which do not concern the goal. A goal of a function may be 
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reached but nevertheless the item may malfunction, since it results additionally in undesired 

side effects. Such a malfunction we call a side effect malfunction. For example, an engine may 

dysfunction not because it does not generate circular motion, which is its designed function but 

because of a too high consumption of fuel. 

We handle the side effect malfunctions in OF with the help of a broad understanding of 

the function’s goal, comprising also restrictions on goals. As already discussed in chapter 3, 

we understand a function as a specification of what is supposed to be done. In this sense 

everything that is intended to be achieved is considered as the goal of a function, also that 

which we treat as a secondary goal, or a restriction on the main goal. In our example we would 

not consider the function assigned to an engine as to generate circular motion, but 

rather we would extend it to the following: to generate circular motion AND not 

to exceed the given level of fuel consumption. In this case an engine that 

generates circular motion, but uses too much fuel, dysfunctions, since it does not reach the 

second of its goals. In this sense it is not realizing its multiple-goal function. The distinction 

between primary and secondary goal can be represented by the usage of goal priorities. In our 

example, if required, one could say that the generation of circular motion has a higher priority 

then the low level of fuel consumption.   

6.8 Summary 

In the current chapter we have investigated the notion of function ascription and have 

introduced a number of notions that permit to model it. Several types of function ascription 

have been recognized, among them the intended has-function typical of artifacts and the actual 

and the dispositional has-function, founded on the notions of actual and dispositional 

realizations applicable to non-artifacts as well. The notions introduced permit to ascribe 

functions to arbitrary entities, involving both individuals and universals, processes, persistants 

and presentials. 

OF permits to assign not only functions to entities but also malfunctions. Several types 

of malfunction together with their interdependencies have been introduced. Among them are 

the malfunctions with respect to the intended function, the history of an entity, and the 

comparison to other members of the kind. The side effect malfunctions are handled by the 

extended understanding of the goal of a function.  
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7 Ontological Status of Functions, 

Classifications and Architecture 

7.1 Introduction 

In the current chapter we touch the fourth main problem area of the top-level ontology of 

functions mentioned in chapter 2, namely the ontological status of functions and the 

incorporation of OF into a wider ontological framework of GFO. In the first place we discuss 

characteristics of functions, and analyze the candidates for function definition against them. 

Those investigations result in the definition of function and enable to plug the notion of 

function in an appropriate place in the taxonomy of GFO.  

Moreover, we introduce the most general classifications of functions as well as the 

architectural principles for the organization of functional knowledge. These two issues are of 

particular importance in the context of the application of OF in functional modeling and the 

design of domain ontologies combining both functional and non-functional knowledge.  

7.2 Characteristics of Functions 

On the basis of the developed framework and the provided analysis of other works, in the 

current section we will investigate the characteristics of functions, namely contextuality, 

subjectivity, and goal-orientedness.  

7.2.1 Context and Subjectivity  

As a first characteristic of functions we will investigate this saying that functions are 

contextual entities. Our aim here is not to investigate the broadly discussed notion of context 

(see e.g. [Akman, Surav, 1996; McCarthy, Buvač, 1998]), but rather we intend to show that a 

context is commonly involved in the definition of a function, and that several types of context 

can be distinguished, when speaking about functions. 
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In AI approaches to functional modeling the notion of context is often involved in the 

definition of a function. For instance, in CFRL function is defined by means of context 

considered as an environment in which the device is supposed to function. In turn, in 

Chandrasekaran and Josephson’s ontological framework, context, called there Mode of 

Deployment (MoD), is the selective description of the environment of the object to which a 

function is assigned. MoD is a specification of causal interactions between an object and other 

objects in the world. In the example provided in [Chandrasekaran, Josephson, 2000] the 

battery lying on the piece of paper may be considered in two MoDs: one, in which it is 

connected to electrical terminals of some object, and the other, where the  bottom surface of 

the battery is  in the a_top relation with an object paper. Those two MoDs result in two 

different functions ascribed to the battery - the function of supporting paper and the 

function of providing voltage. MoD therefore can be considered as a context in which 

an object is investigated and which determines function ascription. 

Context was also recognized as a factor in philosophical definitions of functions. 

Cummins [Cummins, 1975] refers in his definition of function not only to the system 

containing an object, but to an analytical account of that system’s capacity. Thus, the function 

of an object varies not only with respect to some larger whole, in which an item participates, or 

is located in - that is to some MoD,  but also with respect to the way this whole, or more 

precisely its capacity, is explained. In this sense a context seems to be considered on the 

epistemological level, where the object’s function is a part of explanation/analytical account of 

some capacity of the containing system. 

Finally, a particular type of context that influences a function is an agent. Searle [Searle, 

1995] touches on that point when he says that a function is always determined by an agent, an 

observer, who finds the function in a given object.  

The above examples show that the notions of function and function ascription in contrast 

to, for example the notion of behavior, are often recognized as contextual. Moreover, the 

examples show that there is no unified understanding of the function’s context but rather 

various intuitions are hidden under that notion. On the basis of the brief review of functional 

contexts presented above, the following preliminary kinds of functional context can be 

distinguished: 

1. Situational (topological) context includes the containing system, other components of 

the containing system, and the environment which an item effects. In GFO terms the 

situational context is provided by the situation or situoid in which an entity is 

participates. 

2. Causal context includes entities, on which the entity, having the function ascribed, has 

a causal impact. Causal context may be considered as a part of the situational context. 
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3. Epistemological context involves the way a phenomena is explained. It often concerns 

some bigger whole, in which the entity under question is involved, namely its 

situational or causal context. 

4. Context of an agent determining and ascribing a function. The function is agent-

relative and thus to some extent has a subjective character. 

 

The first three types of context touch only the relation of function ascription but not the 

function itself. Due to the different situational, causal or epistemological contexts, different 

functions may be ascribed to a given item.  

In the examples discussed in chapter 6 mostly topological and causal contexts were 

considered. However, it seems that has-function and malfunction can be ascribed also in the 

epistemological context. For example, when considering the Cummins example, a heart has-

function not only in a circulatory system (topological system) but also in the epistemological 

context of an explanation of the circulatory system’s ability of transporting stuff. Similarly, a 

malfunction may be assigned against an epistemological context. 

The fourth context kind, which implies subjectivity, in contrast to the three former ones 

affecting only the ascription of function, is present also at the level of the structure of 

functions. Considering the function structure, subjectivity is represented in OF by reference to 

an agent, who by the establishment of a goal determines the structure of a function. We 

postulated that there is no function without an agent and every function is relativized to an 

agent establishing its goal. If some other agent does not recognize that goal then the function is 

not to be recognized by him either. In this sense a function is always subjective.  

In addition, subjectivity is also present in the ascription of a function to an item. Here, 

however, not every kind of the function ascription involves an agent, but only the intended 

has-function.  An item has an intended function due to some agent that ascribes the function to 

that item. In this sense the has-function relation is subjective - function ascribed to an item by 

one agent does not have to be ascribed to it by another agent. 

7.2.2 Teleology and Goal-Orientedness 

The next commonly discussed aspect of a function is the goal-orientedness. For example, 

paraphrasing the definition of a  function as a teleological interpretation of behavior, one could 

say that a function is a  goal-oriented behavior. Several definitions of function discussed in 

chapter 2 include a goal. And likewise in OF a goal is considered as a determinant of a 

function. Moreover, as was demonstrated when discussing the structure of function other 

determinants are necessary in order to adequately determine function, but it is a goal, which 
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seems to be crucial for the notion of function. Even a function’s label, which is an informal but 

commonly used technique for modeling functions, is goal-oriented.  

Summing up, the following characteristics of a function should be taken into account 

when investigating the ontological status of functions: 

1. Function ascription is contextual. Whether an entity has a function depends on the 

context. 

2. Function is subjective. The function structure depends on an agent establishing a goal, 

whereas the intended function ascription depends on the agent, intending an item to 

have a function. 

3. Function is goal-oriented. A goal is a crucial determinant of a function. 

7.3 Candidates for Functions 

The purpose of this section is to investigate the ontological kind of a function. Firstly, we will 

investigate against the above function characteristics two popular candidates for functions, 

namely processes and goals. Secondly we will provide the definition of function, which 

enables integration of the notion of function into GFO. 

7.3.1 Functions as Processes 

Functions are often considered to be processes. The notion of a process differs across 

formalisms, however some general intuitions are common. Here, we understand a process in 

the GFO sense, where it is considered as a perduring entity extended in time, which, in contrast 

to a presential located at the time boundary, is not fully present at any time boundary. 

Processes in GFO  are said to happen throughout time and are contrasted to persistants, which 

grasp the endurantistic view. Process are often labeled with goal-oriented labels, which 

suggests treating functions in terms of processes. For instance, the label to transport 

goods could be adequate both for the function and the process of transportation. 

In AI approaches to functional modeling there are close correlations of functions and 

processes. For example, in [Sasajima et al., 1995] function is defined as a teleological 

abstraction of behavior which can be seen as a process or a layer of a process. Goal-

orientedness can be reconstructed in terms of culmination, which is a criterion for 

classification of events [Casati, Varzi, 2002].  An event has a culmination if it has a finishing 

point. Thus, a goal-oriented process is a culminating process which reaches the goal in its 
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finishing point. It therefore seems intuitive to consider functions as a particular type of 

processes, namely achievements or accomplishments.  

However, despite those similarities we found, as already mentioned in passing in section 

5.8, that functions cannot be identified with processes. Firstly, we observe that not all 

functions can be regarded as culminative processes; in particular continuous functions are 

realized by non-culminative processes. For example, the function of pumping blood cannot be 

treated in terms of a culminative process, because the process of pumping blood lacks a 

culmination. Secondly, functions cannot be considered to be processes in general, since their 

realizations, in contrast to processes, are not necessarily time-extended. A situational 

realization of the instantaneous function of camouflaging a moth is a presential and thus is not 

time extended. 

Hence, since we do not consider functions in terms of processes, the definition of 

function as a teleological abstraction of behavior is too narrow for our purposes, and in our 

opinion does not fully grasp the ontological nature of functions. 

7.3.2 Functions as Goals 

Because a function is a teleological entity, one could identify it with the notion of a goal. In 

this sense a goal in which a function results could be treated as a function itself or, in words of 

Chandrasekaran and Josephson, the function of an object could be defined as the effects of the 

object on its environment [Chandrasekaran, Josephson, 1997].  This intuitive solution seems to 

be adequate for many purposes, however the scope of its applications depends on the accepted 

interpretation of the goal. In FR and CFRL a goal is interpreted very broadly - it includes not 

only the state of the world, which is the result of a function but also the whole chain of causal 

factors that lead to that result state. A goal, then, is not only regarded as what should be 

achieved but also as the way it is achieved.  

In OF we refer to a much more restricted notion of a goal. A goal in our understanding 

is an intentional entity referring to an arbitrary chunk of reality that is expected to be achieved 

by the function realization and is distinguished for some reason by an agent. A goal, regarded 

in this narrow sense, is insufficient for the adequate identification of a function, since functions 

resulting in the same goal may be different with respect to their requirements, or functional 

items. 

The next argument against the reduction of functions to goals, or effects, comes from 

analysis of the temporal location of goals and functions. In our framework functions lack a 

direct relation to time. However, as presented in section 3.5 this relation can be derived from 

the temporal relations of the requirements and goal of a function. In this sense we may 
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informally speak about temporal extension of functions.  In our opinion a function may have a 

different time location than a goal, and since one entity cannot have two different time 

locations, therefore a function and a goal should be considered distinct.  This holds especially 

for sequential functions. Consider the function to deliver a letter on 5th June. 

Here, the goal is a presential relation (located_in) at the time boundary T = the fifth 

of June62. The realization of that function is the process which has a right boundary at T. In 

this case the goal is “at the end” of the function realization. Concluding, we argue that a 

function is a goal-oriented entity, not a goal itself. 

7.3.3 Functions as Intentional Entities 

On the basis of the constructed framework and the discussed above characteristics of functions 

we propose to define functions as follows: 

 

Definition 67 (Function). A function is an intentional entity defined in purely teleological 

terms by the specification of a goal, requirements and a functional item which commonly is 

ascribed by means of the has-function relation to entities that in some context are the 

realizations of the goal, execute such realizations or are intended by a reliable agent to do so. 

 

The first part of the definition refers to the structure of the function introduced in chapter 3. 

According to it functions are teleologically defined against goals valuated by some agent but 

are not identified with the goals since they also include the specification of requirements and 

the functional item. In contrast to the definitions discussed in section 2.1.2, the above 

definition does refers neither to behaviors nor processes, and thus does not exclude non-

processual functions, but instead it is founded on the notion of intentional entity.  

An intentional entity is understood as an abstract entity of the mental strata, i.e. a mental 

representation, a thought, an idea which is dependent on some agent. Hence, functions in our 

understanding are not entities of an objective world but are subjective, agent-dependent 

entities. However, we admit that functions can be shared by a group of agents and in this sense 

they may be relativized not to an individual agent but to a community of agents and inside the 

community they may be considered to be objective.  

The second part of the definition refers to the introduced relation of the has-function 

which grasps the contextual character of function ascription and is founded on the realization 

                                                      

62 The fifth of June is regarded here for the sake of simplicity as a presential although it could 

be considered as a chronoid.  
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and realizer relations. Reference to both - the realizer and the realization - covers, among 

others, the distinction between functions of objects and of processes. The subjectivity of 

functions is stressed additionally by the intended has-function, which is an assignment of 

functions to entities due to the intentions of reliable agents. 

The definition introduced reveals similarities to the definition of [Sasajima et al., 1995], 

where a function is considered as the teleological interpretation of behavior. It seems that “the 

interpretation of behavior” can be interpreted as an abstract mental entity which is depicted in 

purely teleological terms. The difference between those definitions, apart from the problem of 

references to the notion of behavior discussed before, lies in the presupposed order of function 

construction. In [Sasajima et al., 1995] goals and behaviors are primary to functions - for a 

given goal and behavior, or set of goals and behaviors, a function is constructed by the 

interpretation of that behavior in the context of the goal. In OF function is secondary to the 

goal but not to the behavior or any other entity realizing it. Thus, our model assumes the order 

from function to realization, whereas in [Sasajima et al., 1995] the function is constructed or 

interpreted from the given behavior. 

7.4 Classifications of Functions 

For the purpose of modeling it is useful to provide not only a general framework of 

representing functions and the function ascription, but also a taxonomy of functions. In the 

current section we propose several classifications of functions, which are organized into two 

groups called intrinsic and extrinsic classifications. Intrinsic are those classifications having 

the principle of distinction (differentia) intrinsic to functions. A differentia is considered to be 

intrinsic to functions if it refers to the function structure, and functional relations only. On the 

other hand, a differentia is extrinsic to a function if it refers to notions beyond the structure and 

functional relations, for example to the realization of a function. Thus, functions may be 

classified according to their realizations, but one should keep in mind that this classification is 

secondary and is founded on the classification of realizations. For the sake of completeness, 

the current section also includes the classifications discussed already in previous chapters.  
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7.4.1 Intrinsic Classifications 

Classification Based on the Time-Extent of a Goal 

A goal is an arbitrary chunk of reality, and as such may have various time-extents. In the 

context of GFO we recognize two primary kinds of temporal locations of entities, namely the 

projection to a chronoid and the location at a time boundary. The former is typical for 

processes, whereas the latter for presentials. On the basis of this distinction two kinds of basic 

functions are found:  

− Accomplishment Function. If the goal of a basic function f is a presential, then we call f an 

accomplishment function, and denote it by FuAccompl(f). An exemplary accomplishment 

function is to deliver mail at given time point. 

  

FuAccompl(x) ↔ FuBasic(x) ∧  ∀y(GoalOf(y,x) → Pres(y)).       

 

 

(83) 

Two kinds of accomplishment functions are distinguished in OF: sequential and 

instantaneous functions. The difference between them concerns the temporal distance 

between the requirements and the goal. In the former case the goal appears after the 

requirements, whereas in the latter both are present at the same time boundary. 

 

− Continuous Function. If the goal of a basic function f is an entity extended in time, then 

the function f is called a continuous function and is denoted by FuContin(f). For example, for 

the goal: blood is being pumped, which is a process extended in time, the 

corresponding function to pump blood is a continuous function. 

  

FuContin(x) → FuBasic(x) ∧ ∀y(GoalOf(y,x) → Proc(y)).  

 

 

(84) 

Intuitively the difference between the accomplishment and continuous functions is that, 

whereas the former is aimed only at a disposable accomplishment of a given result, the latter 

aims also at a  continuous support of that goal for a given period of time.  

This classification may also be applied for functions having universal goals. Although 

universals in GFO are not related to time, they can still be classified due to the time extent of 

their individual instances. In this sense the function with a universal goal, whose instances are 

presentials, is classified as an accomplishment function. 

The classification may be extended to non-basic functions by the decomposition of the 

non-basic goals. And so a non-basic function, all of whose goals are presentials located at 
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coinciding boundaries, is called an accomplishment function, whereas a function whose at 

least one goal is a process is called a continuous function. 

Classification Based on the Relations between Functions 

The classification below is founded on the classification of the relations between functions. 

For a given goal an arbitrary function may be classified as one of the following:   

− Performer. For a given chunk of reality x if x is a goal of a function f, then f is called a 

performer function of x. An actual realization of a performer function is a sufficient 

condition for the fulfillment of the goal x, and is denoted by FuPerform(f,x). 

 

FuPerform(x,y) ↔ GoalOf(y,x). 

 

 

(85) 

− Enabler. For a given chunk of reality x if a function f enables a function f’, which is a 

performer function of x, then f is called an enabler function of x, and is denoted by 

FuEnable(f,x).  

 

FuEnable(x,y) ↔ ∃z(Enable(x,z) ∧ GoalOf (z,y)). 

 

 

(86) 

− Supporter. For a given chunk of reality x if a function f supports a function f’, which is a 

performer function of x, then f is called a supporter function of x, and is denoted by 

FuSupport(f,x).  

 

FuSupport(x,y) ↔ ∃z(Support(x,z) ∧ GoalOf(z,y)). 

 

 

(87) 

− Preventer. For a given chunk of reality x if a function f is preventing a function f’, which is 

a performer function of x, then f is called a preventer function of x, and is denoted by 

FuPrevent(f,x). 

 

FuPrevent(x,y) ↔ ∃z(Prevent(x,z) ∧ GoalOf(z,y)). 

 

 

(88) 

− Neutral. For a given chunk of reality x if x is not a goal of f and f is not related by any of 

functional relations to a function f’ which is a performer function of x, then f is called a 

neutral function for  x. 

 

FuNeutral(x,y) ↔ ¬ (FuPerform(x,y) ∨FuEnable(x,y) ∨ FuSupport(x,y) ∨FuPrevent(x,y)). 

 

(89) 
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The classification of functions based on their role in the achievement of a given goal is 

especially useful in cases of hierarchical goal modeling, where one goal is central for the 

whole model. In such cases this classification helps to organize functions, with respect to their 

influence on the root goal. 

The distinction between performers, enablers, supporters, preventers and neutral 

functions is also applicable for functional items and realizers. A functional item/realizer of the 

performer function of a goal g is called a performer of goal g, of the enabler function of goal g 

-  an enabler of  g, etc. 

Classification Based on the Complexity of the Goal 

A goal is the chunk of reality which is an intended result of the function. Goals may be either 

basic or non-basic. Depending on the type of goal the following function kinds are 

distinguished: 

− Basic Function 

− Complex Function 

− Coherent Function 

− Multiple Goal Function 

 

 If the elements of a non-basic goal do not compose a coherent entity, then the function is 

called a multiple goal function. The basic, complex, coherent and multiple goal functions are 

discussed in section 3.3.8.  

7.4.2 Extrinsic Classifications 

Beside intrinsic classifications of functions also extrinsic ones can be provided. In contrast to 

intrinsic classifications the principles of distinction used in extrinsic classifications neither 

pertains to the structure of a function nor to the interrelations between functions. Instead, they 

are founded on the function’s realization and ascription. Thus, these classifications pertain 

primarily to realizations and function ascriptions, and only indirectly to functions.  

Classification Based on the Realization-Dependent Relations 

This classification is the extension of the classification of functions based on their 

interrelations. Here, the classification is based on the role one function has in the given 
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realization of the other function. For a given goal an arbitrary function may be classified as one 

of the following:   

− Trigger. For a given chunk of reality x if a function f triggers a realization r of a function 

f’, which is a performer function of x, then f is called a trigger function of x and is denoted 

by Futrigger(f,x,r). 

 

Futrigger(x,y,z) ↔ ∃w(Trigger(x,w,z) ∧ GoalOf(y,w)). 

 

(90) 

 

− Improver. For a given chunk of reality x if function f improves a realization r of a function 

f’, which is a performer function of x, then f is called an improver function of x and is 

denoted by Fuimprove(f,x,r). 

 

FuImprove(x,y,z) ↔ ∃w(Improve(x,w,z) ∧ GoalOf(y,w)). 

 

 

(91) 

Classification Based on the Kind of Function Ascription 

In the context of an item to which a function is ascribed it may be classified as one or more of 

the sorts below: 

− Actual 

− Dispositional 

− Intended: Designed, Required, User or Researched Function 

 

For example transporting people is  a required, designed, and dispositional or actual 

function in the context of a car. 

Classification Based on the Dynamics of Function Realizer 

The dynamics of a function realizer is the criteria for distinguishing the following kinds of 

functions: 

− Passive Function. A function f is passive in context of its realizer r and is denoted by 

FuPassR(f,r)  iff the function realizer r is passive.  

 

FuPassR(x,y) ↔ RPass(y,x). 

 

 

(92) 

A function is absolutely passive iff all its realizers are passive.  
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FuPass(x) ↔ ∀y(R(y,x) → RPass(y,x)). 

 

 

(93) 

− Dynamic Function. Analogously, a function is active in context of a realizer r and is 

denoted by FuDynR(f,r) iff r is a dynamic realizer of f.  

 

FuDynR(x,y) ↔ RDyn(y,x). 

 

 

(94) 

A function is absolutely dynamic iff all its realizers are dynamic. 

 

FuDyn(x) ↔ ∀y(R(y,x) → RDyn(y,x)). 

 

 

(95) 

Note that in our framework the passive or active character of the continuous or sequential 

function cannot be determined on the pure functional level but it is relative to the function’s 

realization. Take as an example the function to enable sitting. A chair which is a 

typical realizer of this function is passive, thus the function is also considered to be passive. 

However, one can imagine an intelligent chair made of foam that actively adjusts the shape of 

the seat to the shape of the body of the person who seats on it. Clearly such a realizer will not 

be passive anymore. Thus, it is not the function to enable sitting which is passive, but 

particular realizers of that function. On the other hand, all instantaneous functions are 

regardless of their realizations considered to be passive functions.  

7.4.3 Reconstruction of the Current Classifications 

In the current section we will refer to the classification of functions, introduced by Keuneke 

[Keuneke, 1991] and formalized by Iwasaki and Chandrasekaran  [Iwasaki, Chandrasekaran, 

1992]. We will demonstrate how far this can be reconstructed and improved by means of the 

classifications presented above.  

Keuneke recognized four types of functions: toMake, toMaintain, toPrevent, and 

toControl. ToMake is the basic function type; the aim of the toMake function is to achieve a 

desired state of the world. For example, the function of locking the doors is aimed to 

achieve a state in which the doors are locked. In terms of Iwasaki and Chandrasekaran 

[Iwasaki, Chandrasekaran, 1992]  toMake is a function whose trajectory’s final state satisfies a 
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desired goal63. In terms of OF the toMake function type can be reconstructed by the sequential 

function which is realized by the process ending with the goal state, understood as a presential. 

The second type of function introduced by Keuneke is toPrevent. A function is of the 

toPrevent type if during the realization of that function an undesired state does not take place. 

The trajectory achieves the toPrevent function if in none of the states of the trajectory  the 

undesired state holds. ToPrevent can be represented in OF by means of a continuous function 

where the goal is expressed in the form of negation.  

The third type in Keuneke’s typology is toMaintain. In the toMaintain function type the 

desired state not only must be achieved, but it must be sustained over a given period of time. A 

trajectory Tr is said to achieve the toMaintain function, if the goal holds in all states of the 

trajectory Tr. We can see that the difference between toMaintain and toMake concerns in fact 

the time extents of their goals. In toMake the goal is not extended in time - preferably it is a 

presential, whereas in toMaintain a goal is time-extended.  It is not, however, clear whether 

toMaintain is only about sustaining a desired state for a given period of time as the definition 

of Iwasaki and Chandrasekaran ([Iwasaki, Chandrasekaran, 1992], p. 10) suggests, or whether 

it also involves the achievement of a desired state as the following phrase of Keuneke 

suggests: “Maintenance devices require components and mechanisms that both achieve a state 

and make it persist.” ([Keuneke, 1991], p. 24). This ambiguity can be properly treated in OF. 

In the first sense toMaintain can be reconstructed as a continuous function, whereas in the 

second as the combination of a sequential and a continuous functions. 

According to Keuneke, the ToMaintain(Not) function should be distinguished from 

toPrevent: “ToPrevent functions provide short-term, fail-safe mechanisms, not operations for 

normal and continuous maintenance” ([Keuneke, 1991], p. 24), whereas the maintain function 

continuously sustains a desired state. Keuneke illustrates this difference with the example of 

the dikes in Holland, which keep the land dry and thus have the toMaintain(NOT Flood) 

function.  In contrast, the function of the little boy who, in the case of a hole in a dike, puts a 

finger in it and rescues the land from the thread of a flood, is according to Keuneke 

toPrevent(Flood). Although the boy prevents Holland from flood, he does it only temporarily, 

and therefore his function is not toMaintain(NOT Flood). This example shows that toPrevent 

does not imply toMaintain(NOT). According to Keuneke toMaintain(NOT) does not imply 

toPrevent either. She argues that the lamps in the building have the function toMaintain(NOT 

Dark), but do not have the function toPrevent(Dark). 

                                                      

63 Framework of Functional Representation developed by Iwasaki and Chandrasekaran is discussed in 

section 2.1.2. 
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The distinction between toPrevent and toMaintain(NOT) can be reconstructed by 

references to the goal’s time extent. In the toPrevent function the goal is a presential or 

relatively short process, whereas in  toMaintain(NOT) the goal is a time extended process. 

Keuneke’s postulate that the toPrevent function does not imply toMaintain(NOT) holds 

because from the fact that a goal is fulfilled at one time boundary b, it does not follow that it is 

fulfilled throughout the whole chronoid whose time boundary is b. However, the second claim, 

saying that toMaintain(NOT) does not imply toPrevent, seems to be incorrect.  If a given goal 

is fulfilled within the whole chronoid then it is fulfilled in every time boundary of that 

chronoid. In the case of lamps, if they maintain the light in a building during some period of 

time, it seems justified to say that they prevent the building from sinking into darkness at every 

moment of that period.  

The last function type distinguished by Keuneke is toControl. This function differs from 

the above types since those were focused on achieving some state; while the control function 

reflects the power of regulation. Keuneke writes: “To control something or someone implies a 

direct multivalued relationship between the device’s action and the resulting effects.” 

([Keuneke, 1991], p. 24). In OF there is no straightforward counterpart of the control function. 

Nevertheless, it can be reconstructed by a number of sequential functions. For example, the 

function to control the room temperature can be decomposed to two sequential 

functions.  

 

F1. Req: room temperature lower than the given value; Goal: enable 

function of heating; FI: heater enabler. 

F2. Req: room temperature higher than the given value; Goal: 

enable function of cooling; FI: cooling enabler. 

 

The typology of Keuneke was modified by Kitamura and colleagues [Kitamura, Mizoguchi, 

1998; Kitamura et al., 2002], where yet another type of function, named toHold, was 

introduced:  “’ToHold’ is used when no special effort is made for the goal. For example, the 

function of a pipe, ‘to pass fluid through’, is said to be ‘ToHold.’”([ Kitamura et al., 2002], p. 

151). It is not completely clear how the lack of effort should be understood, since even in the 

case of a pipe there is a force of the water pressure which a pipe must sustain. It seems, 

however, that the intuitions behind the toHold type are close to those underlying the notion of 

a passive function. A pipe remains passive in realizing its function. Therefore, we suggest 

interpreting the toHold function type as a passive function. 
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We see therefore that the classification of functions developed in the current section 

permits not only to reconstruct the well known classification of Keuneke together with its 

formal interpretations and modifications, but moreover permit to detect some of its limitations.  

7.5 Architecture 

Application of OF to ontological engineering not only requires the organization of functions 

into a taxonomic structure, but moreover we find it useful in providing a modularization of the 

introduced notions. In particular, as was stated in the requirements of OF (R 1.3.), functions 

should be modeled independently of their realizations. Several approaches reported in chapter 

2 provide architectures supporting this requirement, e.g. FBSstate, MFM or FBSstructure. 

In the current section we present a four-layered architecture for representing functional 

knowledge. The following layers are introduced: 

1. The Pure Functional Layer. 

2. The Impure Functional Layer. 

3. The Realization Layer. 

4. The Non-functional Layer. 

 

Each of those layers provides an answer for a different type of functional and non-functional 

explanation. The pure functional layer and the impure functional layer answer what should be 

done (what is the goal), and why it should be done (what is the reason behind the goal). The 

non-functional layer answers the non-functional questions what is present and how it behaves. 

The realization layer mediates the functional layers with the non-functional layer and provides 

the answer for the question how a function is realized.  

The distinguished layers permit to separate the functional from the non-functional 

knowledge. It is not only important due to the fact that the functional knowledge, in contrast to 

the non-functional one, is highly intentional and contextual, but it also reflects the fact that 

those types of knowledge are highly independent. In turn the realization layer, as a mediating 

one, is dependent on both the functional and the non-functional layer.  

Figure 19 illustrates all the four layers by the example of the function to transport 

goods. 
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Figure 19. OF four-layered architecture presented on the exemplary function to transport 

goods. 

7.5.1 Non-functional Layer 

A vast part of human knowledge does not concern functions. Moreover, one can observe that a 

phenomenon described in terms of a function may be described from a non-functional 

perspective as well. For example, the process of goods transportation can be described in 

physical terms as the movement of bodies.  

The non-functional knowledge is represented on the non-functional layer (NFL). On this 

layer are handled the explanations of what an object is and how it behaves. All categories of 

GFO used in the current work belong to that layer. The non-functional layer may belong to any 

strata of our knowledge – physical, social or cognitive. Depending on the needs, a domain or 

top-level ontology may be used on the non-functional layer. The non-functional layer is 

completely independent of the functional one, thus none of the categories used on this layer 

presupposes the categories of the functional layer.  

7.5.2 Pure Functional Layer 

The main purpose of the pure functional layer (PFL) is to represent the structure of functions 

and their interrelations independently of their particular realizations. It is the layer for 

modeling functions independently of their realizations. It is of particular importance e.g. in the 

early phases of design, when the particular means of realization are not taken into 
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consideration, but when of relevance are the goals. In this sense PFL also supports goals 

modeling. In addition, it is beneficial for representing purely teleological view of phenomenon. 
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FICompl(x,y) 

FIInd(x,y) 

FITEM(x) 

FSt(x,y)   

Fu(x) 

FuAccompl(x) 

FuBasic (x) 

FuCoh(x) 

FuCompl(x) 

FuContin(x) 

 

FuEnable(x,y) 

FuInstant(x) 

FuMulGoal(x) 

FuNeutral(x,y) 

FuPerform(x,y) 

FuPrevent(x,y) 

FuSeq(x) 

FuSupport(x,y) 

GOAL(x) 

Goal(x,y,z) 

GoalFor(x,y) 

GoalOf(u,y) 

Intent(q,v) 

IntCont(i,R,a1...an) 

 

PartFu (x,y) 

Prevent(x,y) 

REQ(x) 

Req(x,y) 

ReqEnv(x,y) 

ReqFi(x,y) 

ReqOp(x,y) 

SideEf(x,y) 

Support(x,y) 

TFRAM(x) 

UniDAb(x,y) 

UniFu(x) 

UniFuAb(x) 

UniFuPrim(x) 

 

x ⊂⊂⊂⊂Fu  y 

x ⊆⊆⊆⊆Fu y 

x ⇒Fu y 

x ::FI y 

x ::Gl y 

x ::Req y 

x =Fi y 

x =Fu y 

x =Gl y 

x =Req y 

 

Table 5. The categories of OF belonging to the Pure Functional Layer. 

 

Although PFL enables the realization-independent functional modeling, PFL is not completely 

independent of the non-functional layer. The categories of NFL provide the vocabulary for the 

description of functions in PFL. It is clear since one cannot speak about functions and goals 

when one lacks the vocabulary to describe the world. For example, to model the biological 

function of a protein to copy a chromosome one needs to have the notion of 

chromosome introduced. In this sense PFL is built above NFL. 

The functional layer belongs not to the physical but to the cognitive or social strata as it 

involves subjective, intentional aspects of descriptions, such as goals and reasons behind them. 

The categories of OF belonging to that level are listed in table 5. 

7.5.3 Realization Layer 

The realization layer is the mediating layer between the pure functional layer (PFL) and the 

non-functional layer (NFL). It delivers the answer to the questions: (1) how a given function is 

realized, (2) what function is realized by a given entity and (3) what function an entity has 

ascribed (4) is the entity malfunctioning. The mediation between the non-functional and the 

functional layer is provided therefore by four relations: realization, instantiation between 
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realizer and universal functional item, has-function and malfunction. A full list of OF 

categories belonging to that layer is listed in table 6. 

 

Contribute(x,y,z) 

Execute(x,y,z)  

HasFuAct(x,y,z) 

HasFuDesig(x,y,z) 

HasFuDisp(x,y,z) 

HasFuInten(x,y,z) 

HasFuReq(x,y,z) 

HasFuRes(x,y,z) 

HasFuUser(x,y,z) 

 

Malfu(x,y,z) 

MalfuHist(x,f,s) 

MalfuInten(x,f,c) 

MalfuKind(x,f,s) 

MeansActRl(x,y) 

R(x,y) 

RAct(x,y)  

RComplAct(x,y) 

RDisp(x,y) 

 

RDispStr(x,y) 

RDyn(x,y) 

RlAct(x,y) 

RlActCulm(x,y) 

RlActMin(x,y) 

RlActNonCulm(x,y) 

RlActSit(x,y) 

RlDisp(x,y) 

RPass(x,y) 

 

UniHasFu(x,y,z) 

UniHasFuAct(x,y,z) 

UniHasFuDisp(x,y,z) 

UniHasFuInten(x,y,z) 

UniR(u,f)   

UniRlMin(x,y) 

x @ y 

 

Table 6. The categories of OF belonging to the Realization Layer. 

7.5.4 Impure Functional Layer 

The demand of the functional modeling is to delimit the functional model, which provides the 

information what should be achieved from the behavioral, or structural model, which provide 

the information how it should be achieved. In practice, however, when modeling functions, 

some aspects of realization are often taken into account. Sometimes there are realizations that 

are the only good choices (or best practice) and sometimes there is no choice at all, since there 

is only one way of  realization available. Moreover, the side effects of realizations and 

functions handling them are often included in the functional model. Those aspects should be 

covered by OF, but surely they should not be treated as pure functional models in order not to 

mix the order of what is achieved and how it is achieved.  

Therefore, we introduce the impure functional layer, which is a sub-layer of the 

realization layer. In contrast to the realization layer, it is not concerned primarily with the 

realization of functions but it focuses on the same problem as the pure functional layer, namely 

- what is to be done. In contrast to the pure functional layer, it considers this question not 

independently of the realization but in the context of a particular realization and particular 

realizers.  

For example, consider a logistics company which has a strong fleet of transporter cars. 

Considered on the purely functional level the company may have a primitive function to 

transport goods from Leipzig to Berlin for 13:00, 23 May 2006. 

However, due to the fact that there is a particular truck available, call it truck LVB 4040, 

it is reasonable to state that this individual truck is intended to be used for that purpose. In this 
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sense the business function of the company is an individual multiple-goal function to 

transport goods G from Leipzig to Berlin for 13:00, 23 May 2006 

by truck LVB 4040.  

 

 

Figure 20. The UML diagram representing relations between Universal Functional 

Item, Individual Functional Item and Realizer. Classes represent reified relations of 

OF. Every class is embedded in the corresponding Layer.   

 

The individual functional item resembles the individual actual realizer and the individual 

function resembles the individual realization. However, those notions should not be confused. 

An individual function is an intentional entity which may be realized or not, whereas the 

individual realization is an objective entity having the causal power of achieving the goal of 

the function. The relation between an individual function and an individual actual realization is 

not one-to-one but instead one-to-zero-or-one, which means that an individual function may 

be, but is not necessarily, actually realized by one individual entity. Analogically an individual 

functional item is distinct from an actual realizer. The former is a purely teleological entity 

while the second contains non-teleological structural description as well (see figure 20).  

 

FuDyn(x) 

FuDynR(x,y) 

FuImprove(x,y,z) 

FuPass(x) 

FuPassR (x,y) 

Futrigger(x,y,z) 

Improve(f,f’,r) 

IndFu(x) 

PartSeq(x,y) 

Realize(x,y) 

Seq(y, L) 

SideEffRl(x,y,z) 

Trig(v,z) 

Trigger(x,y,z) 

x ::Fu y 

x ::FI y 

x ::Gl y 

x ::Req y 

Table 7. The categories of OF belonging to 

the Impure Functional Layer. 

 

Additionally, impure functional models enable to handle the realization-dependent relations 

between functions, the side effects of realizations as well as the external classifications and 
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typologies of functions. The categories that belong to the impure functional layer are listed in 

table 7.  

7.6 Summary 

The current chapter is oriented around the problem of the incorporation of the developed 

ontology of functions into a wider ontological framework, namely into GFO. This task, in our 

opinion, requires the identification of function characteristics, the analysis of some of the 

candidates for function definition against those characteristics as well as the organization of 

the developed notions into a taxonomic architecture. This led us to the definition of function 

and enabled to plug the notion of function in an appropriate place in the taxonomy of the top-

level entities of GFO ontology.  

We proposed to understand functions as subjective, contextual and goal-oriented 

intentional entities. In addition, we discussed the limitations of treating functions as processes 

or goals. On the basis of the notions developed in the previous chapters several classifications 

of functions have been developed which, if organized in a combinatorial manner, provide a 

general taxonomy of forty basic function types and an additional twenty four realization-

dependent ones. 

Finally, the notions of OF have been organized into the four-layered architecture which 

permits to keep separately the functional model from the model of the realization of function. 

In addition, the modular architecture of OF permits to extend non-functional ontologies with 

functional notions without significant changes to them. 
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8 A UML Profile for Functional 

Modeling founded on OF 

8.1 Introduction 

In the present chapter we outline the UML profile for functional modeling based on the 

ontology developed in chapters 3 to 7. The Unified Modeling Language (UML) is a powerful 

and widely accepted tool for software engineering and conceptual modeling. Ontologies, on 

the other hand, have been getting an increasing impact in recent years in a number of 

application areas. Several attempts have been made to integrate UML and ontologies, which 

could be subsumed by two main generic scenarios. The first is to apply UML to ontological 

engineering, whereas the second is to improve UML with ontological analysis. Our intention is 

to follow both of those strategies: on the one hand we aim to apply UML to ontological 

engineering, but on the other we intend to provide an extension of UML founded on a 

developed ontology of functions, which would permit to represent functional knowledge.   

8.2 UML and Ontology Engineering 

Many of the applications of UML are far beyond the area of object-oriented analysis, where it 

is the current de facto standard. For example, UML has been used in relational database design 

[Dermuth, Hussmann, 1999], data modeling [Gornik, 2003], business modeling [Eriksson, 

Penker, 2000], multi-agent systems [Cranefield et al., 2001; Wagner, 2002; Bergenti, Poggi, 

2000], and knowledge based systems [Abdullah et al., 2004].  

Moreover, there is recognized a long list of benefits that the adoption of UML may bring 

to ontology engineering [Cranefield, Purvis, 1999; Cranefield et al., 2001; Kogut et al., 2002]: 

− The graphical notation of UML in comparison to text based logical languages, used as 

ontology representation languages, is easily comprehensible for a human user, also for 

domain experts who are not trained in logic. On the other hand there is no standard for 

visual representation of ontologies. UML in this sense could be treated as a graphical 

front-end of ontology representation languages. 

− UML is based on many years of modeling experience. 
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− UML is an open standard commonly known and accepted both in industry and 

academic world. None of the techniques developed for support of ontology 

development has such a wide impact outside the research community. 

− UML-oriented CASE tools are more accessible to software practitioners than current 

computer-aided ontology engineering tools coming from the research community. 

− Real world industrial ontology-based systems need to interact with legacy enterprise 

systems, which often have existing UML models. One representation common for both 

systems would simplify the mediation between those systems.  

− There is a large source of ontological knowledge already available in UML models of 

existing applications. Ontology extraction from existing UML diagrams can be 

simplified if UML is used also for ontology development.   

− In ontology-driven systems UML used both for ontology modeling and software 

engineering allows to reduce the number of the needed modeling tools and techniques 

to one. 

− UML supports a modular approach to ontology development. UML models can be 

changed easily due to the modular nature of object-oriented modeling.  

− Many of the UML class diagram constructs can be directly mapped to traditional 

ontology representation languages, i.e. class, generalization, instantiation, package.  

 

Two scenarios of applying UML to ontological engineering can be distinguished. The first 

involves direct application of UML to the development of ontologies. This line is followed, 

among others, by Cranefield, Purvis and colleagues who in [Cranefield, Purvis, 1999] 

proposed to apply UML combined with OCL as a formalism for ontology modeling and in 

[Cranefield et al., 2001] discussed the application of UML to ontology modeling for agent 

systems. 

The second scenario involves attempts to make UML compatible with the ontology 

modeling languages, especially those applied to Semantic Web such as DAML or OWL, by 

extending UML metamodel. For example, [Baclawski et al., 2001] suggest using UML for 

developing and displaying complex DAML ontologies. For that purpose UML is extended to 

handle those elements of DAML which cannot be mapped straightforward by UML constructs, 

such as property and restriction. [Falkovych et al., 2003] in turn propose to use UML to 

overcome the ontology development bottleneck. For that purpose authors introduced a 

translation mechanism between UML and OWL and introduced an alternative to Baclawski’s 

way of handling incompatibilities between UML and OWL.  

This scenario is also assumed in the OMG request for proposals for the Ontology 

Definition Metamodel (ODM), which is aimed at supporting the development of ontologies 
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using UML modeling tools, the implementation of ontologies in the OWL and forward and 

reverse engineering for ontologies [OMG, 2003a]. The required ODM should provide: (1) a 

standard metamodel grounded in the Meta Object Facility; (2) a UML Profile defining a visual 

notation for depicting ontologies, and  (3) mappings between the profile and metamodel, and 

between ODM and OWL DL. The request got response from both academia (e.g. [Djurić et al., 

2004; Brockmans et al., 2004]) and industry (e.g. [IBM, Sandpiper, 2005]).  

Despite the benefits UML brings to ontology engineering a number of problems from 

which it suffers have also been recognized. Among others it was pointed out by the Precise 

UML Group (pUML) [pUML, 2005] that UML lacks in formal semantics. On the other hand, 

as [Guizzardi et al., 2002a; Guizzardi et al., 2002b; Guizzardi et al., 2004a; Guizzardi et al., 

2004b] observed, defining UML constructs only in terms of its mathematical semantics, 

although essential, is not sufficient to make UML a suitable ontology representation language. 

In addition it was proposed to provide ontological correctness and so called real-world 

semantics of UML constructs by means of upper-level ontology, in particular by means of 

General Ontology Language and Unified Foundational Ontology [Guizzardi, 2005].  

From the above introductory remarks we see that UML not only brings benefits to 

ontological engineering but it also can be improved by means of ontologies, in principle top-

level ontologies upon which UML models can be built. In the current study we try to combine 

both of those approaches. We pursue the idea that UML may be used as an ontology modeling 

language, but on the other hand we propose to extend UML by means of the developed top-

level Ontology of Functions.  

8.3 Objectives 

As was recognized in section 2.2.2, UML has some limitations in representing functions and 

functional knowledge. In particular, it does not permit to model functional knowledge 

independently of the behavior realizing it. UML 2.0 is composed of two main views: structural 

and behavioral, and lacks an independent functional view. Although such a functional view is 

perhaps not required in the context of object-oriented modeling, it is however necessary if 

UML is supposed to be used as a general language for conceptual modeling applicable also in 

ontology engineering. Thus we propose to introduce to UML a third, functional view, based on 

the developed top-level ontology of functions. The proposed extension of UML would enable 

modeling of domain ontologies which require functional concepts. 
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8.4 Method 

For extending UML with a functional view we use a UML-built-in extension mechanism and 

by its means we adopt the notions of OF into UML.  UML comes with two mechanism of 

extension - a lightweight and a heavyweight approach ([OMG, 2004], p. 11): 

− Lightweight approach - a new dialect of UML can be defined by using profiles to 

customize the language for particular platforms (e.g., J2EE/EJB, .NET/COM+) and 

domains (e.g., finance, telecommunications, aerospace).  

− Heavyweight approach - a new language related to UML can be specified by reusing 

part of the InfrastructureLibrary.  

 

Here we intend to develop a lightweight extension, by developing a profile for functional 

modeling. The UML profile is “a stereotyped package that contains model elements that have 

been customized for a specific domain or purpose using extension mechanisms, such as 

stereotypes, tagged definitions and constraints. A profile may also specify model libraries on 

which it depends and the metamodel subset that it extends.”( [OMG, 2003b], p.14) 

8.5 Overview of the Architecture 

The architecture of the profile is founded on the OF architecture presented in section 7.5. It is 

composed of two profiles dependent on the Core Package:  the Ontology Profile and the 

Function Ontology Profile. The former is the profile for representing concepts of a non-

functional ontology and corresponds to the non-functional layer. Here, we refer to GFO but 

also other ontologies, in particular domain ontologies, may be represented in this profile as 

well. The Function Ontology Profile depends on the Ontology Profile and handles the concepts 

introduced in the Ontology of Functions (figure 21). 

 

Core OntologyProfile

FunctionOntologyProfile

 

 

Figure 21. Dependencies between Profiles. 
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Function Ontology Profile contains three packages: the Functions package, the Function 

Ascriptions package and the Impure Functions which correspond to the functional layer, 

realization layer and impure functional layer, respectively (figure 22). 

 

                      

FunctionOntologyProfile

Functions FunctionAscriptions

ImpureFunctions

 

Figure 22. Dependencies within the Function Ontology Profile. 

 

The Functions package supports modeling of the structures of functions and interrelations 

between functions independently of their realization. It contains two packages: Function 

Structures and Functional Relations (figure 23). 

  

                       

Figure 23. Dependencies within the Functions Package. 

 

The Function Ascriptions package relates functions to the structure and behavior, which realize 

functions. Moreover, it provides means for modeling ascriptions of functions to the elements 

of the Ontology Profile. 

The Impure Functions package is structured analogously to Functions package and contains 

the Impure Function Structures package and dependent on it the Impure Functional Relations 

package. The former permits to model structure of individually determined functions, whereas 

the latter permits to model interdependencies between functions, which depend on particular 

realizations, such as the triggering, sequence-part and improvement relations64. 

                                                      

64 For more detailed discussion on the layers of functional knowledge see section 7.5. 
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8.5.1 Ontology Profile 

In the present section we outline the Ontology Profile. However, we do not provide the full 

definitions of the elements of the package. For our purposes it is enough to say that both 

relations and categories of GFO are introduced as stereotypes in the Ontology Profile. On the 

basis of them we define the stereotypes of the Functions, Function Ascriptions and Impure 

Functions packages. Below we give only a short informal specification of the selected 

stereotypes of the Ontology Profile which are used later in the specification of the Function 

Ontology Profile: 

− Entity (from Ontology Profile) – a most general notion comprising all kinds of entities. 

− Individual (from Ontology Profile) – an element of the model that refers to exactly one 

individual entity in the domain.  Typically it is a UML object. However not all UML 

objects are individuals, e.g. ape:species is not an individual but a universal. 

− Universal (from Ontology Profile) – an element of the model which refers to more 

then one individual in the domain.  

− Complex Whole (from Ontology Profile) - it is a complex entity comprehended as a 

whole. In particular these are facts, configurations, configuroids, situations and 

situoids65.  

− Agent (from Ontology Profile) – proactive agentive entity capable of establishing 

goals.  

− Role (from Ontology Profile) – an aspect of an Entity in some context. 

− Part (from Ontology Profile) – general domain independent part-of relation. 

− Proper Part (from Ontology Profile) - non-reflexive part-of relation. 

− Process (from Ontology Profile) – an entity happening in time. 

                                                      

65 Note that in the profile developed we do not introduce the GFO distinction between situoids and 

situations but integrate them under the notion of situation. 
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8.5.2 Functions Package 

Function Structures  

Class Diagram 

 

      

Figure 24. Class diagram of the Functions Package. 

  

Class Descriptions 

Function (from Function Structures)  

General 

information 

A stereotype extending Classifier (from Kernel). 

Generalizations None. 

Semantics A Function is an intentional entity defined in purely teleological terms by the 

specification of a Goal, a Requirement and a Functional Item which 

commonly is ascribed by means of the Has-Function relation to the entities 

that in some context are the Realizations of the Function, execute such a 

Realization or are intended by a reliable Agent to do it. 

Specialization {disjoint, complete}  Basic Function, Complex Function. 
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 {disjoint, complete}  Coherent Function, Multiple-Goal Function. 

Attributes label: String [1..*] Provides the label of the Function. Typically, it 

is an expression of the form “to do something”. 

determinant: 

FunctionDeterminant 

[3…*] 

References the entities which determine the 

Function.  

sideEffect: Entity [0..*] References the unintended effects of the 

Function. A Side Effect is an entity of an 

arbitrary kind, which is affected by the function 

realization but is not a part of the function goal. 

In particular Side Effects are all unintended 

entities existentially dependent on a Goal. 

Associations 

finalState: Entity[1..*] References the Comprehensible Whole, which 

has a role of a Final State. 

Notations Function is represented as a rectangle marked with a black arrowhead with a 

white “F” inside and named by the label. Inside the rectangle in separated 

compartments are listed determinants: associated Goal (optionally (1) 

together with the Agent establishing it, the reason, and the priority (2) 

together with the Final State containing it), the Requirements, the Functional 

Item, and optionally Side Effects. Eventually, a function may be represented 

in compact form as a labeled rectangle with a black arrowhead with “F” 

attached. 

 

F

 

 

Coherent Function (from Function Structures)  

General 

information 

A stereotype extending Classifier (from Kernel). 

Generalizations Function (from Function Structures).  

Semantics A Function all of whose Final States compose a Coherent Entity.  

Notations Similarly to Functions, but the black arrowhead is marked with “CohF”. 
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Multiple-Goal Function (from Function Structures)  

General 

information 

A stereotype extending Classifier (from Kernel). 

Generalizations Function (from Function Structures).  

Semantics A Function whose Final States do not compose a single Coherent Entity.  

Notations Similar to Functions, but the black arrowhead is marked with “MultF”. 

 

Basic Function (from Function Structures)  

General 

information 

A stereotype extending Classifier (from Kernel). 

Generalizations Function (from Function Structures).  

Specialization {disjoint, incomplete}  Sequential Function, Instantaneous Function, 

Continuous Function. 

Semantics Basic Function is a Function having a single Final State being a Fact. 

Constraints Shall have assigned exactly one Final State. 

The Final State is single Fact. 

Notations Similar to Functions, but the black arrowhead is marked with “BscF”. 

 

Complex Function (from Function Structures)  

General 

information 

A stereotype extending Classifier (from Kernel). 

Generalizations Function (from Function Structures).  

Semantics A non-basic Function. 

Notations Similar to Functions but the black arrowhead is marked with “CmplxF”. 

 

Sequential Function (from Function Structures)  

General 

information 

A stereotype extending Classifier (from Kernel). 

Generalizations Basic Function (from Function Structures).  

Semantics A Basic Function whose Requirements and the Goal are Presentials and the 

Requirements are intended to be present before the Goal. 

Notations Similarly to Functions, but the black arrowhead is marked with “SeqF”. 

 

Instantaneous Function (from Function Structures)  

General 

information 

A stereotype extending Classifier (from Kernel). 

Generalizations Basic Function (from Function Structures).  
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Semantics A Basic Function whose Requirements and the Goal are Presentials located at 

the same or at coincident Time Boundaries. 

Notations Similar to Functions but the black arrowhead is marked with “InstF”. 

 

Continuous Function (from Function Structures)  

General 

information 

A stereotype extending Classifier (from Kernel). 

Generalizations Basic Function (from Function Structures).  

Semantics A Basic Function whose Requirements and the Goal are Processes having the 

common starts and endings. 

Notations Similar to Functions but the black arrowhead is marked with “ContF”. 

 

Function Determinant (from Function Structures)  

General 

information 

A stereotype extending Classifier (from Kernel). 

 

Generalizations None. 

Semantics Function Determinant points to the Entity which determines the structure of the 

Function.  

Associations determinedFunction: 

Function [1] 

References the Function which is determined. 

 filler: Entity[1] References the Entity which determines the 

Function. 

Notations Represented by a group of compartments within the function rectangle. 

 

Goal (from Function Structures)  

General 

information 

A stereotype of Classifier (from Kernel). 

 

Generalizations Function Determinant (from Function Structures). 

Semantics A Goal points to an Entity, which is intended to be affected by the Function. 

Every Goal is intended by some Agent for some Reason and has a Priority. 

Attributes reason: String [1..*] Provides the justification of a Goal.  

 priority: Integer [1] Defines a priority of a goal; based on the 

reason and the reliability of an Agent in a given 

community. 

Associations establisher: Agent [1..*] References the Agent who establishes a Goal. 

Notations A compartment within the function rectangle labeled with “Goal”. 
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Requirement (from Function Structures)  

General 

information 

A stereotype of Classifier (from Kernel). 

 

Generalizations Function Determinant (from Function Structures). 

Semantics Requirement point to the Entity which is intended to be present if the 

Function is to be realized. 

Notations A compartment within the function rectangle labeled with “Req”. 

 

Functional Item (from Function Structures)  

General 

information 

A stereotype of Classifier (from Kernel). 

 

Generalizations Function Determinant (from Function Structures) 

Semantics A Functional Item of the Function f indicates a role of entities executing a 

realization of f, such that all restrictions on Realizations imposed by the 

Functional Item are dictated also by some Goal of f. 

Constraints The filler is restricted to Role 

Notations A compartment within the function rectangle labeled with “FI”. 

 

Additional externally defined stereotypes are used in the package: 

- Entity (from Ontology Profile). 

- Complex Whole (from Ontology Profile). 

- Agent (from Ontology Profile). 
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8.5.3 Functional Relations Package 

Class Diagram 

                   

Figure 25. Class diagram of the Functional Relations Package. 

 

Class Descriptions 

Functional Relation (from Functional Relations) 

General 

information 

A stereotype extending Directed Relationship (from Kernel).  

Generalizations None. 

Semantics Functional Relation is an abstract class for all kinds of relations introduced 

in the Profile holding between two functions. 

source: Function [1] Specifies the source Function of the Functional 

Relation  

Associations 

target: Function [1] Specifies the target Function of the Functional 

Relation 
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Functional Subsumption (from Functional Relations) 

General 

information 

A stereotype extending Directed Relationship (from Kernel). 

Generalizations Functional Relation (from Functional Relations). 

Semantics Functional Subsumption relates two Functions: a super-function and a sub-

function, so we say that the sub-function is a super-function. A Function f 

subsumes a Function f’ iff all Determinants of f subsume appropriate 

Determinants of f’. 

source: Function [1] References the sub-function in the Functional 

Subsumption relation. 

Associations 

target: Function [1] References the super-function in the Functional 

Subsumption relation. 

Notations A line between two Functions labeled with <<fu>> with a hollow triangle as an 

arrowhead pointing to the superordinate function. 

 

 

Functional Specialization (from Functional Relations) 

General 

information 

A stereotype extending Directed Relationship (from Kernel). 

Generalizations Functional Subsumption (from Functional Relations). 

Semantics It is the non-reflexive variant of the Functional Subsumption. A Function f 

specializes a Function f’ iff all Determinants of f” subsume the appropriate 

Determinants of f and at least one Determinant of f’ specializes the appropriate 

Determinant of f. 

kind:  

DeterminantKind 

[1..3] 

Functional Specialization can be classified on the basis 

of the specialized determinants. The following flavors 

of Specialization are introduced: Requirement 

Specialization (req), Goal Specialization (goal), 

Functional Item Specialization (fi). 

target: Function[1] References the general Function in the Functional 

Subsumption relation.  

Associations 

source: Function [1] References the specializing Function in the Functional 

Specialization relation. 

Notations A line labeled with <<fu>> with a double hollow triangle as an arrowhead 

between two functions (optionally with listed kinds). 
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Functional Instantiation (from Functional Relations) 

General 

information 

A stereotype extending Directed Relationship (from Kernel). 

Generalizations - GFO Instantiation (from Ontology Profile). 

- Functional Relation (from Functional Relations). 

Semantics An individual Function f instantiates a universal Function f’ iff individual 

Determinants of f instantiate the corresponding universal Determinants of f’. 

target: Function [1] References the instantiated Function in the Functional 

Instantiation relation.  

Associations 

source: Function [1] References the instantiating Function in the 

Functional Instantiation relation. 

Notations A dashed arrow labeled with <<fu::>> between two functions.  

 

 

 

Functional Individualization (from Functional Relations) 

General 

information 

A stereotype extending Directed Relationship (from Kernel). 

Generalizations Functional Relation (from Functional Relations). 

Semantics A universal Function f is an Individualization of a universal Function f’ iff at 

least one of the individual Determinants of f instantiates an appropriate 

universal Determinant of f’ and the remaining Determinants of f  are  equal to 

the corresponding Determinants of f’. 

Attributes kind: DeterminantKind[1..3] The Functional Individualization can be 

classified on the basis of the instantiated 

Determinants.  The following flavors of 

Functional Instantiation are distinguished: 

Requirement Instantiation (req), Goal 

Instantiation (goal), Functional Item 

Specialization (fi). 

target: Function [1] References the individualized Function in 

the Functional Instantiation relation.  

Associations 

 

source: Function [1] References the individualizing Function 

in the Functional Instantiation relation. 

Notations A line between two functions with a hollow triangle as an arrowhead labeled 

with <<fu-individual>> (optionally with listed kinds). 
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Function Part (from Functional Relations) 

General 

information 

A stereotype extending Directed Relationship (from Kernel). 

Generalizations - Functional Relation (from Functional Relations). 

- Part-Of (from Ontology Profile). 

Semantics Function f is a Function Part of a Function f’ iff the Requirements of f are 

part of the Requirements of f’ and the Goal of f is a part of the Goal of f’.  

target: Function [1] References the Function which is a whole in the 

Function Part relation.  

Associations 

source: Function [1] References the Function which is a part in the 

Function Part relation. 

Notations A line between two functions ended with a diamond labeled with fu at the 

function being the whole of the Function Part relation.  

 

 

 

 

Support (from Functional Relations) 

General 

Information 

A stereotype extending Directed Relationship (from Kernel). 

Generalizations Functional Relation (from Functional Relations). 

Semantics A Function f supports a Function f’ iff a Goal of f is a Proper Part of the  

Requirements of f’. 

target: Function [1] References the Function which is supported in 

the Support relation.  

Associations 

source: Function [1] References the Function which supports in the 

Support relation. 

Notations A dashed arrow between two functions labeled with <<support>>. 

 

 

 

Prevent (from Functional Relations) 

General 

Information 

 A stereotype extending Directed Relationship (from Kernel). 

Generalizations Functional Relation (from Functional Relations). 

Semantics A Function f prevents a Function f’ iff the Goal of f excludes a Part of the 

Requirements of f’.  

Associations target: Function [1] References the Function which is prevented in the 
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Prevent relation  

source: Function [1] References the Function which prevents in the 

Prevent relation. 

Notations A dashed arrow between two functions labeled with <<prevent>>. 

 

 

Enable (from Functional Relations) 

General 

Information 

A stereotype extending Directed Relationship (from Kernel) 

Generalizations Functional Relation (from Functional Relations) 

Semantics A Function f enables a Function f’ iff the Requirements of f’ are Part of the 

Goal of f. 

target: Function [1] References the Function which is enabled in the 

Enable relation  

Associations 

source: Function [1] References the function which enables in the Enable 

relation. 

Notations A dashed arrow between two functions labeled with <<enable>>. 

 

 

 

Determinant Kind (from Functional Relations) 

Semantics It is the enumeration class that defines literals to determine the kind of 

Functional Specialization and Individualization with regards to the kind of 

the determinant.  The following kinds are distinguished:  

- Functional specialization/ Individualization with respect to 

requirements 

- Functional specialization/ Individualization with respect to the 

goal 

- Functional specialization/ Individualization with respect to the 

functional item 

 

Additional externally defined stereotypes are used in the package: 

- Function (from Function Structures). 

- Part (from Ontology Profile). 

- Proper Part (from Ontology Profile). 
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8.5.4 Function Ascriptions Package 

Realization 

Class Diagram 

               

Figure 26. Class diagrams of the Function Ascriptions Package. 

 

Class Descriptions 

Realization (from Functional Realizations) 

General 

Information 

A stereotype extending Directed Relationship (from Kernel) 

Generalizations None. 

Semantics It is a class for all types of Realizations introduced in the profile66. 

Associations realizationRange: Function [1] References the Function which is realized.  

 realizationFiller: Entity [1] References the Entity realizing a Function. 

                                                      

66 Comprises both individual and universal realizations. In analogous way realizer and has-function are 

introduced. All those relations pertian primarily to individuals and indirectly to the universals 

instantiated. 
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Notations An arrow labeled with <<realization>> between an Entity and a Function.  

 

 

 

Actual Realization (from Functional Realizations) 

General 

Information 

A stereotype extending Directed Relationship (from Kernel). 

Generalizations Realization (from Realizations). 

Semantics Actual Realization references an Entity which fulfills the Requirements and 

the Goal of the function and provides the additional cause for the Goal being 

fulfilled. 

Notations Similar to Realization but labeled with <<act-realization>>. 

 

Culminative Realization (from Functional Realizations) 

General 

Information 

A stereotype extending Directed Relationship (from Kernel). 

Generalizations Realization (from Realizations). 

Semantics References a culminative Process realizing a Sequential Function. 

Notations An arrow labeled with <<culmin-realization>> between a culminative Process 

and a Sequential Function. 

 

Non-culminative Realization (from Functional Realizations) 

General 

Information 

A stereotype extending Directed Relationship (from Kernel). 

Generalizations Realization (from Realizations). 

Semantics References a non-culminative Process realizing a Continuous Function. 

Notations A labeled with <<non-culmin-realization>> arrow between a non-culminative 

Process and a Continuous Function. 

 

Situational Realization (from Functional Realizations) 

General 

Information 

A stereotype extending Directed Relationship (from Kernel). 

Generalizations Realization (from Realizations). 

Semantics References a Situation realizing an Instantaneous Function. 
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Notations A labeled with <<sit-realization>> arrow between a Situation and an 

Instantaneous Function. 

 

Dispositional Realization (from Functional Realizations) 

General Information A stereotype extending Directed Relationship (from Kernel) 

Generalizations Realization (from Realizations) 

Semantics References an Entity which has a disposition to be an Actual Realization of 

a Function.  

Notations A labeled with <<disp-realization>> arrow between an Entity and a Function. 

 

Realizer (from Functional Realizations) 

General 

Information 

A stereotype extending Directed Relationship (from Kernel) 

Generalizations None 

Semantics It is a class for all types of Realizers introduced in the Profile. 

Attributes dynamics: RealizerKind[1] Specifies the kind of the Realizer with 

respect to its dynamics. 

realizerRange: Function [1] References the Function which is 

realized.  

Associations 

realizerFiller: Role[1] References the Role being a Realizer. 

Notations An arrow labeled with <<realizer>> between a Role and a Function. 

 

 

Dispositional Realizer (from Functional Realizations) 

General 

Information 

A stereotype extending Directed Relationship (from Kernel). 

Generalizations Realization (from Realizations). 

Semantics It is an Entity relevantly similar to the Actual Realizer. Relevant similarity 

means that it is structurally similar to an Actual Realizer in all aspects 

relevant for function Realization. 

Notations A labeled with <<disp-realizer>> arrow between a Role and a Function.  
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Dispositional Strong Realizer (from Functional Realizations) 

General 

Information 

A stereotype extending Directed Relationship (from Kernel). 

Generalizations Dispositional Realization (from Realizations). 

Semantics A Dispositional Realizer of a Function f which is involved into a  

Dispositional Realization of f is called a Dispositional Strong Realizer of f. 

Notations A labeled with <<disp-str-realizer>> arrow between a Role and a Function. 

 

Actual Realizer (from Functional Realizations) 

General 

Information 

A stereotype extending Directed Relationship (from Kernel). 

Generalizations Realizer (from Realizations). 

Semantics A Role of an Entity executing the Realization r of a Function f is called an 

Actual Realizer of f. 

Notations A labeled with <<act-realizer>> arrow between a Role and a Function. 

 

Realizer Kind (from Realizations) 

Generalizations None 

Semantics It is the enumeration class that defines literals to determine the dynamics of 

realizers.  The following two kind are distinguished:  

- Passive 

- Dynamic  

A passive realizer is such a realizer that does not undergo a significant 

change during the realization of a function. A realizer is active if it 

undergoes a change during the realization of a function.  

 

Additional externally defined stereotypes are used in the package: 

- Individual (from Ontology Profile) 

- Universal (from Ontology Profile) 

- Function (from Function Structures) 

- Entity (from Ontology Profile) 

- Role (from Ontology Profile) 

- Process (from Ontology Profile) 

- Situation (from Ontology Profile) 
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Has-Functions 

Class Diagram 

 

Figure 27. Class diagram of the Has-Functions Package. 

 

Class Descriptions 

Has-Function (from Has-Functions) 

General 

Information 

A stereotype extending Directed Relationship (from Kernel). 

Generalizations None 

Semantics A relationship comprising all types of assignments of a Function to an 

Entity in a Situation introduced in the Profile. 

target: Function[1] References the Function which is ascribed in the 

Has-Function relation.  

source: Entity [1]  References the Entity to which a Function is 

ascribed. 

Associations 

context: Situation [1] References a Situation in context of which a 

Function is assigned to an Entity. 

Notations A diamond labeled with <<has-fu>> linked to an Entity, a Situation and a 

Function. The Situation is indicated by the keyword context and the 

Function - by the arrowhead pointing to it. Optionally, in cases where the 

context of the Has-Function is irrelevant it may be represented as an arrow 

labeled with <<has-fu>> between an Entity and a Function. 
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Has-Actual-Function (from Has-Functions) 

General 

Information 

A stereotype extending Directed Relationship (from Kernel). 

Generalizations Has-Function (from Has-Functions). 

Semantics An Individual x has an Actual Function f in a Situation  s iff  x is an Actual 

Realization of f in s or x is a role-filler of an Actual  Realizer r of f in s. 

Notations Similar to Has-Function but labeled with <<has-act-function>>. 

 

Has-Dispositional-Function (from Has-Functions) 

General 

Information 

A stereotype extending Directed Relationship (from Kernel). 

Generalizations Has-Function (from Has-Functions). 

Semantics An Entity x has a Dispositional Function f in a Situation  s iff x is a 

Dispositional Realization of f  in s or an actor of a Dispositional  Realizer of 

f in s. 

Notations Similar to Has-Function but labeled with <<has-disp-function>>. 

 

Has-Intended-Function (from Functions) 

General 

Information 

 A stereotype extending Directed-Relationship (from Kernel). 

Generalizations Has-Function (from Has-Functions). 

Semantics An Entity x has an Intended Function f in a situation  s  iff there is an Agent 

who intends x to have a Function f in s. 

Attributes kind: IntendedFunction Kind[1..4] Specifies the kind of Intended Function. 

Notations Similarly to Has-Function but labeled with <<has-int-function>>. 

 



A UML Profile for Functional Modeling founded on OF 

 

194 

Intended-Function Kind (from Has-Functions) 

Generalizations None. 

Semantics It is the enumeration class that defines literals to determine the kind of an 

intended function.  The following kinds are distinguished:  

- required - Has Required Function 

- designed - Has Designed Function 

- user - Has User Function 

- researched -Has Researched Function 

 

Additional externally defined stereotypes are used in the package: 

- Function (from Function Structures) 

- Entity (from Ontology Profile) 

- Situation (from Ontology Profile) 

8.5.5 Malfunctions Package 

Malfunctions are concerned with the lack of a dispositional or actual realization of a given 

function. An item is malfunctioning when a goal of the function should be reached by the item 

but is not.  

Class Diagram 

      

«stereotype»

Individual

«stereotype»

Function

«stereotype»

Malfunction

«stereotype»

Situation

«stereotype»

Malfunction wrt History

«stereotype»

Malfunction wrt Instances of Kind

+kind : Malfunction Kind

«stereotype»

Malfunction wrt Intention

PartOf

+required

+desigend

+user

+researched

«enumeration»

Malfunction Kind

context

target

source
part whole

 

Figure 28. Class diagram of the Malfunctions Package. 
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Class Descriptions 

Malfunction (from Malfunctions) 

General 

Information 

A stereotype extending Directed Relationship (from Kernel). 

Generalizations None. 

Semantics An abstract class comprising all types of Malfunctions of an Individual in a 

Situation (context) introduced in the Profile. 

target: Function[1] References the Function in the context of which 

the Malfunction is attributed. 

source: Individual [1] References an Individual to which a Malfunction 

is attributed. 

Associations 

context: Situation [1] References a Situation in which an Entity 

malfunctions. 

Notations A diamond stereotyped with <<mal-fu>> linked to an Individual, a Situation 

and a Function. The Situation is indicated by the keyword context, the 

Function - by the arrowhead pointing to it. Optionally, the diamond may be 

labeled with a description of the failure.  

    

     

 

Malfunction wrt. Intended-Function (from Malfunctions) 

General 

Information 

A stereotype extending Directed Relationship (from Kernel). 

Generalizations Malfunction (from Malfunctions). 

Semantics An Individual x malfunctions in a given context  c  with respect to the 

Intended Function  f  iff:  

(a)  x has Required/Designed Function f  in c  and  

(b) x does not have Dispositional or Actual Function f  in c.  

Attributes kind: MalfunctionKind [1..2] Specifies the kind of Malfunction. 

Notations Similar to Malfunction but stereotyped with <<int-mal-fu>>. 
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Malfunction wrt. History (from Malfunctions) 

General 

Information 

A stereotype extending Directed Relationship (from Kernel). 

Generalizations Malfunction (from Malfunctions). 

Semantics An Individual x Malfunctions with respect to its History in a Situation s in 

the context of a given Function f  iff x used to have a  Dispositional or an 

Actual Function f in a Situation s’ similar to s and does not have it in s.  

Notations Similarly to Malfunction but stereotyped with <<hist-mal-fu>>. 

 

Malfunction wrt. other Instances of a Kind (from Malfunctions) 

General Information  A stereotype extending Directed Relationship (from Kernel). 

Generalizations Malfunction (from Malfunctions). 

Semantics An Individual x being an instance of a kind u Malfunctions in comparison 

with other Individuals of Kind u with respect to a Function f in a Situation 

s  iff  

(a) other instances of u have a Dispositional or Actual Function  f in the 

Situations similar to s, 

(b) x does not have a Dispositional or Actual Function  f in s. 

Notations Similar to Malfunction but stereotyped with  <<kind-malfunction>>. 

 

Malfunction Kind (from Malfunctions) 

Semantics It is the enumeration class that defines literals to determine the kind of an intended 

malfunction.  The following types are distinguished:  

- Malfunction with respect to required function 

- Malfunction with respect to designed function. 

- Malfunction with respect to user function. 

- Malfunction with respect to researched function. 

-  

 

Additional externally defined stereotypes are used in the package: 

- Individual (from Ontology Profile) 

- Situation (from Ontology Profile) 

- Function (from Function Structure) 
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8.5.6 Impure Function Structures Package 

Class Diagram 

 

Figure 29. Class diagram of the Impure Function Structures Package. 

 

Class Descriptions 

Individual Function (from Impure Function Structures) 

General 

information 

A stereotype extending Object. 

Generalizations Function (from Function Structures). 

Semantics An individual instance of a Function. It is a Function defined in the context of 

a particular realization. All determinants of the Individual Function are 

Individuals.  

Notations 

F

 

Additional externally defined stereotypes are used in the package: 

- Functional Instantiation (from Function Structure).  

- Function (from Function Structure).  
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8.5.7 Impure Functional Relations Package 

Class Diagram 

 

Figure 30. Class diagram of the Impure Relations Package. 

 

Class Descriptions 

Impure Functional Relation (from Impure Functional Relations) 

General 

Information 

A stereotype extending Directed Relationship (from Kernel). 

Generalizations None. 

Semantics It is a grouping of all impure functional relations introduced. 

source: Function [1] References the Function which is the source in the 

Impure Functional Relation  

Associations 

target: Function [1] References the Function which is the target in the 

Impure Functional Relation. 

 context: Entity [1] References the Entity which is the Realization of 

the Target Function in context of which the Impure 

Functional Relation holds. 

 

Trigger (from Impure Functional Relations) 

General 

Information 

A stereotype extending Directed Relationship (from Kernel). 

Generalizations Impure Functional Relation (from Impure Functional Relations). 

Semantics A Function f triggers a Function f’ in a Realization r iff the Goal of  f  is a 

Trigger of the Realization r of the Function f’ 

Notations A diamond stereotyped with <<trigger>> linked to a source and target 

Function and an Entity being a Realization of a target Function. The 
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arrowhead points to the target Function and the link marked with the 

keyword context to the Entity. 

 

 

 

Improve (from Impure Relations) 

General 

Information 

A stereotype extending Directed Relationship (from Kernel). 

Generalizations Impure Functional Relation (from Impure Functional Relations). 

Semantics A Function f improves a given Realization r of a Function f’ iff  the  

Realization of f neutralizes some Side Effect of the Realization r  of  f’. 

Notations Similar to Trigger but labeled with <<improve>>. 

 

Sequence Part (from Functional Relations) 

General 

information 

A stereotype extending Directed Relationship (from Kernel). 

Generalizations - Impure Functional Relation (from Impure Functional 

Relations). 

- Part-Of (from Ontology Profile). 

Semantics A Function f is a Sequence Part of a Function f’ iff f is an element of 

the sequence of Functions realizing the Function f’.  

target: Function [1] References the Function which is realized 

by the sequence of Functions.  

Associations 

source: Function [1] References the Function which is an 

element of the sequence of Functions 

realizing the whole-function.  

Notations If the context is not required - a line between two functions ended with 

a diamond labeled with seq at the function being the whole of the 

Sequence Part relation. If the context is required to be present then 

Sequence Part can be presented similarly to Trigger but labeled with 

<<seq-part>>. 

 

 

 



A UML Profile for Functional Modeling founded on OF 

 

200 

Additional externally defined stereotypes are used in the package: 

- Function (from Function Structures) 

- Realization (from Realizations) 

- Entity (from Ontology Profile) 

- PartOf (from Ontology Profile) 

 

8.6 Discussion and Conclusions  

After presenting the developed profile let us reconsider the existing UML elements which may 

be used to model functions and compare them to the profile developed. In particular we will 

concentrate on use case diagrams which are often suggested to represent the functionality of a 

system, see e.g. ([Rumbaugh et al., 1999], p. 488).  

On the first glance functions in OF resemble use cases. Firstly, there are a number of 

structural similarities: Firstly, the name of a use case resembles the label of a function. 

Secondly, a use case is related to the behavior realizing it (by ownedBehavior relation), which 

resembles the realization relation between function and the entity realizing it (e.g. a process) in 

OF. Thirdly, use cases may be specified in terms of pre- and post-conditions, which resemble 

requirements and goals of functions. Fourthly, use cases are assigned to actors representing the 

role of the external to the system entity involved in the use case. The association of the use 

case to an actor “describes how an instance of the classifier realizing the use case and a user 

playing one of the roles of the actor interact” ([OMG, 2005], p. 579). In this sense an actor 

resembles the functional item. In addition, use cases are organized into a 

generalization/specialization tree and can be glued by <<include>> and <<extend>> relations, 

which resemble the part-of relations between functions. 

The above, then, suggests treating use cases as functions and the redundancy of the 

additional profile for functional modeling. However, in our opinion the above similarities are 

only superficial. The first strict difference concerns the essence of the use cases which are 

behavioral classifiers, such that “each use case specifies some behavior, possibly including 

variants, that the subject can perform in collaboration with one or more actors”( [OMG, 2004], 

p. 578). From this follows that if use cases are to be considered to represent functions, then in 

fact they are restricted only to behavioral functions, i.e. functions realized by some behavior, 

i.e. a process. The relation of ownedBehavior confirms this understanding of the use case. In 

OF, on the other hand, accordingly with the principles adopted in functional device 

representation, we consider functions to be independent of behavior. Moreover, as reported in 
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section 3.5, there are functions not related to behavior, i.e. instantaneous functions. Thus, the 

notion of function in OF is broader than the notion of function based on a use case.  

Concerning the similarities in structure between use cases and OF functions we admit 

that functions, analogously to use cases, are defined in terms of preconditions and 

postconditions, called requirements and goals in OF. However, in contrast to pre- and post-

conditions, which in fact are not the elements of UML meta-model, requirements and goals in 

OF are ontologically analyzed and formally defined. Concerning the similarity of the notion of 

actor and the notion of functional item we claim that they cannot be identified. Firstly, an actor 

represents the role of the external entity in interaction with a system, not with a single use case. 

For example, consider the typical actor customer, which is a role of a person in the context 

of a whole system. Customer can be assigned to various use cases, e.g. view item, or 

purchase item. In the interaction with each of those use cases customer has a different 

role, i.e. observer, purchaser. Those roles are not dependent on the actor as such but on 

the use case, hence the same role may be shared by the different actors. For example, system 

administrator may also be assigned to view item use case and have a role of an 

observer in the context of that use case. As reported in [Irwin, Turk, 2005], those more 

precise roles are not represented in use cases, but are represented in OF as functional items. 

In addition, it seems problematic in use case diagrams to distinguish a mere participant 

of a use case from an actor, being an executor of it. For example, the use case update 

customer data may be defined in such a way that it requires the presence of a customer 

but is executed by a bank employee. This again can be grasped by the notions of OF – here in 

particular by  the distinction between the realizer and the means of realization.  

The relations between functions introduced in OF exceed the subsumption and part-of 

relations and thus provide the richer framework for modeling functions than the relations 

present in use case diagrams. Finally, the issues of function ascription and malfunction 

ascription crucial in many domains are out of the scope of use case diagrams, but are handled 

in OF.   

Concluding we can say that functions in our understanding and the UML profile 

developed on their basis differ significantly from use case diagrams and provide a richer 

formalism for modeling functions. In addition, the understanding of a use case as a behavioral 

classifier prevents us from considering functions as an extension of use case, but more 

generally as an extension of classifier.  

In addition, it should be mentioned that, for the purpose of modeling functions with 

processual realizations only, the use case diagrams can be enhanced with some of the 

expressiveness provided above, such as functional relations. 
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The profile is intended to be used just as it was discussed in the introductory section 

for the domain ontology development. In the first place in [Burek et al., 2006] we intend to use 

it for modeling functions within Open Biological Ontologies.   
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9 Conclusions 

9.1 Problem 

The current work is concerned with the development of a top-level ontology of functions and 

the incorporation of it into a wider ontological framework as well as providing the means for 

functional modeling. It was recognized that the notion of function is a domain-independent 

notion and is important in a high number of application areas. However, in our opinion there is 

a lack of a general, domain-independent treatment of this notion. The current approaches to 

function representation are mainly domain-oriented and the available top-level ontologies lack 

the notion of function or treat it scantily. 

9.2 Solution 

In the current work we have developed a formal, top-level ontology of functions incorporated 

in the wider ontological framework of GFO. The developed ontology covers four basic 

problem areas:  

1. The representation of functions and functional relations independently of their 

realizations. 

2. The determination of function realizations. 

3. The assignment of functions to entities by the has-function relation. 

4. The determination of an ontological status of function and the incorporation of the 

ontology of functions into the top-level ontology of GFO. 

In addition, on the basis of the ontology developed the ready-to-use modeling framework has 

been proposed. 

9.3 Advantages 

Concerning the first problem area in the developed ontology functions are represented by so 

called functional structure, which brings several profits to functional representation. The 

advantages are discussed in the order of the requirements for the ontology of functions 

postulated in section 2.4. 
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− A function structure comprises the natural language label and the formally defined 

determinants. The label permits multiple natural language description that makes functions 

easily comprehensible for human users (ref. R.1.1). On the other hand, the label is only 

one of the components of functional representation, thus functional representation is not 

limited to ambiguous natural language description but may be precisely given by function 

determinants – requirements, goal, and functional item. 

− The requirements together with the goal can be interpreted as an input-output pair, which 

makes the framework compatible with input-output representations (ref R.1.2.). On the 

other hand, it extends them, since functions are not reduced in our approach only to the 

pair of an initial state and goal, but a functional item is also included. In addition, all those 

notions are ontologically founded in GFO. 

− The OF architecture permits both to represent functions independently from their 

realizations (on the functional level) and to represent entities involved in the realization 

independently from functions (on the non-functional level) (ref. R.1.3.1, R.1.3.2). The 

realization layer mediates those two independent layers. 

− Functions are defined neither in behavioral nor in processual terms, which enables to 

handle not only behavioral functions but also static, structural functions (ref. R.1.4). Three 

basic kinds of functions permit to handle processual and non-processual functions. 

Sequential functions handle the cases in which the goal of the function is the culmination 

of the realization process. In contrast, continuous functions permit to handle functions 

maintaining the goal for a given period of time. Finally, instantaneous functions handle 

static and instantaneous realizations of functions like the functions realized by structures. 

Moreover, the analysis of the dynamics of a realizer permit to distinguish processual 

passive from processual active functions. 

− Function is not defined by reference to the particular entity having or realizing it but to the 

functional item, which is a role depicted in purely teleological terms. This makes the 

function structure independent of the particular function bearers (ref. R.1.5).  

− The introduced relations between functions enable not only to model a single function 

independently of its realizations but also a web of functions (ref. R.1.6). Classical 

ontological relations such as is-a, instantiation, part-of have been adopted for functions. 

Moreover, a number of relations specific for function such as enable, support, prevent have 

been defined. 

− The notion of a goal permits to handle not only the proper goals of functions but also 

restrictions on function realizations. Side effects, both positive and negative are handled 

separately from the function goals (ref. R.1.7). 
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− The very same function in different realizations may be triggered by various triggers. Not 

including triggers into requirements is an additional aspect of making function structure 

realization-independent.  

− Additionally, conflicts between functions are handled by priorities assigned to goals which 

permit to order functions. 

 

Concerning the second problem area, two aspects of the notion of realization are identified. In 

the first sense an individual entity, in particular a process is said to be a realization of a 

function, and in the second - an entity, e.g. a persistant via its execution of the process of 

realization realizes the function. The former is called the realization of a function, the latter - 

the realizer of a function. This dichotomy enables to evaluate entities against being the 

realizations of functions, as well as against executing and contributing to the realizations of 

functions (ref. R.2). Moreover, since the notion of realization underlies the function ascription 

it permits to handle the distinction of the function of processes and the function of objects. In 

OF functions might be ascribed both to the entities being the realizations of functions, e.g. 

processes or situations as well as to the entities executing those realizations, e.g.  persistants 

(ref. R.3.2).   

Not only actual but also dispositional realizations and realizers, identified by the 

references to the realization and realizer universal, are handled. They permit to identify the 

potential realizations of functions. 

Concerning the third problem area, three basic kinds of has-function relation have been 

introduced: dispositional has-function, actual has-function and intended has-function (ref. 

R.3.1). That solution seems to capture coherently most of the approaches discussed in the 

literature. The first two kinds correspond to the intuitions of a function understood as a 

capability or a actual behavior of an entity. In turn, the intended has-function takes into 

account the agent’s intentions and justifies the normative character of function ascriptions (ref. 

R.3.3). In particular, it is the extension of the view of a function as the “the designed 

disposition”, which handles not only the designed dispositions, but also those required, or 

intended by a user or researched. In addition, the framework permits also to assign 

malfunctions to entities (ref. R.3.4), which is of particular importance in item evaluation. The 

three modes of malfunction cover not only the malfunction of artifacts but also of other sorts 

of entities, e.g. body organs.  

Finally, the developed ontology has been incorporated into the wider ontological 

framework of GFO (ref. R.4). This is of particular importance, since we have found functional 

knowledge not to be standing in isolation but to be related to non-functional knowledge. OF is 

designed as a module of GFO and the category of function is incorporated into GFO as an 

intentional entity, being a part of mental strata. This solution keeps the notion of function out 
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of processual and behavioral bias. On the basis of the developed framework we have provided 

three classifications of functions, which serve as the basis for the development of a taxonomy 

of top-level functions. Additionally, three classifications of functions based on their 

realizations, called external classifications, have been introduced. 

The ontology is organized into a modularized architecture which, on the one hand, 

separates the pure functional knowledge from the non-functional one, and on the other hand 

enables to relate them by the realization and function ascriptions. The modularized architecture 

enables to apply OF into current ontologies which lack functional knowledge or comprise 

functional and non-functional knowledge in loose integration only without significant changes 

to them as will be demonstrated in the coming section. 

9.4 Applications 

9.4.1 Conceptual Modeling 

It has been demonstrated by Guizzardi in [Guizzardi, 2005] that the top-level ontologies can 

provide sound and formal foundations for the structural conceptual models. Our intention is to 

apply OF together with the underlying GFO as a general, formal and precise language for 

functional modeling. In particular we are interested in extending UML - the current de facto 

standard in OO conceptual modeling, which has recently been proposed by many authors to be 

used also for ontological engineering. 

UML as it was recognized in section 2.2.2 has some limitations in representing 

functions and functional knowledge. In particular UML permits to represent functions only in 

terms of behavior: “each use case specifies some behavior, possibly including variants, that the 

subject can perform in collaboration with one or more actors”( [OMG, 2004], p. 578). From 

this follows that if use cases are to be considered as functions, then in fact they are restricted 

only to behavioral functions, i.e. functions realized by some behavior (process).  

UML 2.0 is composed of two main views: structural and behavioral, and lacks an 

independent functional view. Although, such a functional view is perhaps not required in the 

context of object-oriented modeling, it is however necessary if UML is supposed to be used as 

a general language for conceptual modeling applicable also in ontology modeling. Thus, we 

proposed in chapter 8 to introduce to UML a third, functional view, based on the developed 

OF and the underlying it GFO. The proposed extension is of particular importance for enabling 

modeling of domain ontologies, which require functional concepts. 

For extending UML with a functional view founded on OF we developed a UML profile 

in which the notions of OF are introduced as stereotypes with their own graphical notations  
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enabling the graphical visualization of functional models. Figure 15 as well as figure 31 

illustrating the application of OF in bio-ontologies make use of some of those stereotypes. 

The developed UML profile serves on the one hand as a formalism for modeling 

functional knowledge and on the other hand it may be applied as a guide-post for specifying 

functions in conceptual modeling.  

9.4.2 Biological Ontologies 

The developed ontology of functions is intended to be domain independent and thus applicable 

in a number of domains. So far, the first attempts of applying it to bio-ontologies, and in 

particular to the Open Biomedical Ontologies (OBO), has been presented in [Burek et al., 

2006]. The Open Biomedical Ontologies project (OBO) [OBO, 2005] serves as an umbrella 

organization providing some basic criteria and guidelines for the standardization of biomedical 

ontologies. It includes a large number of domain specific ontologies such as the Gene 

Ontology (GO) [Ashburner et al. 2000] – which provides information about processes, 

molecular functions and sub-cellular locations of genes and gene products – and anatomical 

and developmental ontologies available for specific species. In [Burek et al., 2006] OF has 

been recognized to be beneficial for OBO, in particular it helps in the identification and 

explanation of relations between processes and functions and the identification of implicit 

functions and processes. 

Identification of Links between Processes and Functions 

There has been some controversy and discussion about whether the “Molecular Function” 

taxonomy of the Gene Ontology describes functions or activities, and how functions are 

related to processes [Smith et al., 2003]. To our knowledge, no practical or theoretical solution 

has yet been proposed. Functions and activities are usually considered different entities, and 

actions or activities may realize certain functions. Therefore, while the function of an enzyme 

may be to catalyze a reaction, the activity performed by the enzyme is the catalysis 

itself, which may be embedded in another process. We assume that at least parts of the 

Molecular Function taxonomy refer to genuine functions in the sense of OF, and the annotation 

relation for some of the gene products annotated to these terms corresponds to the has-function 

relation. A general example is GO:0005215 (transporter activity), which we 

understand as referring to the function to transport. A more specific example is 

GO:0051119 (sugar transporter activity), which can be understood as the 

function to transport sugar and can be modeled in the framework of OF:  
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− As requirements, we assume that a sugar-molecule (CHEBI:25407 or 

CHEBI:25679) is located at some location. 

− The goal is the location of the sugar molecule at a different location. 

− The functional item is a universal role which we call sugar transporter. 

 

<<req>>

Sugar present AND

Sugar located_in A

<<goal>>

Sugar located_in B

F

MAL21

to transport Sugar

(MF GO:0051119)

<<fi>>

Sugar Transporter

Carbohydrate

transport

(BP GO:0008643)

MAL21 qua sugar

transporter

<<realization>>

<<role-in>>

<<has-role>>

<<req>>

Oxygen present  AND

Cell present  AND

NOT Oxygen contained_in Cell

<<goal>>

Oxygen contained_in Cell

F

Erythocyte

(CL:0000232)

to accumulate Oxygen

<<fi>>

Oxygen Accumulator

Oxygen

Accumulation

Process

Erythrocyte qua

Oxygen Accumulator

<<realization>>

<<role-in>>

<<has-role>>

 

Figure 31. Two exemplary models employing OF constructed by means of the UML profile for OF. 

On the left-hand side, a schematic version of the function to transport sugar is shown together 

with its realization. Processes of the type carbohydrate transport realize this function, and an 

entity, in this case MAL21 (maltose permease), has ascribed the function to transport 

sugar. Whenever applicable, the identifiers from the GO are used (for the function and process). 

MAL21 is currently annotated to the function and the process in the GO. In this model, the annotation 

relation is replaced by the has-function relation. On the right-hand side, the function to accumulate 

oxygen is modeled. This is a function taken from the Celltype Ontology. Except for erythrocyte, 

the entities involved in this model are not present in any of the OBO ontologies but are identified by 

means of OF. 

 

We find that many of the gene products annotated with the sugar transporter 

activity in GO’s Molecular function taxonomy are also annotated with some sub-category 

of the transport (GO:0006810) or carbohydrate transport (GO:0008643) 

categories in GO’s Biological Process taxonomy. Also the names of the categories indicate a 

link, and of course there is an obvious one: gene products which have a function to 

transport may participate in a transport process. With the help of OF, we can make 

explicit some links between categories in GO’s Molecular Function and Biological Process 

taxonomies: Processes of type carbohydrate transport (GO:0008643) are 
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realizations of the function to transport sugar; many of the gene products annotated 

with either carbohydrate transport or sugar transporter activity, such as 

MAL21 (maltose permease), can stand in the has-function relation to to transport 

sugar; new categories appear, namely gene products acting as (or “qua”) transporter, e.g. 

MAL21 qua transporter which is a role of MAL21 and a realizer of the function to 

transport sugar. The left-hand side of figure 31 demonstrates the full interconnections 

of this example by means of OF. In terms of the relations we introduced this is captured by 

Execute(MAL21, GO:0008643, GO:0051119), which has the reading that MAL21 

executes  the process of carbohydrate transport which is a realization of the function 

to transport sugar.  What could be directly added to GO are links of realization and 

has-function: UniRlMin(GO:0008643, GO:0051119) and UniHasFu(MAL21, 

GO:0051119) saying that process GO:0008643 is the realization of function 

GO:0051119 and that MAL21 has a function  GO:0051119. 

Identification of Implicit Functions and Processes  

The Ontology of Functions can be applied to existing taxonomies in order to make explicit 

functions and processes which are currently implied but not separately defined. This kind of 

use of the concept of function occurs in the Celltype Ontology [Bard et al., 2005] (CL) and the 

Ontology of Chemical Entities of Biological Interest [Brooksbank et al., 2005] (ChEBI). Here, 

we will only explore the Celltype Ontology, but the same argument can be applied to ChEBI. 

CL uses the term function in the sub-tree cell by function which classifies cell 

types by the functions which they perform. A general example is stuff accumulating 

cell (CL:0000325), and more specifically oxygen accumulating cell 

(CL:0000329), of which a red blood cell or erythrocyte (CL:0000232) is a 

sub-category. The function to accumulate oxygen (by a cell) would be 

modeled as shown in the right-hand side of figure 31: 

− The presence of oxygen (ChEBI:25805) outside of a cell (CL:0000000) is the 

requirement of the function. 

− The goal of the function is the cell’s accumulation of oxygen: The oxygen is contained 

in the cell. 

− The functional item is called oxygen accumulator. 

 

The subsumption of erythrocyte under oxygen accumulating cell in CL reflects 

the fact that erythrocytes have the function to accumulate oxygen, UniHasFu 

(CL:0000232, to accumulate oxygen). Further, they may act as oxygen 
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accumulators, a new category for CL, in the process of oxygen accumulation, 

UniRlMin(oxygen accumulation, to accumulate oxygen). The execute relation 

captures all these new relations appropriately: Execute(CL:0000232, oxygen 

accumulation, to accumulate oxygen). The analysis of erythrocyte in CL has led to 

the discovery of entities which are not yet part of CL or any other OBO ontology, but which 

contribute to the understanding of interactions among ontologies in cellular biology, and 

therefore making them amenable to automated reasoning. Additionally, we can now define 

oxygen accumulating cell as a cell which has the function to accumulate 

oxygen. 

From the above we conclude that OF can be used to provide additional information for 

existing biomedical ontologies such as the Gene Ontology (GO), without the need for 

modification of the existing structure of these ontologies. In general, it provides a framework 

for defining functions and relating them to various other entities, such as processes, roles and 

even genes and gene products. This framework may benefit the annotation and curation 

process of domain ontologies and lead to improved definitions and completeness. The 

advantage of the OF is enhanced expressivity. For example, the curators of GO, when 

annotating a gene product with the appropriate terms from GO, will have the information 

available that a certain protein is involved in some process and how it is related to a certain 

molecular function. They may also have more information about the protein, for example the 

conditions under which it operates and other requirements which need to be satisfied for the 

protein to be active. By means of OF, this information can be made explicit, and will not be 

lost as is currently the case. OF further allows for a refinement or replacement of the 

annotation relation in a number of cases by means of the has-function relation. Note that the 

latter is an ontological relation, in contrast to the annotation relation, which is currently a 

database relation. Refined annotations do not only provide more information within ontologies 

themselves, but also with respect to the relation between categories of biomedical ontologies 

and genomic knowledge about biological reality. Both additional information due to enhanced 

expressivity and refined annotations may prove useful for the various statistical methods which 

have been applied to biomedical ontologies in order to detect biological correlations, such as 

[Beissbarth, Speed, 2004; Berriz et al., 2003; Subramanian et al., 2005]. 

Currently, by the effort of the Ontologies in Biomedicine Group [OBG, 2006] OF has 

been implemented in OWL DL and together with GFO provides the foundation of 

BioCoreOntology. In addition OF has been partially mapped to the molecular function 

taxonomy and biological process taxonomy of OBO. The mapping identifying, among others, 

two thousands appearances of the realization relation relies on the statistical methods and is 

intended to be verified by help of the appropriate curation tools being under development 
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9.5 Future Work 

The current work presents the formal top-level ontology of functions, applicable in domain 

ontologies and conceptual modeling. However, the work cannot be seen as complete. Instead 

we recognize a number of future research directions. Firstly, several issues concerning the 

theoretical aspects of functions should be further analyzed; in particular evolutionary functions 

and etiological interpretation of function should be included into OF. Evolutionary functions 

are of particular importance in biology, and as the brief summary of the related work in section 

2.3.2 has shown, many problems concern them.  Although some aspects of etiological theories 

have been adopted in our framework, i.e. the intended has-function or the malfunctions with 

respect to the item’s history, the development of the applicable notion of evolutionary function 

still requires much scientific effort.  

The second direction of the future work concerns the interdependencies between 

functions and roles. The Ontology of Functions refers often to the theory of roles, especially in 

the context of the notions of functional item and realizer. Moreover, the notions of role and of 

function seem to be closely related and in fact in everyday language both notions are often 

used convertibly. For example, it seems that both of the following phrases share the same 

intuitions: “the role of teaching students”, “the function of teaching students”. Also the 

function ascription is often equivalent to the role ascription, e.g. compare “John has a role of 

teacher” with “John has a function of teaching”. 

The next important direction of future research in our opinion concerns the correlation 

of the ontology of roles and the ontology of functions. In particular the results presented in the 

current work can be used for the extension of the ontology of roles incorporated into GFO 

[Loebe, 2006].  For instance, functional items as roles defined in purely functional terms could 

be considered as an additional, beside processual, social and relational, type of role. 

Additional direction of future research involves the evaluation and application of the 

developed framework. We believe that a good evaluation method of the developed ontology is 

its application to the current domain ontologies of functions. We have investigated the 

applicability of OF in bio-ontologies as well as the partial mappings between OF and a 

restricted fragment of OBO has been provided and the first results seem to be promising. Now, 

by help of curation tools those mappings should be examined and if necessary improved. In 

addition we plan to introduce more notions of OF to bio-ontologies, in particular malfunction. 

 Moreover, it should be investigated how far OF permits to underpin other domain 

function ontologies, such as e.g.  business function ontologies. In this sense the taxonomies of 
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functions developed in section 7.4 can be considered as most general functions underpinning 

the domain specific functions. 

OF could be used as the methodological framework for the development of the domain 

function ontologies from scratch, which however requires the development of the methodology 

for the specification of domain functions based on OF. Among other things, of help in this task 

may be the techniques of functional design outlined in section 2.1. Some of the general 

principles can already be gained from the developed ontology, such as the architectural 

principles of delimiting function from realization or those concerning the determination of the 

structure of functions. 

In the context of the last two issues mentioned above of particular importance is the 

development of appropriate tools which permit to create domain ontologies of functions, refine 

the current ontologies as well as support some of the methodological principles for functional 

modeling imposed by OF. The first of the family of such tools is a wiki-based curation system 

for OF [Hoehndorf et al., 2006], being under development at the Ontologies in Biomedicine 

Group. It is specially suited for the annotation of gene functions by means of the relations of 

OF, and for enablement of the collaborative curation of the Ontology of Functions and the bio-

ontologies founded on it.  

Finally, the tools for graphical representation and modeling of functions can be 

constructed upon the UML profile introduced, which however should be developed further. In 

particular, in order to provide a cohesive UML-based ontological framework for modeling 

functions axioms of OF should be at least partially translated into Object Constraint Language. 
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Appendix A: GFO Terms and 

Definitions 

The present appendix provides the reference list of the basic notions of GFO used in the thesis. Some of 

the notions are slightly modified and/or simplified for the purpose of the current study. The notions 

concerning causality are not incorporated in the current version of GFO [Heller, et al., 2006] but are 

published elsewhere [Michalek, 2005; Michalek, 2006]. In the below list they are labeled with OC 

(Ontology of Causality). The list is organized in the alphabetical order. For each notion a name, a GFO 

symbol and the description, optionally with selected axioms, are provided. 

 

Name Symbol Description 

Category  See Universal 

Cause  

(from OC) 

Cause(x,y) A causal relation between a cause and an effect. In 

[Michalek, 2005] this relation implies the following 

conditions: 

(1) a statistical dependency (regularity) between the existence 

of a cause  and an effect, denoted by Reg(x,y):  Cause(x,y) 

→ Reg(x,y); 

(2) the effect must be manipulable by the cause. 

Man(x,Qx,y,Qy) is the relation mediating a presential x and its 

property Qx with a presential y and its property Qy, such that 

manipulation of the value of Qx changes the value of Qy: 

Cause(x,y) → ∃Qx Qy(Man(x,Qx, y,Qy)). 

In OF the predicate Cause(x,y) underpins all types of 

causations introduced. 

Cause, 

instantaneous 

Causeinst(x,y) The causal relation between presentials located at the same 

time boundary. 

Causeinst(x,y) ↔ Pres(x) ∧ Pres(y) ∧ Reg(x,y) ∧ 

∃qw(Man(x,q, y,w))  ∧   ∃t(At(x,t) ∧ At(y,t)). 

Cause, 

cohesive 

 See Process Causally Cohesive. 

Cause, 

adhesive 

 See Process Casually Adhesive. 
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Change Change(e1, e2, 

u1, u2, u) 

Extrinsic changes are represented by Change(e1, e2, u1, u2, 

u), where e1 and e2 capture the pair of process boundaries and 

u1 and u2 are disjoint sub-universals of u, such that e1 and e2 

instantiate u1 and u2, respectively. 

Extrinsic change holds between coinciding boundaries e1 and 

e2,  whereas in intrinsic change boundaries e1 and e2 are at the 

opposite ends of a process of arbitrary extension 

Chronoid Chron(x) A temporal interval with boundaries. Chronoids are not 

considered in GFO as mere sets of points, but as entities sui 

generis.  

Coincidence Coinc(x,y) Coincidence is a relationship between space- (spatial 

coincidence) and time-boundaries (temporal coincidence). 

Intuitively, two such boundaries are coincident if and only if 

they occupy “the same” space or time, but they are still 

different entities, e.g. in a sense that they bound different 

entities. For instance only a right and a left time boundary can 

temporally coincidence. 

TCoinc(x,y) → ∃uv ((Rb(x,u) ∧ ( Lb(y,v)) ∨ ((Lb(x,u) ∧ 

Rb(y,v))) 

Configuration  

 

Config(x) A presential which is a collection of presential facts existing 

at the same time-boundary i.e., it is a conglomeration of 

physical structures, properties and relators. 

Configuroid Configu(x) An occurrence whose boundaries are configurations. 

Configu(y) → ∀x (Procbd(x,y) → Config(x)) 

Entity Entity(x) A general notion comprising all items of GFO. 

Fact  Fact(x) A complex entity comprising a relator together with its relata 

considered as a whole.  

Facti(x) ↔ ∃uy1…yn(i) (reli(u, y1, …, yn(i), x)  

Immanent 

Universal 

 See Universal. 

Individual 

 

Ind(x) A single entity which cannot be instantiated but itself is an 

instance of a universal. 

Instantiation :: A basic binary relation, whose second argument is a universal 

and the first, called instance, is an individual or a universal. 

The relation x :: y has the intuitive meaning that an instance x 
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is of kind y. In a sense, instantiation is the intensional 

counterpart of the membership relation.  

Level  See Stratum. 

Occurrent Occ(x) An individual extended in time.  

Ontological 

connectedness 

Ontic(x, y) The relation Ontic(x,y) connects presentials x and y by an 

integrated system of spatio-temporal and causal relationships 

which give rise to persistants. 

Part, Process 

Layer 

LayerPart(x,y) A process layer of a process p is a process which is framed by 

the same chronoid as p, and  is a processual part of p.  

Part Part(x,y) 

 

Basic relation between entities with the intuitive meaning that 

x is a part of y. Part-of relation comes in the number of 

specialized relations, these are: categorial part, constituent 

part, physical part, process part, proper part, spatial and 

temporal part. 

 Part, categorial CatPart(x,y) CatPart(x,y) =df “x is a categorial part of y”, where x and y 

are categories. It directly reflects dependencies among 

categories and uncovers how one category may be 

constructed out of others. 

Part, 

constituent 

CPart(x, y) CPart(x, y) =df “x is a proper constituent part of a complex 

entity y considered as a whole, e.g. a configuration”. Note 

that here we use an  extended understanding of the GFO 

Cpart relation which originally holds only for situations and 

situoids.  

Part, physical PhPart(x,y) PhPart(x,y) =df “x is a physical part of y”, where x and y are 

physical structures. 

Part, processual ProcPart(x,y) ProcPart(x,y) =df “x is a processual part of  y”, where x and y 

are processes. 

Part, Proper PPart(x,y) Non-reflexive part-of relation. 

Part, spatial SPart(x,y) SPart(x,y)=df “x is a proper spatial part of y”, where x and y 

are space entities. 

Part, temporal TPart(x,y) TPart(x,y) =df “x is a proper temporal part of y”, where x and 

y are time entities. 

Persistant  

 

Perst(x) An individual extended in time but distinct from process. A 

persistant can be seen as a construct which binds presentials 
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with the same identity, though located at different time 

boundaries67, into one entity persisting through time. 

Physical 

Structure 

Phys(x) An individual extended in space which is a bearer of 

properties (see property), and such that other entities cannot 

have it as a property. 

Presential Pres(x) An individual existing wholly at a time-boundary. Every 

presential exists at exactly one time boundary and is called a 

process boundary of some process projected on the time 

boundary (see projection). 

Process Proc(x) An individual extended in time. Processes in contrast to 

presentials are not located at a single time boundary but on a 

chronoid.  

Process 

boundary  

 

ProcBd(x,y) If a process p is projected onto a chronoid c in terms of 

Prt(p,c), then each boundary b of c refers to a presential e 

which is called the boundary of the process, denoted by 

Prb(p, b, e), which further implies At(e, b): 

ProcBd(x,y) ↔∃t(Prb(y,t,x)). 

Process 

boundary, left 

ProcLBd(x,y) It is the presential located at the left boundary  l(c) of the 

chronoid c framing the process: 

ProcLBd(x,y) ↔ ∃c(Prt(y,c) ∧ Prb(y, l(c), x)). 

Process 

boundary, right 

ProcRbd(x,y) 

 

 

It is the presential located at the right boundary r(c) of the 

chronoid c framing the process. 

ProcRBd(x,y) ↔  ∃c (Prt(y,c) ∧ Prb(y, r(c), x)) 

Process, 

causally 

cohesive  

(from OC) 

Causecoh(x)   It is a process of a particular causal structure, namely every 

pair of coinciding (inner) time-boundaries contains 

presentials connected by the basic causal relation. 

                                                      

67 It should be mentioned that the presented account of persistants is a simplified variant of GFO [Heller 

et al., 2006]. Originally, persistants are not individuals but universals instantiated by ontically connected 

individual presentials, and are introduced to GFO as a response to the problems yielded by the typical 

understanding of endurants as the entities enduring in time and wholly present at every moment of their 

existence. For further discussion see ([Heller et al., 2006], p. 25). 
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Processes, 

causally 

adhesive 

(from OC) 

 

 

Causeadh(q,w) A pair of  temporally overlapping processes, that are causally 

connected throughout this overlap. 

At every pair of coinciding time-boundaries t and t’, such  

that t is the boundary of x and t’ is a boundary of  y,  exist 

causally connected presentials p and p’ such that p is the 

boundary of the process x and p’ is the boundary of the 

process y.  

Projection  Prt(x,c) 

At(y,t) 

Prb(x,t,y) 

It is a group of relations embedding individuals to time. We 

distinguish several cases of projections, denoted by At(e, t), 

Prt(p, c) and Prb(p,t,e).  

The relation At(e,t) assigns a presential e to a time boundary t 

and is read “a presential e is located at t”. 

The relation Prt(p,c) assigns a process p to framing it 

chronoid c and is read “a process p is framed by a chronoid 

c”.  

If a process is projected onto a chronoid in terms of Prt(p,c), 

each time-boundary b of c refers to a presential e which is 

called the boundary of the process, denoted by Prb(p,b,e), 

which further implies At(e, b). 

Property Prop(x) A facet of an entity inherited by it: 

Prop(x) ↔ ∃yz(Entity(x) ∧ Inh(x,z)). 

Property Value Propv(x) An individual value of an individual property 

Relator  An individual entity connecting other entities (of any kind) 

called relates. An instance of relation. 

Role Role(x) An entity played by some role-player in some role-context.  

A role is closely related to properties, but in contrast to those 

it mediates a bearer with an external context: 

Role(x) ↔ ∃yz(HasRole(y,x) ∧ RoleIn(x,z)) 

Situation Sit(x) A configuration which can be comprehended as a whole and 

satisfies certain conditions of unity, which are imposed by 

relations and categories associated with the situation. Herein, 

we consider situations to be the most complex kind of 

presentials. 

Situoid Situ(x) An occurrence whose boundaries are situations and which 

satisfies certain principles of coherence, comprehensibility, 

and continuity. Intuitively, it is a part of the world which is a 

coherent and comprehensible whole and does not need other 
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entities in order to exist. Every situoid has a temporal extent 

and is framed by a topoid. 

Stratum,  

  Material 

  Mental 

  Social 

 

 

 

 

 

 

 

MatL(x) 

MentL(x) 

SocL(x) 

A subsystem of GFO categories implying certain granularity. 

All categories of GFO are organized in three strata (called 

also levels): material, mental, and social. Material stratum 

captures categories referring to objects of physical world 

denoted by MatL(x). Mental stratum comprises most of what 

is studied by cognitive science (perception, memory, 

reasoning, etc) and the categories referring to will denoted by 

MentL(x). Social stratum covers such categories as agents 

and institutions. Items of social strata are denoted by 

SocL(x). 

Among these levels specific forms of categorial and 

existential dependencies hold. For example, a mental entity 

requires an animate physical object as its existential bearer. 

Time boundary 

 Left,  

 right,  

 inner. 

Tb(x), 

Lb(x,c), 

Rb(y,c) 

 

Time entities distinct from chronoids. Every chronoid c has 

exactly two extremal boundaries – a left boundary denoted by 

Lb(x,c) and a right boundary denoted by Rb(y,c). Moreover, 

it has infinitely many inner time boundaries. The boundaries 

depend on a chronoid, i.e. they have no independent 

existence. Moreover, the boundaries can coincide (see 

Coincidence). 

TB(x) ↔ ∃y Tb(x,y).  

Time entity Te(x) Te(x) ↔ TB(x) ∨ Chron(x). 

Universal 

 Primitive, 

 Immanent, 

 Conceptual    

 Structure. 

 

Uni(x) An entity which may be predicated of or instantiated by other 

entities. Universals whose all instances are individuals are 

called primitive universals. In addition, at least two kinds of 

universals can be distinguished: immanent universals and 

conceptual structures. 

The immanent universals are assumed to exist in the 

individuals (in re) but not independently from them. On the 

other hand, humans as cognitive subjects conceive of 

universals of any sort by means of concepts that are in their 

minds. Those are called conceptual structures. 

 

Universals can be classified also in accordance with the 

classification of corresponding individuals, e.g. process 

universals. 
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Complex 

Whole 

Whole(x) The general notion underpinning all complex entities and 

their universals, i.e. fact, configuration, configuroid, situation 

and situoid. 

Coherent Entity 

(extends GFO) 

 A complex entity (a whole), that all its constituent parts are 

interrelated. 

Coh(x) ↔ ∀yz(CPart(y,x) ∧ CPart(z,x) ∧ z ≠ y ∧ x = y + z 

→  Rel(y,z)) 

Process 

common start 

ProcStarts(x,y) Two processes having the common beginnings: 

ProcStarts(x, y) ↔ ∃uv (Prt(x,u) ∧ Prt(y,v) ∧ Starts(u,v)), 

 where  Starts(u,v) is  the relation between two chronoids 

having the same left boundary. 

Process 

common end 

ProcEnds(x, y) Two processes having the common endings: 

ProcEnds(x,y) ↔ ∃uv (Prt(x,u) ∧ Prt(y,v) ∧ Ends(u,v)),  

where Ends(u,v) is  the relation between two chronoids 

having the same right boundary. 

Table 8.  The reference list of GFO terms and definitions. 
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Index of Symbols 

 

:: Instantiation (from GFO) 

At(y,t) Location at time boundary 

CatPart(x,y) Part, categorial (from GFO)  

Cause(x,y) Cause (from OC) 

Causeadh(q,w) Processes, causally adhesive 

(from OC) 

Causecoh(x)   Process, causally cohesive 

(from OC) 

Causeinst(x,y) Cause, instantaneous 

Change(e1, e2, 

u1,u2, u) 

Change (from GFO) 

Chron(x) Chronoid (from GFO) 

Coh(x) Coherent Entity (extends GFO) 

Coinc(x,y) Coincidence (from GFO) 

Config(x) Configuration (from GFO) 

Configu(x) Configuroid (from GFO) 

Contribute(x,y,z) x contributes to the realization y  

of a function z 

CPart(x, y) Part, constituent (from GFO) 

D(y,x) Determinant of a function x 

Enable(x,y) Enable 

Entity(x) Entity (from GFO) 

Exclude(v,w) Exclude 

Execute(x,y,z)  x executes the realization y of a 

function z 

Fact(x) Fact (from GFO) 

FI(x,y) Functional item of a function y 

FICompl(x,y) Complex functional item of a 

function y 

FiInd(x,y) Individual functional item of a 

function y 

FITEM(x) Set of functional items of x 

FSt(x,y)   x is a final state of y 

Fu(x) Function 

FuAccompl(x) Accomplishment function 

FuBasic (x) Basic function 

FuCoh(x) Coherent function 

FuCompl(x) Complex function 

FuContin(x) Continuous function 

FuDyn(x) Dynamic function 

FuDynR(x,y) Dynamic function wrt. a 

realizer y 

FuEnable(x,y) Function enabling y 

FuImprove(x,y,z) Function x improving the 

realization z achieving the goal  

y 

FuInstant(x) Instantaneous function 

FuMulGoal(x) Multiple-goal function 

FuNeutral(x,y) Function neutral for y 

FuPass(x) Passive function 

FuPassR (x,y) Passive function wrt. a realizer 

y 

FuPerform(x,y) Function performing y 

FuPrevent(x,y) Function preventing y 

FuSeq(x) Sequential function 

FuSupport(x,y) Function supporting y 

Futrigger(x,y,z) Function x triggers the 

realization z achieving the goal 

y 

GOAL(x) Set of goals of function x 

Goal(x,y,z) x is a goal  of a function y 

established by an agent z 

GoalFor(x,y) x is a goal for an agent y 

GoalOf(u,y) x  is a goal of a function y 

HasFuAct(x,y,z) Actual function of an item x in 

context z 

HasFuDesig(x,y,z) Designed function 

HasFuDisp(x,y,z) Dispositional function 

HasFuInten(x,y,z) Intended function 

HasFuReq(x,y,z) Required function  

HasFuRes(x,y,z) Researched function 

HasFuUser(x,y,z) User function 

Improve(x,y,z) Function x improves the 
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realization z of a function y 

Ind(x) Individual (from GFO) 

IndFu(x) Individual function 

Intent(q,v) x intends y 

IntCont(i, R, 

a1...an) 

Content of the intention i 

LayerPart(x,y) Part, Process Layer (from GFO) 

Lb(x,c)  Left boundary (from GFO) 

Malfu(x,y,z) Malfunction of x in context z 

MalfuHist(x,f,s) Malfunction wrt. to the history 

of an item x 

MalfuInten(x,f,c) Malfunction wrt. intended 

function of x 

MalfuKind(x,f,s) Malfunction wrt. to other 

instances of a kind of x 

MatL(x)  x belongs to material stratum 

(from GFO) 

MeansActRl(x,y) Means of actual realization of a 

function y 

MentL(x) x belongs to mental stratum 

(from GFO) 

Occ(x) Occurrent (from GFO) 

Ontic(x, y) Ontological connectedness 

Part(x,y) Part (from GFO) 

PartFu (x,y) Function part-of 

PartSeq(x,y) x is a part of the sequence 

realizing y 

Perst(x) Persistant (from GFO) 

PhPart(x,y) Part, physical (from GFO) 

Phys(x) Physical Structure (from GFO) 

PPart(x,y) Part, Proper (from GFO) 

Prb(x,t,y) Presential y being a projection 

of a process x to a time 

boundary t 

Pres(x) Presential (from GFO) 

Prevent(x,y) Prevent 

Proc(x) Process (from GFO) 

ProcBd(x,y) Process boundary (from GFO) 

ProcEnds(x,y) Process common end (from 

GFO) 

ProcLBd(x,y) Process boundary, left (from 

GFO) 

ProcPart(x,y) Part, processual (from GFO) 

ProcRbd(x,y) Process boundary, right (from 

ProcStarts(x,y) Process common start (from 

GFO) 

Prop(x) Property (from GFO) 

PropV(x) Property value (from GFO) 

Prt(x,c) Projection (from GFO) 

R(x,y) Realizer of function y 

RAc(x,y)  Actual realizer of function y 

Rb(y,c)  Right boundary (from GFO) 

RComplAct(x,y) Complex actual realizer of 

function y 

RDisp(x,y) Dispositional realizer of 

function y 

RDispStr(x,y) Dispositional strong realizer  

RDyn(x,y) Dynamic realizer of function y 

Realize(x,y) Function x realizes function y 

REQ(x) Set of requirements of a 

function x 

Req(x,y) Requirement of a function y 

ReqEnv(x,y) Environmental requirement of a 

function y 

ReqFi(x,y) Functional item’s requirement 

of a function y 

ReqOp(x,y) Operand requirements of a 

function y 

RlAct(x,y) Actual realization of a function 

y 

RlActCulm(x,y) Actual culminative realization 

of a function y 

RlActMin(x,y) Actual minimal realization of a 

function y 

RlActNonCulm(x,y) Actual non-culminative 

realization of a function y 

RlActSit(x,y) Actual situational realization of 

a function y 

RlDisp(x,y) Dispositional realization of a 

function y 

Role(x) Role (from GFO) 

RPass(x,y) Passive realizer of a function y 

SideEf(x,y) Side effects of a function y 

Seq(y, L) Sequence realizing a function y 

SideEfRl(x,y,z) x is a side effect of realization y 

of a function z 

Sit(x) Situation (from GFO) 
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Situ(x) Situoid (from GFO) 

SocL(x) x  belongs to social stratum 

(from GFO) 

SPart(x,y) Part, spatial (from GFO) 

Specialize(x,y) Specialization 

Subsume(x,x) Subsumption 

Support(x,y) Support 

Tb(x) Time boundary (from GFO) 

Te(x) Time entity (from GFO) 

TFRAM(x) Time frame of x 

TPart(x,y) Part, temporal (from GFO) 

Trig(x,y) x is a trigger of a function y 

Trigger(x,y,z) Function x triggers a realization 

z of function y 

Uni(x) Universal (from GFO) 

UniDAb(x,y) Absolute universal determinant 

of function y 

UniFu(x) Universal function  

UniFuAb(x) Absolute universal function  

UniFuPrim(x) Universal primitive function  

UniHasFu(x,y,z) Universal has-function  

UniHasFuAct Universal actual function 

UniHasFuDisp(x,y, Universal dispositional function 

z) 

UniHasFuInten(x,y

,z) 

Universal intended function 

UniR(x,y)   Universal realizer of a function 

y 

UniRlMin(x,y) Minimal universal realizer of a 

function y 

Whole(x) Complex Whole (extends GFO) 

x ⊂Fu  y Function specialization 

x ⊆Fu y Function subsumption 

x ::FI y Functional item instantiation 

x ::Fu y Function instantiation 

x ::Gl y Goal instantiation 

x ::Req y Requirements instantiation 

x @ y x fulfills y 

x =Fi y Equivalence of functions wrt. 

functional items 

x =Fu y Equivalence of functions 

x =Gl y equivalence of function wrt. 

their goals 

x =Req y Equivalence of function wrt. 

their requirements 
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